1
|
Raj-Kumar PK, Lin X, Liu T, Sturtz LA, Gritsenko MA, Petyuk VA, Sagendorf TJ, Deyarmin B, Liu J, Praveen-Kumar A, Wang G, McDermott JE, Shukla AK, Moore RJ, Monroe ME, Webb-Robertson BJM, Hooke JA, Fantacone-Campbell L, Mostoller B, Kvecher L, Kane J, