1
|
Li Z, Zhang Y, Ma M, Wang W, Hui H, Tian J, Chen Y. Targeted mitigation of neointimal hyperplasia via magnetic field-directed localization of superparamagnetic iron oxide nanoparticle-labeled endothelial progenitor cells following carotid balloon catheter injury in rats. Biomed Pharmacother 2024; 177:117022. [PMID: 38917756 DOI: 10.1016/j.biopha.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The transplantation of endothelial progenitor cells (EPCs) has been shown to reduce neointimal hyperplasia following arterial injury. However, the efficacy of this approach is hampered by limited homing of EPCs to the injury site. Additionally, the in vivo recruitment and metabolic activity of transplanted EPCs have not been continuously monitored. METHODS EPCs were labeled with indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) and subjected to external magnetic field targeting to enhance their delivery to a carotid balloon injury (BI) model in Sprague-Dawley rats. Magnetic particle imaging (MPI)/ fluorescence imaging (FLI) multimodal in vivo imaging, 3D MPI/CT imaging and MPI/FLI ex vivo imaging was performed after injury. Carotid arteries were collected and analyzed for pathology and immunofluorescence staining. The paracrine effects were analyzed by enzyme-linked immunosorbent assay. RESULTS The application of a magnetic field significantly enhanced the localization and retention of SPIONs@PEG-ICG-EPCs at the site of arterial injury, as evidenced by both in vivo continuous monitoring and ex vivo by observation. This targeted delivery approach effectively inhibited neointimal hyperplasia and increased the presence of CD31-positive cells at the injury site. Moreover, serum levels of SDF-1α, VEGF, IGF-1, and TGF-β1 were significantly elevated, indicating enhanced paracrine activity. CONCLUSIONS Our findings demonstrate that external magnetic field-directed delivery of SPIONs@PEG-ICG-EPCs to areas of arterial injury can significantly enhance their therapeutic efficacy. This enhancement is likely mediated through increased paracrine signaling. These results underscore the potential of magnetically guided SPIONs@PEG-ICG-EPCs delivery as a promising strategy for treating arterial injuries.
Collapse
Affiliation(s)
- Zhongxuan Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingqian Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Mingrui Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Wang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China; School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
2
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
4
|
Guo E, Wu J, Lu H, Wang L, Chen Q. Tissue-engineered bones with adipose-derived stem cells - composite polymer for repair of bone defects. Regen Med 2022; 17:643-657. [PMID: 35703025 DOI: 10.2217/rme-2022-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Development of alternative bone tissue graft materials based on tissue engineering technology has gradually become a research focus. Engineered bone composed of biodegradable, biosafe and bioactive materials is attractive, but also challenging. Materials & methods: An adipose-derived stem cell/poly(L-glutamic acid)/chitosan composite scaffold was further developed for construction of biodegradable and bone-promoting tissue-engineered bone. A series of composite scaffold materials with different physical properties such as structure, pore size, porosity and pore diameter was developed. Results: The composite scaffold showed good biodegradability and water absorption, and exhibited an excellent ability to promote bone differentiation. Conclusion: This type of biodegradable scaffold is expected to be applied to the field of bone repair or bone tissue engineering.
Collapse
Affiliation(s)
- Enqi Guo
- Department of Hand & Reconstructive Surgery, Plastic & Reconstructive Surgery Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jianlong Wu
- Department of Hand & Reconstructive Surgery, Plastic & Reconstructive Surgery Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Hongrui Lu
- Department of Hand & Reconstructive Surgery, Plastic & Reconstructive Surgery Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Liang Wang
- Department of Hand & Reconstructive Surgery, Plastic & Reconstructive Surgery Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Qiang Chen
- Department of Hand & Reconstructive Surgery, Plastic & Reconstructive Surgery Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
7
|
Dasari A, Xue J, Deb S. Magnetic Nanoparticles in Bone Tissue Engineering. NANOMATERIALS 2022; 12:nano12050757. [PMID: 35269245 PMCID: PMC8911835 DOI: 10.3390/nano12050757] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.
