1
|
Gu L, Li A, He C, Xiao R, Liao J, Xu L, Mu J, Wang X, Yang M, Jiang J, Bai Y, Jin X, Xiao M, Zhang X, Tan T, Xiao Y, Lin J, Li Y, Guo S. Profibrotic role of the SOX9-MMP10-ECM biosynthesis axis in the tracheal fibrosis after injury and repair. Genes Dis 2024; 11:101040. [PMID: 38993791 PMCID: PMC11237849 DOI: 10.1016/j.gendis.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2024] Open
Abstract
Fibroblast activation and extracellular matrix (ECM) deposition play an important role in the tracheal abnormal repair process and fibrosis. As a transcription factor, SOX9 is involved in fibroblast activation and ECM deposition. However, the mechanism of how SOX9 regulates fibrosis after tracheal injury remains unclear. We investigated the role of SOX9 in TGF-β1-induced fibroblast activation and ECM deposition in rat tracheal fibroblast (RTF) cells. SOX9 overexpression adenovirus (Ad-SOX9) and siRNA were transfected into RTF cells. We found that SOX9 expression was up-regulated in RTF cells treated with TGF-β1. SOX9 overexpression activated fibroblasts and promoted ECM deposition. Silencing SOX9 inhibited cell proliferation, migration, and ECM deposition, induced G2 arrest, and increased apoptosis in RTF cells. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) assays identified MMP10, a matrix metalloproteinase involved in ECM deposition, as a direct target of SOX9, which promotes ECM degradation by increasing MMP10 expression through the Wnt/β-catenin signaling pathway. Furthermore, in vivo, SOX9 knockdown ameliorated granulation proliferation and tracheal fibrosis, as manifested by reduced tracheal stenosis. In conclusion, our findings indicate that SOX9 can drive fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/β-catenin signaling pathway. The SOX9-MMP10-ECM biosynthesis axis plays an important role in tracheal injury and repair. Targeting SOX9 and its downstream target MMP10 may represent a promising therapeutic approach for tracheal fibrosis.
Collapse
Affiliation(s)
- Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anmao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chunyan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhao Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingjin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinyue Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingxing Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Meiling Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tairong Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Lin
- Department of Infection Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Li C, Cheng B, Yang X, Tong G, Wang F, Li M, Wang X, Wang S. SOX8 promotes tumor growth and metastasis through FZD6-dependent Wnt/β-catenin signaling in colorectal carcinoma. Heliyon 2023; 9:e22586. [PMID: 38046159 PMCID: PMC10686890 DOI: 10.1016/j.heliyon.2023.e22586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
SOX8 plays an important role in several physiological processes. Its expression is negatively associated with overall survival in patients with colorectal carcinoma (CRC), suggesting SOX8 is a potential prognostic factor for this disease. However, the role of SOX8 in CRC remains largely unknown. In this study, our data showed that SOX8 expression was upregulated in CRC cell lines and tumor tissues. Stable knockdown of SOX8 in CRC cell lines dramatically reduced cell proliferation, migration, and invasion. Furthermore, the knockdown of SOX8 decreased the phospho-GSK3β level and suppressed Frizzled-6 (FZD6) transcription; restoration of FZD6 expression partially abolished the effect of SOX8 on Wnt/β-catenin signaling and promote CRC cell proliferation. In conclusion, our findings suggested that SOX8 served as an oncogene in CRC through the activation of FZD6-dependent Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Chen Li
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Boran Cheng
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaodong Yang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Gangling Tong
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fen Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Mengqing Li
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiangyu Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Shubin Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| |
Collapse
|
3
|
G protein subunit gamma 5 promotes the proliferation, metastasis and glycolysis of breast cancer cells through the Wnt/β-catenin pathway. Anticancer Drugs 2022; 33:1004-1011. [PMID: 36255067 DOI: 10.1097/cad.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GNG5 is suggested to exert a critical effect on tumor development in human beings; however, its function and related mechanism within breast cancer (BC) are still unclear. In this regard, the present work focused on identifying and evaluating GNG5's function and revealing its possible molecular mechanism. Subcutaneous tumorigenesis model of nude mice and in-vitro cell model was established. The relationship between GNG5 expression and BC was studied through knockdown and overexpression experiments. The proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of liver cancer cell lines overexpressing or silencing GNG5 were detected. Furthermore, the pathway mechanism of GNG5 was evaluated at the molecular level and was performed to further verify the possible targets and mechanisms of action. In comparison with that in normal tissue, GNG5 level within BC tissue was higher. In addition, GNG5 overexpression stimulated BC cell proliferation, invasion, migration and EMT. BC cells with reduced GNG5 expression exhibited significant decreases in glucose uptake, lactate levels, and ATP concentrations. In addition, GNG5 knockdown inhibited Wnt/β-catenin signaling. This study indicates that GNG5 may generate a vital function in BC. The results of the current work demonstrated GNG5's effect on BC pathological process, also providing a reference for developing new targeted therapies for BC.
Collapse
|
4
|
Rahman MM, Islam MR, Akash S, Shohag S, Ahmed L, Supti FA, Rauf A, Aljohani AM, Al Abdulmonem W, Khalil AA, Sharma R, Thiruvengadam M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem Biol Interact 2022; 368:110198. [PMID: 36179774 DOI: 10.1016/j.cbi.2022.110198] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
One of the leading global causes of death is cancer; even though several treatment methods have improved survival rates, the incidence and fatality rates remain high. Naphthoquinones are a type of quinone that is found in nature and has vital biological roles. These chemicals have anticancer (antineoplastic), analgesic, anti-inflammatory, antimalarial, antifungal, antiviral, antitrypanosomal, antischistosomal, leishmanicidal, and anti-ulcerative effects. Direct addition of a substituent group to the 1,4-naphthoquinone ring can alter the naphthoquinone's oxidation/reduction and acid/base characteristics, and the activity can be altered. Because of their pharmacological properties, such as anticancer activity and probable therapeutic application, naphthoquinones have greatly interested the scientific community. Some chemicals having a quinone ring in malignant cells have been found to have antiproliferative effects. Naphthoquinones' deadly impact is connected with the inhibition of electron transporters, the uncoupling of oxidative phosphorylation, the creation of ROS, and the formation of protein adducts, notably with -SH enzyme groups. This review article aims to discuss naphthoquinones and their derivatives, which act against cancer and their future perspectives. This review covers several studies highlighting the potent anticancer properties of naphthoquinones. Further, various proposed mechanisms of anticancer actions of naphthoquinones have been summarized in this review.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - AbdullahS M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Pakistan, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, College of Life and Environmental Sciences, Seoul, 05029, South Korea.
| |
Collapse
|
5
|
Lamichhane S, Mo JS, Sharma G, Joung SM, Chae SC. MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer cells. Am J Cancer Res 2022; 12:3223-3241. [PMID: 35968353 PMCID: PMC9360235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023] Open
Abstract
The human microRNA 133A (MIR133A) was identified as a CRC-associated miRNA. It was down-regulated in human CRC tissues. We identified the putative MIR133A1 and A2 target genes by comparing the transcriptome analysis data of MIR133A1 and A2 knock-in cells with the candidate MIR133A target genes predicted by bioinformatics tools. We identified 29 and 33 putative MIR133A and A2 direct target genes, respectively. Among them, we focused on the master transcription regulator gene SRY-box transcription factor 9 (SOX9), which exhibits a pleiotropic role in cancer. We confirmed that SOX9 is a direct target gene of MIR133A by luciferase reporter assay, quantitative RT-PCR, and western blot analysis. Overexpression of MIR133A in CRC cell lines significantly decreased SOX9 and its downstream PIK3CA-AKT1-GSK3B-CTNNB1 and KRAS-BRAF-MAP2K1-MAPK1/3 pathways and increased apoptosis. Furthermore, functional studies reveal that cell proliferation, colony formation, and migration ability were significantly decreased by MIR133A-overexpressed CRC cell lines. Knockdown of SOX9 in CRC cell lines by SOX9 gene silencing showed similar results. We also used a xenograft model to show that MIR133A overexpression suppresses tumor growth and proliferation. Our results suggest that MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Sun-Myoung Joung
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| |
Collapse
|
6
|
Davidsen N, Ramhøj L, Lykkebo CA, Kugathas I, Poulsen R, Rosenmai AK, Evrard B, Darde TA, Axelstad M, Bahl MI, Hansen M, Chalmel F, Licht TR, Svingen T. PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119340. [PMID: 35460815 DOI: 10.1016/j.envpol.2022.119340] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Rikke Poulsen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | | | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | - Frederic Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
7
|
An immature, dedifferentiated, and lineage-deconstrained cone precursor origin of N-Myc-initiated retinoblastoma. Proc Natl Acad Sci U S A 2022; 119:e2200721119. [PMID: 35867756 PMCID: PMC9282279 DOI: 10.1073/pnas.2200721119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most retinoblastomas develop from maturing cone precursors in response to biallelic RB1 loss and are dependent on cone maturation-related signaling. Additionally, ∼2% lack RB1 mutations but have MYCN amplification (MYCNA), N-Myc protein overexpression, and more rapid and invasive growth, yet the MYCNA retinoblastoma cell of origin and basis for its responses to deregulated N-Myc are unknown. Here, using explanted cultured retinae, we show that ectopic N-Myc induces cell cycle entry in cells expressing markers of several retinal types yet induces continuous proliferation and tumorigenesis only in cone precursors. Unlike the response to RB1 loss, both immature cone arrestin-negative (ARR3-) and maturing ARR3+ cone precursors proliferate, and maturing cone precursors rapidly dedifferentiate, losing ARR3 as well as L/M-opsin expression. N-Myc-overexpressing retinal cells also lose cell lineage constraints, occasionally coexpressing the cone-specific RXRγ with the rod-specific NRL or amacrine-specific AP2α and widely coexpressing RXRγ with the progenitor and Müller cell-specific SOX9 and retinal ganglion cell-specific BRN3 and GAP43. Mechanistically, N-Myc induced Cyclin D2 and CDK4 overexpression, pRB phosphorylation, and SOX9-dependent proliferation without a retinoma-like stage that characterizes pRB-deficient retinoblastoma, despite continuous p16INK4A expression. Orthotopic xenografts of N-Myc-overexpressing retinal cells formed tumors with retinal cell marker expression similar to those in MYCN-transduced retinae and MYCNA retinoblastomas in patients. These findings demonstrate the MYCNA retinoblastoma origin from immature and lineage-deconstrained cone precursors, reveal their opportunistic use of an undifferentiated retinal progenitor cell feature, and illustrate that different cancer-initiating mutations cooperate with distinct developmental stage-specific cell signaling circuitries to drive retinoblastoma tumorigenesis.
Collapse
|
8
|
Kant Tripathi S, Kumar Sahoo R, Kumar Biswal B. SOX9 as an emerging target for anticancer drugs and a prognostic biomarker for cancer drug resistance. Drug Discov Today 2022; 27:2541-2550. [DOI: 10.1016/j.drudis.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
9
|
Nikkhah H, Vafaei M, Farashahi-Yazd E, Sheikhha MH, Jafari-Nudoshan J. The significant increase of miR-140-5P in papillary thyroid cancer samples. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
11
|
Dai L, Lu Y, Jiang L, Zhu L, Zhang J, Wang F, Gao Y, Xin W. SRY-Box Transcription Factor 9 (SOX9) Affects the Proliferation, Invasion and Epithelial to Mesenchymal Transition (EMT) of Intrahepatic Cholangiocarcinoma by Regulating Transforming Growth Factor β (TGF β)/Smad Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) develops rapidly with a high malignancy. SOX9 expression is increased in several tumors. However, its expression and role in intrahepatic cholangiocarcinoma have not yet been elucidated. Real time PCR and Western blot were done to assess SOX9 expression
in tumor tissues and adjacent tissues of ICC. ICC cell line QBC939 cells were separated into control group, SOX9 overexpression group and SOX9 siRNA group followed by analysis of cell survival by MTT assay, cell migration by cell scratch assay, cell invasion by transwell chamber, E-cadherin
and Vimentin level by western blot, TGFβ/Smad signaling protein level by real time PCR. SOX9 level in tumor tissues was significantly increased compared to adjacent tissues (P < 0.05) and it was associated with TNM stage, tissue type and metastasis, and survival time
(P < 0.05). Transfection of pcDNA3.1-SOX9 upregulated SOX9, promoted cell proliferation, migration and invasion, downregulated E-cadherin, upregulated Vimentin, TGF-β1 and Smad4 (P < 0.05). SOX9 siRNA transfection into QBC939 cells could significantly reverse
the above mentioned changes (P < 0.05). SOX9 level is increased in intrahepatic cholangiocarcinoma and targeting SOX9 can inhibit cell migration and invasion, and EMT via regulating TGFβ/Smad signaling.
Collapse
Affiliation(s)
- Ling Dai
- Intensive Care Second Unit (Second Ward), Wuhan No. 1 Hospital, Wuhan, Hubei, 430000, China
| | - Yuqing Lu
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei, 430000, China
| | - Lu Jiang
- Intensive Care Second Unit (Second Ward), Wuhan No. 1 Hospital, Wuhan, Hubei, 430000, China
| | - Liping Zhu
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei, 430000, China
| | - Jing Zhang
- Taizhou Vocational and Technical College, Taizhou, Zhejiang, 318000, China
| | - Fang Wang
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei, 430000, China
| | - Yuanyuan Gao
- Intensive Care Second Unit (Second Ward), Wuhan No. 1 Hospital, Wuhan, Hubei, 430000, China
| | - Wenwei Xin
- Department Emergency, Taizhou First Peoples Hospital, Taizhou, Zhejiang, 318000, China
| |
Collapse
|
12
|
Tripathi SK, Biswal BK. SOX9 promotes epidermal growth factor receptor-tyrosine kinase inhibitor resistance via targeting β-catenin and epithelial to mesenchymal transition in lung cancer. Life Sci 2021; 277:119608. [PMID: 33989664 DOI: 10.1016/j.lfs.2021.119608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
AIMS The first-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib, continues to be a primary treatment option for lung cancer patients. However, acquisition of resistance to gefitinib is a major obstacle in lung cancer treatment and its cause is poorly understood. The present study aimed to implicate the role of SOX9-β-catenin in developed resistance to gefitinib through epithelial to mesenchymal transition (EMT) in lung cancer in vitro and ex vivo. MAIN METHODS Expression effect of SOX9 on survivability of lung cancer patients was demonstrated through online available Kaplan-Meier Plotter data base. Then, cell viability assay, colony forming assay, cell migration and invasion assays, flow cytometry, drug efflux assay, qRT-PCR, and western blotting were conducted to confirmed the role of SOX9 in gefitinib resistance in lung cancer cells. Dual-luciferase assay established the regulatory relation between SOX9 and β-catenin. Multicellular spheroid assay further explored that down regulation of SOX9 could reverse gefitinib resistance ex vivo. KEY FINDINGS Kaplan-Meier method correlated the higher expression of SOX9 and β-catenin with poor overall survival of lung cancer patients. Upregulation of SOX9 was associated gefitinib resistance with increased cell proliferation, migration and invasion, single-cell colony-forming ability, reduced apoptosis, and gefitinib intake in lung cancer cells. Moreover, upregulated SOX9 promoted EMT via targeting β-catenin and knockdown of SOX9 reversed the resistance and EMT phenotype. Similarly, we found that multicellular spheroid of gefitinib resistant cells showed larger surface area with more dispersion and viability of cells, while SOX9 knockdown abolished these induced properties ex vivo. SIGNIFICANCE SOX9 expression could provide an innovative perspective as biomarker to understand the EGFR-TKIs resistance in lung cancer.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
13
|
Zhao J, Patel J, Kaur S, Sim SL, Wong HY, Styke C, Hogan I, Kahler S, Hamilton H, Wadlow R, Dight J, Hashemi G, Sormani L, Roy E, Yoder MC, Francois M, Khosrotehrani K. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat Commun 2021; 12:2564. [PMID: 33963183 PMCID: PMC8105340 DOI: 10.1038/s41467-021-22717-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Endothelial to mesenchymal transition (EndMT) is a leading cause of fibrosis and disease, however its mechanism has yet to be elucidated. The endothelium possesses a profound regenerative capacity to adapt and reorganize that is attributed to a population of vessel-resident endovascular progenitors (EVP) governing an endothelial hierarchy. Here, using fate analysis, we show that two transcription factors SOX9 and RBPJ specifically affect the murine EVP numbers and regulate lineage specification. Conditional knock-out of Sox9 from the vasculature (Sox9fl/fl/Cdh5-CreERRosaYFP) depletes EVP while enhancing Rbpj expression and canonical Notch signalling. Additionally, skin wound analysis from Sox9 conditional knock-out mice demonstrates a significant reduction in pathological EndMT resulting in reduced scar area. The converse is observed with Rbpj conditionally knocked-out from the murine vasculature (Rbpjfl/fl/Cdh5-CreER RosaYFP) or inhibition of Notch signaling in human endothelial colony forming cells, resulting in enhanced Sox9 and EndMT related gene (Snail, Slug, Twist1, Twist2, TGF-β) expression. Similarly, increased endothelial hedgehog signaling (Ptch1fl/fl/Cdh5-CreER RosaYFP), that upregulates the expression of Sox9 in cells undergoing pathological EndMT, also results in excess fibrosis. Endothelial cells transitioning to a mesenchymal fate express increased Sox9, reduced Rbpj and enhanced EndMT. Importantly, using topical administration of siRNA against Sox9 on skin wounds can substantially reduce scar area by blocking pathological EndMT. Overall, here we report distinct fates of EVPs according to the relative expression of Rbpj or Notch signalling and Sox9, highlighting their potential plasticity and opening exciting avenues for more effective therapies in fibrotic diseases. How endothelial to mesenchymal transition is regulated in endovascular progenitors is unclear. Here, the authors show that blocking Sox9 expression in murine endovascular progenitors regulates this transition on skin wounding, affecting the size of scarring, with changes in Rbpj having the opposite effect.
Collapse
Affiliation(s)
- Jilai Zhao
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jatin Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Centre for Ageing Research Program, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Simranpreet Kaur
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Seen-Ling Sim
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ho Yi Wong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Isabella Hogan
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Sam Kahler
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hamish Hamilton
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Racheal Wadlow
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - James Dight
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ghazaleh Hashemi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Laura Sormani
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Edwige Roy
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine and Engineering, Indianapolis, IN, USA
| | - Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, Camperdown, NSW, Australia.,The School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
14
|
Guan Y, Li Y, Yang QB, Yu J, Qiao H. LncRNA ABCC6P1 promotes proliferation and migration of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:664. [PMID: 33987362 PMCID: PMC8106106 DOI: 10.21037/atm-21-505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background LncRNAs play an important regulatory function in the occurrence and progression of papillary thyroid cancer (PTC). This study aimed to investigate the role and mechanism of ATP binding cassette subfamily C member 6 pseudogene 1 (ABCC6P1) in PTC. Methods Cancerous and paracancer normal thyroid tissues were collected from 18 patients with PTC, who were operated at the Second Affiliated Hospital of Harbin Medical University. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to investigate the levels of ABCC6P1. Cell proliferation was evaluated using Cell Counting Kit-8 (CCK-8) and colony formation assays. Wound healing and Transwell invasion assays were performed to examine cell migratory and invasive ability. Western blotting analysis was used to detect the expression levels of EMT-related markers and Wnt/β-catenin signaling pathway-related proteins. Results The expression of ABCC6P1 was upregulated in PTC tissues and cells. ABCC6P1 silencing could significantly suppress the proliferation, colony formation ability, migratory and invasive ability in PTC cells. Moreover, knockdown of ABCC6P1 induced cell cycle arrest at G0/G1 phase and inhibited epithelial-mesenchymal transition (EMT) process of PTC cells by increasing the E-cadherin expression, but downregulating N-cadherin and vimentin expression. In addition, knockdown of ABCC6P1 caused a significant decrease in levels of Wnt/β-catenin signaling pathway members (including β-catenin, c-myc, and cyclin D1) in PTC cells. Conclusions Our study confirms that ABCC6P1 exerts an oncogenic activity in PTC which may be mediated by the Wnt/β-catenin pathway, suggesting that ABCC6P1 may be a promising therapeutic target for PTC.
Collapse
Affiliation(s)
- Yue Guan
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Bo Yang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jianbo Yu
- Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.,Longgang Central Hospital, Shenzhen, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Huang S, Zhang QY, He AE, Li HB, Zhang ZX. Sex determining region Y-box 9 induced microtubule formation and epithelial⁃mesenchymal transition in human oral squamous cell carcinoma CAL27 cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:74-80. [PMID: 33723940 DOI: 10.7518/hxkq.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aimed to explore the effect of sex determining region Y-box 9 (SOX9) on the microtubule formation and epithelial-mesenchymal transition (EMT) of human oral squamous cell carcinoma (OSCC) CAL27 and the underlying mechanism. METHODS SOX9-shRNA1 and SOX9-shRNA2 were designed and synthesized and then transfected into CAL27 cells. The expression of SOX9 was detected by quantitative real-time polymerase chain reaction. Microtubule formation assay was used to detect the change in the number of microtubule nodules after interfering with SOX9. Immunofluorescence was used to detect the Vimentin content. Western blot was used to detect the protein expression of EMT marker molecules and Wnt/β-catenin pathway-related proteins, such as E-cadherin, N-cadherin, Fibronectin, Wnt, β-catenin, T-cell factor-4 (TCF-4). RESULTS The expression level of SOX9 significantly decreased after transfection with SOX9-shRNA1 and SOX9-shRNA2 in CAL27 cells (F=578.000, P=0.000; F=96.850, P=0.000). Interference with SOX9 inhibited the EMT of OSCC. After interference with SOX9, the number of tubules and Vimentin positive cells decreased significantly (F=169.700, P=0.000). The expression level of E-cadherin significantly increased (F=181.400, P=0.000). The expression levels of N-cadherin, Fibronectin, Wnt, β-catenin, and TCF-4 proteins significantly decreased (N-cadherin: F=101.400, P=0.000; Fibronectin: F=122.300, P=0.000; Wnt: F=70.290, P=0.000; β-catenin: F=81.740, P=0.000; TCF-4: F=37.020, P=0.000). CONCLUSIONS Interference with SOX9 decreased Vimentin content and inhibited the microtubule formation and protein expression of EMT marker molecules, as well as the expression of proteins related to the Wnt/β-catenin pathway. Thus, SOX9 can induce microtubule formation and EMT in CAL27, which was related to the inhibition of the Wnt/β-catenin pathway activation.
Collapse
Affiliation(s)
- Sheng Huang
- Dept. of Stomatology, East Hospital, Mafangshan Campus, Wuhan University of Science and Technology, Wuhan 430000, China
| | - Qi-Yuan Zhang
- Dept. of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Ai-E He
- Dept. of Stomatology, The Fifth Hospital of Wuhan, Wuhan 430000, China
| | - Hong-Bo Li
- Dept. of Prosthodontics, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Zhi-Xing Zhang
- Dept. of Stomatology, Affiliated Hospital of Tongji Medical University, Wuhan 430000, China
| |
Collapse
|
16
|
Sun Y, Cao Z, Shan J, Gao Y, Liu X, Ma D, Li Z. Hsa_circ_0020095 Promotes Oncogenesis and Cisplatin Resistance in Colon Cancer by Sponging miR-487a-3p and Modulating SOX9. Front Cell Dev Biol 2021; 8:604869. [PMID: 33520987 PMCID: PMC7844065 DOI: 10.3389/fcell.2020.604869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives Colon cancer (CC) currently ranks as the third most common human cancer worldwide with an increasing incidence and a poor prognosis. Recently, circular RNAs have been reported to regulate the progression of diverse human cancers. However, the role of circRNA hsa_circ_0020095 in CC remains largely unclear. Methods Expression levels of the related circRNAs, microRNAs and mRNA in CC tissues and cells were determined. The impacts of circ_0020095 or miR-487a-3p on CC cells were examined at the indicated times after transfection. Meanwhile, a luciferase-reporter experiment was employed to validate the interplay between miR-487a-3p and circ_002009695 or SOX9. Moreover, the in vivo tumor growth assay was applied to further evaluate the effects of circ_0020095 knockdown on CC progression. Results We demonstrated that circ_0020095 was highly expressed in CC tissues and cells. The proliferation, migration, invasion, and cisplatin resistance of CC were suppressed by silencing circ_0020095 in vitro and in vivo or by ectopic expression of miR-487a-3p in vitro. Mechanistically, circ_0020095 could directly bind to miR-487a-3p and subsequently act as a miR-487a-3p sponge to modulate the activity by targeting the 3′-UTR of SOX9. Interestingly, overexpression of circ_0020095 dramatically reversed the suppressive effects of miR-487a-3p mimics on CC cells. Conclusion Circ_0020095 functions as an oncogene to accelerate CC cell proliferation, invasion, migration and cisplatin resistance through the miR-487a-3p/SOX9 axis, which could be a promising target for CC treatment.
Collapse
Affiliation(s)
- Yanlai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Cao
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Junqi Shan
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Gao
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Liu
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dejian Ma
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zengjun Li
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
17
|
Zhou T, Wu L, Ma N, Tang F, Yu Z, Jiang Z, Li Y, Zong Z, Hu K. SOX9-activated FARSA-AS1 predetermines cell growth, stemness, and metastasis in colorectal cancer through upregulating FARSA and SOX9. Cell Death Dis 2020; 11:1071. [PMID: 33318478 PMCID: PMC7736271 DOI: 10.1038/s41419-020-03273-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
SRY-box transcription factors (SOXs) are effective inducers for the formation of stem-like phenotypes. As a member of SOX family, SOX9 (SRY-box transcription factor 9) has been reported to be highly expressed and exert oncogenic functions in multiple human cancers. In this study, we hypothesized that SOX9 could regulate the function of cancer stem/initiating cells (CSCs) to further facilitate the progression of colorectal cancer (CRC). Then, stable transfection of shRNAs was used to silence indicated genes. Loss-of-function experiments were conducted to demonstrate the in vitro function of CRC cells. In vivo study was conducted to determine the changes in tumorigenesis and metastasis in vivo. Bioinformatics analyses and mechanistic experiments were employed to explore the downstream molecules. Presently, GEPIA data indicated that SOX9 was upregulated in 275 COAD (colon adenocarcinoma) samples relative to 349 normal tissues. Besides, we also proved the upregulation of SOX9 in CRC cell lines (HCT15, SW480, SW1116, and HT-29) compared to normal NCM-460 cells. Silencing of SOX9 suppressed cell growth, stemness, migration, and invasion. Mechanistically, SOX9 activated the transcription of lncRNA phenylalanyl-tRNA synthetase subunit alpha antisense RNA 1 (FARSA-AS1), while FARSA-AS1 elevated SOX9 in turn by absorbing miR-18b-5p and augmented FARSA via sequestering miR-28-5p. Furthermore, loss of FARSA-AS1 hindered malignant phenotypes in vitro and blocked tumor growth and metastasis in vivo. Notably, we testified that FARSA-AS1 aggravated the malignancy in CRC by enhancing SOX9 and FARSA. Our study unveiled a mechanism of SOX9-FARSA-AS1-SOX9/FARSA loop in CRC, which provides some clews of promising targets for CRC.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Lili Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Key Laboratory of Liver Disease Research, 510630, Guangzhou, Guangdong, China
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Zhuomin Yu
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Zhen Zong
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Nanchang University, No.1 Mingde Road, 330006, Nanchang, Jiangxi, China.