Collapse
Affiliation(s)
- Akshith Dasari
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE11UL, UK
| | - Jingyi Xue
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
| | - Sanjukta Deb
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Correspondence:
| |
Collapse
|
8
|
Go G, Yoo A, Kim S, Seon JK, Kim C, Park J, Choi E. Magnetization-Switchable Implant System to Target Delivery of Stem Cell-Loaded Bioactive Polymeric Microcarriers. Adv Healthc Mater 2021; 10:e2100068. [PMID: 34369079 DOI: 10.1002/adhm.202100068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/13/2021] [Indexed: 11/11/2022]
Abstract
Various magnetic microcarrier systems capable of transporting cells to target lesions are developed for therapeutic agent-based tissue regeneration. However, the need for bioactive molecules and cells, the potential toxicity of the microcarrier, and the large volume and limited workspace of the magnetic targeting device remain challenging issues associated with microcarrier systems. Here, a multifunctional magnetic implant system is presented for targeted delivery, secure fixation, and induced differentiation of stem cells. This magnetic implant system consists of a biomaterial-based microcarrier containing bioactive molecules, a portable magnet array device, and a biocompatible paramagnetic implant. Among biomedical applications, the magnetic implant system is developed for knee cartilage repair. The various functions of these components are verified through in vitro, phantom, and ex vivo tests. As a result, a single microcarrier can load ≈1.52 ng of transforming growth factor β (TGF-β1) and 3.3 × 103 of stem cells and stimulate chondrogenic differentiation without extra bioactive molecule administration. Additionally, the implant system demonstrates high targeting efficiency (over 90%) of the microcarriers in a knee phantom and ex vivo pig knee joint. The results show that this implant system, which overcomes the limitations of the existing magnetic targeting system, represents an important advancement in the field.
Collapse
Affiliation(s)
- Gwangjun Go
- Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Korea
| | - Ami Yoo
- Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 Korea
| | - Seokjae Kim
- Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Korea
| | - Jong Keun Seon
- Center for Joint Disease Chonnam National University Hwasun Hospital 160 Ilsim‐ri, Hwasun‐eup Hwasun 58128 Korea
| | - Chang‐Sei Kim
- Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Korea
| | - Jong‐Oh Park
- Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Korea
| |
Collapse
|
9
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
10
|
Hong Y, Liu N, Zhou R, Zhao X, Han Y, Xia F, Cheng J, Duan M, Qian Q, Wang X, Cai W, Zreiqat H, Feng D, Xu J, Cui D. Combination Therapy Using Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomater Sci Eng 2020; 6:6276-6284. [PMID: 33449656 DOI: 10.1021/acsbiomaterials.0c00724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Articular cartilage has a highly organized structure, responsible for supporting tremendous mechanical loads. How to repair defected articular cartilage has become a great challenge as the avascular nature of cartilage limits its regenerative ability. Aiming to facilitate chondrogenic differentiation and cartilage regeneration, we recently explored a novel combination therapy using soluble poly-l-lysine/Kartogenin (L-K) nanoparticles and a poly(lactic-co-glycolic acid) PLGA/methacrylated hyaluronic acid (PLHA) complex scaffold. The potential use for joint cartilage reconstruction was investigated through L-K nanoparticles stimulating adipose-derived stem cells (ADSCs) on PLHA scaffolding, which ultimately differentiated into cartilage in vivo. In this study, on one hand, an effective method was established for obtaining uniform L-K nanoparticles by self-assembly. They were further proved to be biocompatible to ADSCs via cytotoxicity assays in vitro and to accelerate ADSCs secreting type 2 collagen in a dose-dependent manner by immunofluorescence. On the other hand, the porous PLHA scaffold was manufactured by the combination of coprecipitation and ultraviolet (UV) cross-linking. Nanoindentation technology-verified PLHA had an appropriate stiffness close to actual cartilage tissue. Additional microscopic observation confirmed that the PLHA platform supported proliferation and chondrogenesis for ADSCs in vitro. In the presence of ADSCs, a 12-week osteochondral defect regeneration by the combination therapy showed that smooth and intact cartilage tissue successfully regenerated. Furthermore, the results of combination therapy were superior to those of phosphate-buffered saline (PBS) only, KGN, or KGN/PLHA treatment. The results of magnetic resonance imaging (MRI) and histological assessment indicated that the renascent tissue gradually regenerated while the PLHA scaffold degraded. In conclusion, we have developed a novel multidimensional combination therapy of cartilage defect repair that facilitated cartilage regeneration. This strategy has a great clinical translational potential for articular cartilage repair in the near future.
Collapse
Affiliation(s)
- Yuping Hong
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ning Liu
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Second Naval Military University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Rong Zhou
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Second Naval Military University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Xinxin Zhao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong Univesity, 160 Pujian Road, Sahnghai 200127, P. R. China
| | - Yaguang Han
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Second Naval Military University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Fangfang Xia
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Meng Duan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qirong Qian
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Second Naval Military University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Xiuying Wang
- School of Computer Science, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Weidong Cai
- School of Computer Science, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong Univesity, 160 Pujian Road, Sahnghai 200127, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Zhang C, Cai YZ, Lin XJ, Wang Y. Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies. Front Cell Dev Biol 2020; 8:526. [PMID: 32695782 PMCID: PMC7338659 DOI: 10.3389/fcell.2020.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
For the fact that articular cartilage is a highly organized and avascular tissue, cartilage defects are limited to spontaneously heal, which would subsequently progress to osteoarthritis. Many methods have been developed to enhance the ability for cartilage regeneration, among which magnetically actuated manipulation has attracted interests due to its biocompatibility and non-invasive manipulation. Magnetically actuated manipulation that can be achieved by introducing magnetic nanoparticles and magnetic field. This review summarizes the cutting-edge research on the chondrogenic enhancements via magnetically actuated manipulation, including cell labeling, cell targeting, cell assembly, magnetic seeding and tissue engineering strategies.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Battig MR, Alferiev IS, Guerrero DT, Fishbein I, Pressly BB, Levy RJ, Chorny M. Experimental Single-Platform Approach to Enhance the Functionalization of Magnetically Targetable Cells. ACS APPLIED BIO MATERIALS 2020; 3:3914-3922. [PMID: 33251488 DOI: 10.1021/acsabm.0c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic guidance shows promise as a strategy for improving the delivery and performance of cell therapeutics. However, clinical translation of magnetically guided cell therapy requires cell functionalization protocols that provide adequate magnetic properties in balance with unaltered cell viability and biological function. Existing methodologies for characterizing cells functionalized with magnetic nanoparticles (MNP) produce aggregate results, both distorted and unable to reflect variability in either magnetic or biological properties within a preparation. In the present study, we developed an inverted-plate assay allowing determination of these characteristics using a single-platform approach, and applied this method for a comparative analysis of two loading protocols providing highly uniform vs. uneven MNP distribution across cells. MNP uptake patterns remarkably different between the two protocols were first shown by fluorimetry carried out in a well-scan mode on endothelial cells (EC) loaded with BODIPY558/568-labeled MNP. Using the inverted-plate assay we next demonstrated that, in stark contrast to unevenly loaded cells, more than 50% of uniformly functionalized EC were captured within 5 min over a broad range of MNP doses. Furthermore, magnetically captured cells exhibited unaltered viability, substrate attachment, and proliferation rates. Conducted in parallel, magnetophoretic mobility studies corroborated the markedly superior guidance capacity of uniformly functionalized cells, confirming substantially faster cell capture kinetics on a clinically relevant time scale. Taken together, these results emphasize the importance of optimizing cell preparation protocols with regard to loading uniformity as key to efficient site-specific delivery, engraftment, and expansion of the functionalized cells, essential for both improving performance and facilitating translation of targeted cell therapeutics.
Collapse
Affiliation(s)
- Mark R Battig
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David T Guerrero
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ilia Fishbein
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin B Pressly
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Mahmoud EE, Adachi N, Mawas AS, Gaarour OS, Ochi M. Coculturing of mesenchymal stem cells of different sources improved regenerative capability of osteochondral defect in the mature rabbit: An in vivo study. J Orthop Surg (Hong Kong) 2020; 27:2309499019839850. [PMID: 30955439 DOI: 10.1177/2309499019839850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Choosing a therapeutic cell source for osteochondral repair remains a challenge. The present study investigated coculturing mesenchymal stem cells (MSCs) from different sources to provide an improved therapeutic cell option for osteochondral repair. METHODS Dutch and Japanese white rabbits were used in this study, the first for isolating MSCs and the second for creating an osteochondral model in the medial femoral condyle. The 26 rabbit knees were divided randomly into four groups: control ( n = 6), bone marrow-derived MSCs (BMSCs) ( n = 7), synovial tissue MSCs (SMSCs) ( n = 7), and cocultured MSCs ( n = 6). Tissue repair was assessed using the Fortier scale, and colony-forming assay was performed. RESULTS At different cell densities, cocultured and SMSCs formed larger colonies than BMSCs, indicating their high proliferative potential. After 2 months, complete filling of the defect with smooth surface regularity was detected in the cocultured MSC group, although there was no significant difference among the therapeutic groups macroscopically. Also, tissue repair was histologically better in the cocultured MSC group than in the control and SMSC groups, due to repair of the subchondral bone and coverage with hyaline cartilage. Additionally, toluidine blue and collagen-II staining intensity in the repaired tissue was better in the cocultured MSC group than in the remaining groups. CONCLUSION Our results suggest that cocultured MSCs are a suitable option for the regeneration capability of osteochondral defects due to their enhanced osteochondrogenic potential.