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.2693 Kaichuang Road, Huangpu, 510000, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Verheijen N, Suttorp CM, van Rheden REM, Regan RF, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Front Cell Dev Biol 2020; 8:771. [PMID: 32974338 PMCID: PMC7471603 DOI: 10.3389/fcell.2020.00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cranial neural crest cells (CNCCs), identified by expression of transcription factor Sox9, migrate to the first branchial arch and undergo proliferation and differentiation to form the cartilage and bone structures of the orofacial region, including the palatal bone. Sox9 promotes osteogenic differentiation and stimulates CXCL12-CXCR4 chemokine-receptor signaling, which elevates alkaline phosphatase (ALP)-activity in osteoblasts to initiate bone mineralization. Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion. Since we earlier demonstrated chemokine-receptor mediated signaling by the MES, we hypothesized that chemokine CXCL12 is expressed by the disintegrating MES to promote the formation of an osteogenic center by CXCR4-positive osteoblasts. Disturbed migration of CNCCs by excess oxidative and inflammatory stress is associated with increased risk of cleft lip and palate (CLP). The cytoprotective heme oxygenase (HO) enzymes are powerful guardians harnessing injurious oxidative and inflammatory stressors and enhances osteogenic ALP-activity. By contrast, abrogation of HO-1 or HO-2 expression promotes pregnancy pathologies. We postulate that Sox9, CXCR4, and HO-1 are expressed in the ALP-activity positive osteogenic regions within the CNCCs-derived palatal mesenchyme. To investigate these hypotheses, we studied expression of Sox9, CXCL12, CXCR4, and HO-1 in relation to palatal osteogenesis between E15 and E16 using (immuno)histochemical staining of coronal palatal sections in wild-type (wt) mice. In addition, the effects of abrogated HO-2 expression in HO-2 KO mice and inhibited HO-1 and HO-2 activity by administrating HO-enzyme activity inhibitor SnMP at E11 in wt mice were investigated at E15 or E16 following palatal fusion. Overexpression of Sox9, CXCL12, CXCR4, and HO-1 was detected in the ALP-activity positive osteogenic regions within the palatal mesenchyme. Overexpression of Sox9 and CXCL12 by the disintegrating MES was detected. Neither palatal fusion nor MES disintegration seemed affected by either HO-2 abrogation or inhibition of HO-activity. Sox9 progenitors seem important to maintain the CXCR4-positive osteoblast pool to drive osteogenesis. Sox9 expression may facilitate MES disintegration and palatal fusion by promoting epithelial-to-mesenchymal transformation (EMT). CXCL12 expression by the MES and the palatal mesenchyme may promote osteogenic differentiation to create osteogenic centers. This study provides novel evidence that CXCL12-CXCR4 interplay facilitates palatal osteogenesis and palatal fusion in mice.
Collapse
Affiliation(s)
- Nanne Verheijen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christiaan M Suttorp
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René E M van Rheden
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria P A C Helmich
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.,Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Rajabi S, Shakib H, Dastmalchi R, Danesh-Afrooz A, Karima S, Hedayati M. Metastatic propagation of thyroid cancer; organ tropism and major modulators. Future Oncol 2020; 16:1301-1319. [PMID: 32421354 DOI: 10.2217/fon-2019-0780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thyroid cancer, as the most prevalent endocrine malignancy, comprises nearly 1% of all cancers in the world. The metastatic propagation of thyroid cancer is under the control of a number of modulating processes and factors such as signaling pathways and their components, cell division regulators, metabolic reprogramming factors, extracellular matrix remodelers, epithelial to mesenchymal transition modulators, epigenetic mechanisms, hypoxia and cytokines. Identifying the exact molecular mechanisms of these dysregulated processes could help to discover the key targets for therapeutic purposes and utilizing them as diagnostic, prognostic and predictors of the clinical course of patients. In this review article, we describe different aspects of thyroid cancer metastasis by focusing on defective genes and pathways involved in its metastatic spread.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heewa Shakib
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Dastmalchi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsoon Danesh-Afrooz
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Hirano T, Saito D, Yamada H, Ishisaki A, Kamo M. TGF-β1 induces N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation in human oral squamous cell carcinoma cells. Oncol Lett 2020; 20:474-482. [PMID: 32565972 PMCID: PMC7285821 DOI: 10.3892/ol.2020.11582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma (SCC) is the most frequent cancer that develops in the oral cavity. Epithelial-mesenchymal transition (EMT) is known to play an important role in the process of metastasis of SCC cells. In our previous study, we demonstrated that TGF-β1 induced EMT in the human oral SCC (hOSCC) cell line HSC-4. We also found that Slug plays an important role in suppressing E-cadherin expression and promotion of the migratory activity of HSC-4 cells. However, we also demonstrated that Slug does not participate in upregulation of N-cadherin expression, suggesting that EMT-related transcription factors other than Slug also play an important role in the process. In the present study, we aimed to elucidate how the transcription factor Sox9 affects the TGF-β1-induced upregulation of N-cadherin expression in HSC-4 cells. We found that TGF-β1 upregulated Sox9 expression in HSC-4 cells. In addition, Sox9 siRNA significantly abrogated the TGF-β1-induced upregulation of N-cadherin expression and inhibited the TGF-β1-promoted migratory activity in HSC-4 cells. We also demonstrated that TGF-β1 upregulated the phosphorylation status of Sox9 and then promoted nuclear translocation of Sox9 from the cytoplasm, possibly resulting in an increase in N-cadherin expression. The cyclic AMP-dependent protein kinase A inhibitor H-89, which is known to suppress phosphorylation of Sox9, significantly abrogated the TGF-β1-induced upregulation of N-cadherin expression. These results suggested that TGF-β1 induced N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation, which results in EMT progression in hOSCC cells.