Collapse
Affiliation(s)
| | - Nobuo Adachi
- 2 Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Amany Sayed Mawas
- 3 Department of Pathology & Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Osama Samir Gaarour
- 4 Department of orthopaedic Surgery, Faculty of Medicine, Mansoura University, Egypt
| | - Mitsuo Ochi
- 2 Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Go G, Jeong SG, Yoo A, Han J, Kang B, Kim S, Nguyen KT, Jin Z, Kim CS, Seo YR, Kang JY, Na JY, Song EK, Jeong Y, Seon JK, Park JO, Choi E. Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo. Sci Robot 2020; 5:5/38/eaay6626. [DOI: 10.1126/scirobotics.aay6626] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Targeted cell delivery by a magnetically actuated microrobot with a porous structure is a promising technique to enhance the low targeting efficiency of mesenchymal stem cell (MSC) in tissue regeneration. However, the relevant research performed to date is only in its proof-of-concept stage. To use the microrobot in a clinical stage, biocompatibility and biodegradation materials should be considered in the microrobot, and its efficacy needs to be verified using an in vivo model. In this study, we propose a human adipose–derived MSC–based medical microrobot system for knee cartilage regeneration and present an in vivo trial to verify the efficacy of the microrobot using the cartilage defect model. The microrobot system consists of a microrobot body capable of supporting MSCs, an electromagnetic actuation system for three-dimensional targeting of the microrobot, and a magnet for fixation of the microrobot to the damaged cartilage. Each component was designed and fabricated considering the accessibility of the patient and medical staff, as well as clinical safety. The efficacy of the microrobot system was then assessed in the cartilage defect model of rabbit knee with the aim to obtain clinical trial approval.
Collapse
|
15
|
Chen L, Liu G, Li W, Wu X. Sonic hedgehog promotes chondrogenesis of rabbit bone marrow stem cells in a rotary cell culture system. BMC DEVELOPMENTAL BIOLOGY 2019; 19:18. [PMID: 31401976 PMCID: PMC6689882 DOI: 10.1186/s12861-019-0198-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sonic hedgehog (Shh) is an important signalling protein involved in the induction of early cartilaginous differentiation. Herein, we demonstrate that Shh markedly induces chondrogenesis of rabbit bone marrow stromal cells (BMSCs) under microgravity conditions, and promotes cartilage regeneration. RESULTS In the rotary cell culture system (RCCS), chondrogenic differentiation was revealed by stronger Toluidine Blue and collagen II immunohistochemical staining in the Shh transfection group, and chondroinductive activity of Shh was equivalent to that of TGF-β. Western blotting and qRT-PCR analysis results verified the stronger expression of Sox9, aggrecan (ACAN), and collagen II in rabbit BMSCs treated with Shh or TGF-β in a microgravity environment. Low levels of chondrogenic hypertrophy, osteogenesis, and adipogenesis-related factors were detected in all groups. After transplantation in vivo, histological analysis revealed a significant improvement in cartilage and subchondral repair in the Shh transfection group. CONCLUSIONS These results suggested that Shh signalling promoted chondrogenesis in rabbit BMSCs under microgravity conditions equivalent to TGF-β, and improved the early stages of the repair of cartilage and subchondral defects. Furthermore, RCCS provided a dynamic culture microenvironment conducive for cell proliferation, aggregation and differentiation.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China.,School of Medicine, Tongji University, Shanghai, 200072, China
| | - Gejun Liu
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China.,School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenjun Li
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China.,School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xing Wu
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China. .,School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
16
|
Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions. Molecules 2019; 24:molecules24132509. [PMID: 31324029 PMCID: PMC6650837 DOI: 10.3390/molecules24132509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the possibilities and feasibility of drug targeting for an arterial bifurcation lesion to influence the host healing response. A micrometer sized iron particle was used only to model the magnetic carrier in the experimental investigation (not intended for clinical use), to demonstrate the feasibility of the particle targeting at the lesion site and facilitate the new experimental investigations using coated superparamagnetic iron oxide nanoparticles. Magnetic fields were generated by a single permanent external magnet (ferrite magnet). Artery bifurcation exerts severe impacts on drug distribution, both in the main vessel and the branches, practically inducing an uneven drug concentration distribution in the bifurcation lesion area. There are permanently positioned magnets in the vicinity of the bifurcation near the diseased area. The generated magnetic field induced deviation of the injected ferromagnetic particles and were captured onto the vessel wall of the test section. To increase the particle accumulation in the targeted region and consequently avoid the polypharmacology (interaction of the injected drug particles with multiple target sites), it is critical to understand flow hemodynamics and the correlation between flow structure, magnetic field gradient, and spatial position.
Collapse
|
17
|
Mahmoud EE, Adachi N, Mawas AS, Deie M, Ochi M. Multiple intra-articular injections of allogeneic bone marrow-derived stem cells potentially improve knee lesions resulting from surgically induced osteoarthritis: an animal study. Bone Joint J 2019; 101-B:824-831. [PMID: 31256666 DOI: 10.1302/0301-620x.101b7.bjj-2018-1532.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. MATERIALS AND METHODS Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II. RESULTS Within the PBS injection (control group), typical progressive degenerative changes were revealed in the various knee structures. In the single MSC injection (single group), osteoarthritic changes were attenuated, but still appeared, especially in the medial compartments involving fibrillation of the articular cartilage, osteophyte formation in the medial plateau, and longitudinal tear of the meniscus. In the multiple-injections group, the smoothness and texture of the articular cartilage and meniscus were improved. Histologically, absence or reduction in matrix staining and cellularity were noticeable in the control and single-injection groups, respectively, in contrast to the multiple-injections group, which showed good intensity of matrix staining and chondrocyte distribution in the various cartilage zones. Osteoarthritis Research Society International (OARSI) scoring showed significantly better results in the multiple-injections group than in the other groups. Immunohistochemically, collagen I existed superficially in the medial femoral condyle in the single group, while collagen II was more evident in the multiple-injections group than the single-injection group. CONCLUSION A single injection of MSCs was not enough to restore the condition of osteoarthritic joints. This is in contrast to multiple injections of MSCs, which had the ability to replace lost cells, as well as reducing inflammation. Cite this article: Bone Joint J 2019;101-B:824-831.
Collapse
Affiliation(s)
- E E Mahmoud
- Department of Surgery, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - N Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - A S Mawas
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - M Deie
- Department of Orthopaedic Surgery, Aichi Medical University, Aichi, Japan
| | - M Ochi
- Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Magnetically Assisted Control of Stem Cells Applied in 2D, 3D and In Situ Models of Cell Migration. Molecules 2019; 24:molecules24081563. [PMID: 31010261 PMCID: PMC6515403 DOI: 10.3390/molecules24081563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
The success of cell therapy approaches is greatly dependent on the ability to precisely deliver and monitor transplanted stem cell grafts at treated sites. Iron oxide particles, traditionally used in vivo for magnetic resonance imaging (MRI), have been shown to also represent a safe and efficient in vitro labelling agent for mesenchymal stem cells (MSCs). Here, stem cells were labelled with magnetic particles, and their resulting response to magnetic forces was studied using 2D and 3D models. Labelled cells exhibited magnetic responsiveness, which promoted localised retention and patterned cell seeding when exposed to magnet arrangements in vitro. Directed migration was observed in 2D culture when adherent cells were exposed to a magnetic field, and also when cells were seeded into a 3D gel. Finally, a model of cell injection into the rodent leg was used to test the enhanced localised retention of labelled stem cells when applying magnetic forces, using whole body imaging to confirm the potential use of magnetic particles in strategies seeking to better control cell distribution for in vivo cell delivery.
Collapse
|
19
|
Mahmoud EE, Kamei N, Kamei G, Nakasa T, Shimizu R, Harada Y, Adachi N, Misk NA, Ochi M. Role of Mesenchymal Stem Cells Densities When Injected as Suspension in Joints with Osteochondral Defects. Cartilage 2019; 10:61-69. [PMID: 28486813 PMCID: PMC6376564 DOI: 10.1177/1947603517708333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate an intraarticular injection of different doses of autologous mesenchymal stem cells (MSCs) for improving repair of midterm osteochondral defect. DESIGN At 4 weeks postoperative marrow stimulation model bilaterally (3 mm diameter; 4 mm depth) in the medial femoral condyle, autologous MSCs were injected into knee joint. Twenty-four Japanese rabbits aged 6 months were divided randomly into 4 groups ( n = 6 per group): the control group and and MSC groups including 0.125, 1.25, and 6.25 million MSCs. Repaired tissue was assessed macroscopically and histologically at 4 and 12 weeks after intraarticular injection of MSCs. RESULTS At 12 weeks, there was no repair tissue in the control group. The gross appearance of the 1.25 and 6.25 million MSC groups revealed complete repair of the defect with white to pink tissue at 12 weeks. An osteochondral repair was histologically significantly better in the 1.25 and 6.25 million MSC groups than in the control and 0.125 million MSC groups at 4 and 12 weeks, due to presence of hyaline-like tissue in the deep layer at 4 weeks, and at 12 weeks hyaline cartilage formation at the periphery and fibrous tissue containing some chondrocytes in the deep layer of the center of the defect. Subchondral bone was restructured in the 1.25 and 6.25 million MSC groups, although it did not resemble the normal bone. CONCLUSION An intraarticular injection of 1.25 or 6.25 million MSCs could promote the repair of subchondral bone, even in the case of midterm osteochondral defect.