Collapse
Affiliation(s)
- Taifu Hirano
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan.,Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Daishi Saito
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| |
Collapse
|
21
|
Zhao H, Xiao H, Lu Y, Liu S, Wang C. Long noncoding RNA LINC00339 promotes the oncogenicity of gastric cancer by regulating SRY-box 9 expression via sponging of microRNA-539. Cell Cycle 2020; 19:1143-1157. [PMID: 32308105 DOI: 10.1080/15384101.2020.1749404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differential expression of LINC00339 is involved in the malignancy of multiple human cancer types. Nonetheless, the expression profile, functions, and potential mechanisms of action of LINC00339 in gastric cancer are yet to be fully elucidated. This study aimed at measuring LINC00339 expression in gastric cancer and examining the prognostic significance of LINC00339 in patients with gastric cancer. The detailed functions of LINC00339 with regard to the aggressive characteristics of gastric cancer cells and the underlying molecular mechanisms were investigated. Here, we found that LINC00339 expression was aberrantly high in gastric cancer and significantly associated with lymph node metastasis, invasive depth, and TNM stage. Patients with gastric cancer in a LINC00339 high-expression group showed shorter overall survival than patients in a LINC00339 low-expression group. A knockdown of LINC00339 suppressed gastric cancer cell proliferation, migration, and invasion and induced apoptosis in vitro and slowed tumor growth in vivo. In terms of the mechanism, LINC00339 was found to act as a molecular sponge on microRNA-539 (miR-539). SRY-box 9 (SOX9) was confirmed as a direct target gene of miR-539 in gastric cancer cells. An miR-539 knockdown attenuated the effects of the LINC00339 knockdown on the malignant characteristics of gastric cancer cells. Overall, LINC00339 plays a critical role in the malignancy of gastric cancer by regulating SOX9 via sponging of miR‑539. Our findings highlight the importance of the LINC00339-miR-539-SOX9 pathway in gastric cancer pathogenesis and may point to novel targets for the diagnosis, prognosis, and/or treatment of gastric cancer.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Thoracic Oncology, Jilin Cancer Hospital, Jilin, P.R. China
| | - Hongyu Xiao
- Department of Integrated TCM & Western Medicine, Jilin Cancer Hospital, Jilin, P.R. China
| | - Yi Lu
- Department of Integrated TCM & Western Medicine, Jilin Cancer Hospital, Jilin, P.R. China
| | - Shen Liu
- Department of Pharmacy, Jilin Cancer Hospital, Jilin, P.R. China
| | - Cheng Wang
- Department of Medical Oncology, Jilin Cancer Hospital, Jilin, P.R. China
| |
Collapse
|
22
|
Jana S, Madhu Krishna B, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. SOX9: The master regulator of cell fate in breast cancer. Biochem Pharmacol 2020; 174:113789. [PMID: 31911091 PMCID: PMC9048250 DOI: 10.1016/j.bcp.2019.113789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
SRY-related high-mobility group box 9 (SOX9) is an indispensable transcription factor that regulates multiple developmental pathways related to stemness, differentiation, and progenitor development. Previous studies have demonstrated that the SOX9 protein directs pathways involved in tumor initiation, proliferation, migration, chemoresistance, and stem cell maintenance, thereby regulating tumorigenesis as an oncogene. SOX9 overexpression is a frequent event in breast cancer (BC) subtypes. Of note, the molecular mechanisms and functional regulation underlying SOX9 upregulation during BC progression are still being uncovered. The focus of this review is to appraise recent advances regarding the involvement of SOX9 in BC pathogenesis. First, we provide a general overview of SOX9 structure and function, as well as its involvement in various kinds of cancer. Next, we discuss pathways of SOX9 regulation, particularly its miRNA-mediated regulation, in BC. Finally, we describe the involvement of SOX9 in BC pathogenesis via its regulation of pathways involved in regulating cancer hallmarks, as well as its clinical and therapeutic importance. In general, this review article aims to serve as an ample source of knowledge on the involvement of SOX9 in BC progression. Targeting SOX9 activity may improve therapeutic strategies to treat BC, but precisely inhibiting SOX9 using drugs and/or small peptides remains a huge challenge for forthcoming cancer research.
Collapse
Affiliation(s)
- Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Bulanenkova SS, Snezhkov EV, Akopov SB. SOX9 as One of the Central Units of Regulation Axis of Pancreas Embryogenesis and Cancer Progression. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416819030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Gao JB, Zhu MN, Zhu XL. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9. FEBS Open Bio 2019; 9:1957-1967. [PMID: 31538724 PMCID: PMC6823282 DOI: 10.1002/2211-5463.12733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/21/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that miR-215-5p acts as a tumor suppressor in certain cancers, but its role in the progression and metastasis of breast carcinoma remains incompletely understood. Herein, we prove that miR-215-5p is substantially down-expressed in breast carcinoma as compared with nontumor tissue. Up-regulation of miR-215-5p inhibits the aggressive abilities of breast carcinoma cells in vitro. We performed luciferase reporter tests to show that SRY-Box 9 (Sox9) is the target of miR-215-5p; as predicted, Sox9 depletion replicates the suppressive effects of miR-215-5p on breast carcinoma cells, and overexpression of Sox9 rescues the effects of miR-215-5p on breast cancer cell progression. In addition, a xenograft model assay was used to reveal that miR-215-5p inhibits breast cancer cell growth and metastatic potential in vivo. Overall, these results imply that miRNA-215-5p suppresses the aggressiveness of breast cancer cells through targeting Sox9.
Collapse
Affiliation(s)
- Jia Bao Gao
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Ming Nan Zhu
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Xiao Liang Zhu
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| |
Collapse
|
26
|
Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics. Nat Commun 2019; 10:3856. [PMID: 31451693 PMCID: PMC6710267 DOI: 10.1038/s41467-019-11808-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Accurate prediction of chemo- or targeted therapy responses for patients with similar driver oncogenes through a simple and least-invasive assay represents an unmet need in the clinical diagnosis of non-small cell lung cancer. Using a single-cell on-chip metabolic cytometry and fluorescent metabolic probes, we show metabolic phenotyping on the rare disseminated tumor cells in pleural effusions across a panel of 32 lung adenocarcinoma patients. Our results reveal extensive metabolic heterogeneity of tumor cells that differentially engage in glycolysis and mitochondrial oxidation. The cell number ratio of the two metabolic phenotypes is found to be predictive for patient therapy response, physiological performance, and survival. Transcriptome analysis reveals that the glycolytic phenotype is associated with mesenchymal-like cell state with elevated expression of the resistant-leading receptor tyrosine kinase AXL and immune checkpoint ligands. Drug targeting AXL induces a significant cell killing in the glycolytic cells without affecting the cells with active mitochondrial oxidation. Non-invasive methods to predict treatment response are urgently needed. Here in lung cancer, the authors develop a single-cell on-chip cytometry method to metabolically phenotype disseminated tumor cells, revealing metabolic heterogeneity and predictors of therapy response and survival.