Collapse
Affiliation(s)
- Elhussein Elbadry Mahmoud
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Department of Surgery, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Naosuke Kamei, Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Goki Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Shimizu
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Harada
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nabil Ahmed Misk
- Department of Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Sadahide K, Teishima J, Inoue S, Tamura T, Kamei N, Adachi N, Matsubara A. Endoscopic repair of the urinary bladder with magnetically labeled mesenchymal stem cells: Preliminary report. Regen Ther 2018; 10:46-53. [PMID: 30581896 PMCID: PMC6299148 DOI: 10.1016/j.reth.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction Transurethral resection of a bladder tumor (TURBT) using a resectoscope has been standard treatment for bladder cancer. However, no treatment method promotes the repair of resected bladder tissue. The aim of this study was to examine the healing process of damaged bladder tissue after a transurethral injection of bone marrow mesenchymal stem cells (MSCs) into the bladder. An injection of magnetic MSCs meant that they accumulated in the damaged area of the bladder. Another aim of this study was to compare the acceleration effect of MSC magnetic delivery on the repair of bladder tissue with that of non-magnetic MSC injection. Methods Using the transurethral approach to avoid opening the abdomen, electrofulguration was carried out on the anterior wall of the urinary bladder of white Japanese rabbits to mimic tumor resection. An external magnetic field directed at the injured site was then applied using a 1-tesla (T) permanent magnet. Twelve rabbits were divided into three groups. The 1 × 106 of magnetically labeled MSCs were injected into the urinary bladder with or without the magnetic field (MSC M+ and MSC M-groups, respectively), and phosphate-buffered saline was injected as the control. The effects of the injections in the three groups at 14 days were examined using 4.7-T magnetic resonance imaging (MRI) then macroscopically and histologically. The mRNA expressions of several cytokines in the repair tissues were assessed using real-time polymerase chain reaction. Results The macroscopic findings showed the area of repair tissue in the MSC M+ group to be larger than that in either the MSC M-group or control group. MRI clearly depicted the macroscopic findings. The histological study showed that repair of the cauterized area with myofibrous tissue was significantly better in the MSC M+ group than that in either the MSC M-group or control group, although there was no significant difference in several mRNA cytokines among the three groups at 14 days after surgery. Conclusions The magnetic delivery of MSCs shows promise as an effective, minimally invasive method of enhancing tissue regeneration after TURBT.
Collapse
Key Words
- BC, urinary bladder cancer
- Bone marrow
- Cancer
- FA, flip angle
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- MRI, Magnetic resonance imaging
- MSC, mesenchymal stem cell
- Mesenchymal stem cell
- NEX, number of excitations
- NMIBC, non-muscle invasive urinary bladder cancer
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- Regeneration
- SPION, superparamagnetic iron oxide nanoparticle
- TE, echo time
- TR, repetition time
- TURBT, transurethral resection of bladder tumor
- Transurethral resection
- Urinary bladder
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Kosuke Sadahide
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Corresponding author.
| | - Jun Teishima
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Tamura
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Kamei N, Ochi M, Adachi N, Ishikawa M, Yanada S, Levin LS, Kamei G, Kobayashi T. The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surg Sports Traumatol Arthrosc 2018; 26:3626-3635. [PMID: 29549388 DOI: 10.1007/s00167-018-4898-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE A new cell delivery system using magnetic force, termed magnetic targeting, was developed for the accumulation of locally injected cells in a lesion. The aim of this study was to assess the safety and efficacy of mesenchymal stem cell (MSC) magnetic targeting in patients with a focal articular cartilage defect in the knee. METHODS MSC magnetic targeting for five patients was approved by the Ministry of Health Labour and Welfare of Japan. Autologous bone marrow MSCs were cultured and subsequently magnetized with ferucarbotran. The 1.0-T compact magnet was attached to a suitable position around the knee joint to allow the magnetic force to be as perpendicular to the surface of the lesion as possible. Then 1 × 107 MSCs were injected into the knee joint. The magnet was maintained in the same position for 10 min after the MSC injection. The primary endpoint was the occurrence of any adverse events. The secondary endpoints were efficacy assessed by magnetic resonance imaging (MRI) T2 mapping and clinical outcomes using the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation and the Knee Injury and Osteoarthritis Outcome Score (KOOS). RESULTS No serious adverse events were observed during the treatment or in the follow-up period. Swelling of the treated knee joint was observed from the day after surgery in three of the five patients. The swelling resolved within 2 weeks in two patients. MRI showed that the cartilage defect areas were almost completely filled with cartilage-like tissue. MOCART scores were significantly higher 48 weeks postoperatively than preoperatively (74.8 ± 10.8 vs 27.0 ± 16.8, p = 0.042). Arthroscopy in three patients showed complete coverage of their cartilage defects. Clinical outcome scores were significantly better 48 weeks postoperatively than preoperatively for the IKDC Subjective Knee Evaluation (74.8 ± 17.7 vs 46.9 ± 17.7, p = 0.014) and knee-related quality-of-life (QOL) in the KOOS (53.8 ± 26.4 vs 22.5 ± 30.8, p = 0.012). CONCLUSION Magnetic targeting of MSCs was safely performed and showed complete coverage of the defects with cartilage-like tissues and significant improvement in clinical outcomes 48 weeks after treatment. The magnetic targeting of MSCs is useful as a minimally invasive treatment for cartilage repair. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuo Ochi
- Hiroshima University, Higashihiroshima, Japan.
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | | | - L Scott Levin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Goki Kamei
- Department of Orthopaedic Surgery, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Takaaki Kobayashi
- Department of Orthopaedic Surgery, Tsuchiya General Hospital, Hiroshima, Japan
| |
Collapse
|
22
|
Kamei N, Adachi N, Ochi M. Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues. Regen Ther 2018; 9:116-119. [PMID: 30525082 PMCID: PMC6222975 DOI: 10.1016/j.reth.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic targeting is a cell delivery system using the magnetic labeling of cells and the magnetic field; it has been developed for minimally invasive cell transplantation. Cell transplantation with both minimal invasiveness and high efficacy on tissue repair can be achieved by this system. Magnetic targeting has been applied for the transplantation of bone marrow mesenchymal stem cells, blood CD133-positive cells, neural progenitor cells, and induced pluripotent stem cells, and for the regeneration of bone, cartilage, skeletal muscles, and the spinal cord. It enhances the accumulation and adhesion of locally injected cells, resulting in the improvement of tissue regeneration. It is a promising technique for minimally invasive and effective cell transplantation therapy.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuo Ochi
- President of Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
23
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res 2018; 375:329-344. [PMID: 30084022 DOI: 10.1007/s00441-018-2884-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
Collapse
|
25
|
da Silva Morais A, Oliveira JM, Reis RL. Small Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:423-439. [DOI: 10.1007/978-3-319-76735-2_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Li Y, Ye D, Li M, Ma M, Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem 2018. [DOI: 10.1002/cphc.201701294] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Dewen Ye
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Mingxi Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ming Ma
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ning Gu
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| |
Collapse
|
27
|
Mahmoud EE, Tanaka Y, Kamei N, Harada Y, Ohdan H, Adachi N, Ochi M. Monitoring immune response after allogeneic transplantation of mesenchymal stem cells for osteochondral repair. J Tissue Eng Regen Med 2017; 12:e275-e286. [DOI: 10.1002/term.2413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Elhussein Elbadry Mahmoud
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
- Department of Surgery, Faculty of Veterinary Medicine; South Valley University; Qena Egypt
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
- Medical Center for Translational and Clinical Research; Hiroshima University Hospital; Hiroshima Japan
| | - Yohei Harada
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| |
Collapse
|
28
|
Go G, Han J, Zhen J, Zheng S, Yoo A, Jeon MJ, Park JO, Park S. A Magnetically Actuated Microscaffold Containing Mesenchymal Stem Cells for Articular Cartilage Repair. Adv Healthc Mater 2017; 6. [PMID: 28481009 DOI: 10.1002/adhm.201601378] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/15/2017] [Indexed: 12/21/2022]
Abstract
This study proposes a magnetically actuated microscaffold with the capability of targeted mesenchymal stem cell (MSC) delivery for articular cartilage regeneration. The microscaffold, as a 3D porous microbead, is divided into body and surface portions according to its materials and fabrication methods. The microscaffold body, which consists of poly(lactic-co-glycolic acid) (PLGA), is formed through water-in-oil-in-water emulsion templating, and its surface is coated with amine functionalized magnetic nanoparticles (MNPs) via amino bond formation. The porous PLGA structure of the microscaffold can assist in cell adhesion and migration, and the MNPs on the microscaffold can make it possible to steer using an electromagnetic actuation system that provides external magnetic fields for the 3D locomotion of the microscaffold. As a fundamental test of the magnetic response of the microscaffold, it is characterized in terms of the magnetization curve, velocity, and 3D locomotion of a single microscaffold. In addition, its function with a cargo of MSCs for cartilage regeneration is demonstrated from the proliferation, viability, and chondrogenic differentiation of D1 mouse MSCs that are cultured on the microscaffold. For the feasibility tests for cartilage repair, 2D/3D targeting of multiple microscaffolds with the MSCs is performed to demonstrate targeted stem cell delivery using the microscaffolds and their swarm motion.