Collapse
|
27
|
Jia J, Wang J, Yin M, Liu Y. microRNA-605 directly targets SOX9 to alleviate the aggressive phenotypes of glioblastoma multiforme cell lines by deactivating the PI3K/Akt pathway. Onco Targets Ther 2019; 12:5437-5448. [PMID: 31360068 PMCID: PMC6625606 DOI: 10.2147/ott.s213026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Aberrant microRNA (miRNA) expression has been widely reported to play a crucial role in the progression and development of glioblastoma (GBM). miR-605 has been identified as a tumor-suppressing miRNA in several types of human cancers. Nevertheless, the expression profile and detailed roles of miR-605 in GBM remain unclear and need to be further elucidated. Materials and methods RT-qPCR analysis was utilized for the determination of miR-605 expression in GBM tissues and cell lines. In addition, CCK-8 assay, transwell migration and invasion assays, as well as sub-cutaneous xenograft mouse models were utilized to evaluate the effects of miR-605 upregulation in GBM cells. Notably, the potential mechanisms underlying the activity of miR-605 in the malignant phenotypes of GBM were explored. Results We observed that expression of miR-605 was reduced in GBM tissues and cell lines. Decreased miR-605 expression exhibited significant correlation with KPS score. The overall survival rate in GBM patients with low miR-605 expression was lower than that of patients with high miR-605 expression. Increased miR-605 expression suppressed the proliferation, migration, and invasion of U251 and T98 cells. In addition, miR-605 upregulation impaired tumor growth in vivo. Furthermore, SRY-Box 9 (SOX9) was identified as a direct target gene of miR-605 in U251 and T98 cells. SOX9 expression was shown to exhibit an inverse correlation with miR-605 expression in GBM tissues. Moreover, silencing of SOX9 expression mimicked the tumor-suppressing roles of miR-605 in U251 and T98 cells, while SOX9 restoration rescued the suppressive effects of miR-605 overexpression in the same. Notably, miR-605 suppressed the PI3K/Akt pathway in GBM in vitro and in vivo. Conclusion These results demonstrated that miR-605 acts as a tumor suppressor in the development of GBM by directly targeting SOX9 and inhibiting the activation of the PI3K/Akt pathway, suggesting its potential role as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Jianwu Jia
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Meifeng Yin
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Yongdong Liu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| |
Collapse
|
28
|
Huang JQ, Wei FK, Xu XL, Ye SX, Song JW, Ding PK, Zhu J, Li HF, Luo XP, Gong H, Su L, Yang L, Gong LY. SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/β-catenin pathway. J Transl Med 2019; 17:143. [PMID: 31060551 PMCID: PMC6501400 DOI: 10.1186/s12967-019-1895-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background The distant metastasis of cancer cells is a risk factor for tumor lethality and poor prognosis in non-small-cell lung carcinoma (NSCLC). Increased SOX9 expression has been associated with clinical stage and poor prognosis in NSCLC, but the molecular mechanisms by which SOX9 promotes metastasis in NSCLC are still unknown. Methods The relationship between SOX9 expression and T, N, M classification was assessed using the χ2 test and Spearman’s analysis in 142 immunohistochemically diagnosed specimens of NSCLC. We also generated SOX9-overexpression and SOX9-knockdown cells lines and their corresponding control cell lines by transfection with lentiviral constructs. In vivo assay, SOX9-overexpressing and SOX9-knockdown NSCLC cells were injected in zebrafish to examine distance metastasis. Gene set enrichment analysis (GSEA) was applied to analysis the correlation between SOX9 overexpression and Wnt/β-catenin pathway. Luciferase assay was used to check transcriptional activity of TCF/LEF and western blot and immunofluorescence was employed to detect β-catenin translocation in SOX9-overexpression, SOX9-knockdown and their corresponding control cell lines. Results We found that SOX9 overexpression correlates with the T, N and M stage significantly (p = 0.03, 0.000, and 0.032 respectively) in 142 immunohistochemically diagnosed specimens of NSCLC. SOX9 overexpression was found to decrease the expression of the epithelial cell markers E-cadherin and γ-catenin and increase the expression of the mesenchymal cell markers N-cadherin and vimentin. An in vivo assay showed distant metastasis of the SOX9-overexpressing cells, which was not observed in the SOX9-knockdown cells. These findings indicate that SOX9 promotes distant metastasis by promoting EMT in NSCLC cells. GSEA showed that SOX9 overexpression was significantly correlated with the Wnt/β-catenin pathway which was corroborated by the expression of EMT-associated proteins in this pathway and its downstream target genes. SOX9 overexpression was also found to enhance the transcriptional activity of TCF/LEF, promote the nuclear translocation of β-catenin and increase the phosphorylation of GSK3β at Ser9. Further, inhibition of β-catenin suppressed the metastasis-promoting effects of SOX9 overexpression. Conclusions This study is the first to report that SOX9 is associated with clinical TNM stage and indicates that SOX9 promotes migration, invasion and the EMT process through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jing-Qiang Huang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Fa-Kai Wei
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiu-Li Xu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shi-Xing Ye
- Department of Equipment, Shenzhen Longhua People's Hospital, Shenzhen, 518109, People's Republic of China
| | - Jun-Wei Song
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Pei-Kun Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, People's Republic of China
| | - Jing Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - He-Feng Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xin-Ping Luo
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Hui Gong
- Central Laboratory, Shenzhen Nanshan People's Hospital, Shenzhen University, Shenzhen, 518052, People's Republic of China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Huazhong, University of Science and Technology in Shenzhen, Shenzhen, 518063, China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, People's Republic of China.
| | - Li-Yun Gong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
29
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
30
|
Wu L, He S, He Y, Wang X, Lu L. IC-2 Suppresses Proliferation and Induces Apoptosis of Bladder Cancer Cells via the Wnt/β-Catenin Pathway. Med Sci Monit 2018; 24:8074-8080. [PMID: 30415269 PMCID: PMC6240849 DOI: 10.12659/msm.910742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway participates in many important tumorigeneses processes, including bladder cancer. The inhibition of abnormal activation of Wnt pathways might provide a new approach to tumor treatment. In the present study, we investigated the role of IC-2, a novel Wnt pathways small molecular inhibitor, in bladder cancer tumorigenesis. Material/Methods Bladder cancer cells were treated with various concentrations of IC-2 (0–5 μM) in vitro. The proliferation ability was measured using colony formation assay and apoptosis was measured using flow cytometry analysis. The protein expression was detected using Western blot analysis. Xenograft in vivo assay was performed to assess tumor growth. Results IC-2 suppressed the proliferation and aggravated the apoptosis of bladder cancer cells in dose-dependent and time-dependent manners in vitro. Moreover, high concentrations of IC-2 inhibited the Wnt pathway-related protein expression levels, including β-catenin, Cyclin D1, and TCF4. In vivo, administration of IC-2 in xenograft mice decreased the β-catenin expression and reduced the tumor volume. Conclusions Our results validate the tumor-inhibition effect of IC-2 on bladder cancer in vivo and in vitro, providing a novel therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Lingfeng Wu
- Department of Urology, The Frist Hospital of Jiaxing, Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Shunliang He
- Department of Urology, The Frist Hospital of Jiaxing, Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Yi He
- Department of Urology, The Frist Hospital of Jiaxing, Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Xueping Wang
- Department of Urology, The Frist Hospital of Jiaxing, Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Linfeng Lu
- Department of Urology, The Frist Hospital of Jiaxing, Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| |
Collapse
|
31
|
Prochnicki A, Amann K, Wegner M, Sock E, Pfister E, Shankland S, Pippin J, Daniel C. Characterization of Glomerular Sox9+ Cells in Anti-Glomerular Basement Membrane Nephritis in the Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2529-2541. [DOI: 10.1016/j.ajpath.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
32
|
Augstein A, Mierke J, Poitz DM, Strasser RH. Sox9 is increased in arterial plaque and stenosis, associated with synthetic phenotype of vascular smooth muscle cells and causes alterations in extracellular matrix and calcification. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2526-2537. [PMID: 29777903 DOI: 10.1016/j.bbadis.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMC) exhibit a dual role in progression and maintenance of arteriosclerosis. They are fundamental for plaque stability but also can drive plaque progression. During pathogenic vascular remodeling, VSMC transdifferentiate into a phenotype with enhanced proliferation and migration. Moreover, they exert an increased capacity to generate extracellular matrix proteins. A special lineage of transdifferentiated VSMC expresses Sox9, a multi-functional transcription factor. The aim of the study was to examine the role of Sox9 in phenotypic alterations leading to arteriosclerosis. Using mouse models for arterial stenosis, Sox9 induction in diseased vessels was verified. The phenotypic switch of VSMC from contractile to proliferative nature caused a significant increase of Sox9 expression. Various factors known to be involved in the progression of arteriosclerosis were examined for their ability to modulate Sox9 expression in VSMC. While PDGF-BB resulted in a strong transient upregulation of Sox9, TGF-β1 appeared to be responsible for a moderate, but prolonged increase of Sox9 expression. Beside the regulation, functional studies focused on knockout and overexpression of Sox9. A Sox9-dependent alteration of extracellular matrix could be revealed and was associated with an upregulated calcium deposition. Taken together, Sox9 is identified as important factor of VSMC function by modulation the extracellular matrix composition and calcium deposition, which are important processes in plaque development.