Collapse
Affiliation(s)
- Gwangjun Go
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Jiwon Han
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
| | - Jin Zhen
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Shaohui Zheng
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Ami Yoo
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
| | - Mi-Jeong Jeon
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
| | - Jong-Oh Park
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Sukho Park
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
- Department of Robotics Engineering; Daegu Gyeongbuk Institute of Science and Technology; Daegu 711-873 South Korea
| |
Collapse
|
29
|
Silva LHA, Cruz FF, Morales MM, Weiss DJ, Rocco PRM. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Res Ther 2017; 8:58. [PMID: 28279201 PMCID: PMC5345163 DOI: 10.1186/s13287-017-0523-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been extensively investigated in the field of regenerative medicine. It is known that the success of MSC-based therapies depends primarily on effective cell delivery to the target site where they will secrete vesicles and soluble factors with immunomodulatory and potentially reparative properties. However, some lesions are located in sites that are difficult to access, such as the heart, spinal cord, and joints. Additionally, low MSC retention at target sites makes cell therapy short-lasting and, therefore, less effective. In this context, the magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and enhance the effects of MSCs. This approach uses magnetic nanoparticles to magnetize MSCs and static magnetic fields to guide them in vivo, thus promoting more focused, effective, and lasting retention of MSCs at the target site. In the present review, we discuss the magnetic targeting technique, its principles, and the materials most commonly used; we also discuss its potential for MSC enhancement, and safety concerns that should be addressed before it can be applied in clinical practice.
Collapse
Affiliation(s)
- Luisa H A Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel J Weiss
- Department of Medicine, Vermont Lung Center, College of Medicine, University of Vermont, 89 Beaumont Ave. Given, Burlington, VT, 05405, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
30
|
Abstract
INTRODUCTION Advances in immuno-modulatory therapies, including anti-TNF-α therapies, have greatly increased the chance to achieve long-term remission of inflammatory bowel disease (IBD) patients. However, as the importance of mucosal healing has been demonstrated in a number of clinical studies, new cell-based therapies that can regenerate and fully restore the intestinal mucosal functions are currently under development. AREA COVERED In this review, we feature the recent challenges of cell-based therapies that are applied to the treatment of IBD. In particular, we will focus on hematopoietic stem cells (HSC), mesenchymal stem cells (MSCs) and intestinal stem cells (ISCs) as the candidate source for cell-based therapy targeted to treat IBD. The current status, as well as the expected advantages and disadvantages of those transplantations will be summarized and discussed. EXPERT OPINION Transplantation of HSC, MSC and ISC may have different levels of potential in their ability to exert an immunomodulatory or pro-regenerative effect. Combined cell therapies, such as co-transplantation of MSC and ISC, may provide improved therapeutic outcome compared to transplantation of a single cell population. Those cell-based therapies may not only improve the disease activity or tissue regeneration, but may also have the potential to decrease the risk of developing colitis-associated cancers.
Collapse
Affiliation(s)
- Ryuichi Okamoto
- a Center for Stem Cell and Regenerative Medicine , Tokyo Medical and Dental University , Tokyo , Japan
| | - Mamoru Watanabe
- b Department of Gastroenterology and Hepatology, Graduate School , Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|