Collapse
Affiliation(s)
- Antje Augstein
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany.
| | - Johannes Mierke
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - David M Poitz
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - Ruth H Strasser
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| |
Collapse
|
33
|
Wang Z, Li J, Li K, Xu J. SOX6 is downregulated in osteosarcoma and suppresses the migration, invasion and epithelial-mesenchymal transition via TWIST1 regulation. Mol Med Rep 2018; 17:6803-6811. [PMID: 29512775 DOI: 10.3892/mmr.2018.8681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
Transcription factor SOX6 (SOX6) has been reported to serve essential roles in numerous types of cancers. However, the expression and functions of SOX6 in osteosarcoma (OS) have not been analyzed. In the present study, the patterns of SOX6 expression in OS cell lines and tissues were investigated by reverse transcription‑quantitative polymerase chain reaction and western blotting. The results of the present study revealed that SOX6 was notably downregulated in OS tissues and cell lines. Subsequently, gain‑ and loss‑of‑function studies demonstrated that SOX6 inhibited OS cell migration and invasion. In addition, SOX6 may have suppressed epithelial‑mesenchymal transition via twist‑related protein 1 (TWIST1) modulation. Chromatin immunoprecipitation (ChIP), quantitative ChIP and dual luciferase activity assays were used to confirm the binding of SOX6 to the promoter region of TWIST1. Additionally, colony formation assays and Cell Counting Kit‑8 assays demonstrated that SOX6 suppressed cell proliferation. The findings of the present study indicated that SOX6 serves as a tumor suppressor in OS and may be a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Hand and Foot Surgery, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Junjie Li
- Department of Hand and Foot Surgery, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Kun Li
- Department of Oncology and Hematology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Jianjun Xu
- Department of Hand and Foot Surgery, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| |
Collapse
|
34
|
Zhang Y, Sun B, Huang Z, Zhao DW, Zeng Q. Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1. Med Sci Monit 2018; 24:661-670. [PMID: 29389913 PMCID: PMC5804303 DOI: 10.12659/msm.908381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Shikonin is a component of Chinese herbal medicine. The aim of this study was to investigate the effects of shikonin on cell migration of papillary thyroid cancer cells of the TPC-1 cell line in vitro and expression levels of the phosphate and tensin homolog deleted on chromosome 10 (PTEN) and DNA methyltransferase 1 (DNMT1) genes. Material/Methods The Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the proliferation of TPC-1 papillary thyroid cancer cells, and the normal thyroid cells, HTori-3, in vitro. A transwell motility assay was used to analyze the migration of TPC-1 cells. Western blot was performed to determine the expression levels of PTEN and DNMT1 genes. A methylation-specific polymerase chain reaction (PCR) (MSP) assay was used to evaluate the methylation of PTEN. Results Following treatment with shikonin, the cell survival rate of TPC-1 cells decreased in a dose-dependent manner; the inhibitory effects on HTori-3 cells were less marked. Shikonin inhibited TPC-1 cell migration and invasion in a dose-dependent manner. The methylation of PTEN was suppressed by shikonin, which also reduced the expression of DNMT1 in a dose-dependent manner, and increased the expression of PTEN. Overexpression of DNMT1 promoted the migration of TPC-1 cells and the methylation of PTEN. Levels of protein expression of PTEN in TPC-1 cells treated with shikonin decreased, and were increased by DNMT1 knockdown. Conclusions Shikonin suppressed the expression of DNMT1, reduced PTEN gene methylation, and increased PTEN protein expression, leading to the inhibition of TPC-1 cell migration.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Interventional Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China (mainland)
| | - Bin Sun
- Department of Interventional Radiology, The First People's Hospital of Guiyang, Guiyang, Guizhou, China (mainland)
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Dai-Wei Zhao
- Department of Thyroid Surgery, The Second Affiliated Hospital, Guizhou Medical University, Kaili, Guizhou, China (mainland)
| | - Qingfan Zeng
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
35
|
Milan M, Pace V, Maiullari F, Chirivì M, Baci D, Maiullari S, Madaro L, Maccari S, Stati T, Marano G, Frati G, Puri PL, De Falco E, Bearzi C, Rizzi R. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death Dis 2018; 9:108. [PMID: 29371598 PMCID: PMC5833837 DOI: 10.1038/s41419-017-0174-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics – hereditable changes of chromatin that do not alter the DNA sequence itself – is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs.
Collapse
Affiliation(s)
- Marika Milan
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Valentina Pace
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Fabio Maiullari
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy.,Operational Research Unit, Fondazione di Ricerca e Cura Giovanni Paolo II, Largo Gemelli 1, Campobasso, Italy
| | - Maila Chirivì
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Denisa Baci
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Silvia Maiullari
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Luca Madaro
- IRCCS Fondazione Santa Lucia, Rome, 00142, Italy
| | - Sonia Maccari
- Centro di Riferimento per la Medicina di Genere Istituto Superiore di Sanità Viale Regina Elena, 299, Roma, Italy
| | - Tonino Stati
- Centro di Riferimento per la Medicina di Genere Istituto Superiore di Sanità Viale Regina Elena, 299, Roma, Italy
| | - Giuseppe Marano
- Centro di Riferimento per la Medicina di Genere Istituto Superiore di Sanità Viale Regina Elena, 299, Roma, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli (IS), Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy
| | - Claudia Bearzi
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy.
| | - Roberto Rizzi
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy. .,Operational Research Unit, Fondazione di Ricerca e Cura Giovanni Paolo II, Largo Gemelli 1, Campobasso, Italy.
| |
Collapse
|
36
|
Knockdown of TRIM44 inhibits the proliferation and invasion in papillary thyroid cancer cells through suppressing the Wnt/β-catenin signaling pathway. Biomed Pharmacother 2017; 96:98-103. [DOI: 10.1016/j.biopha.2017.09.132] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 01/03/2023] Open
|
37
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|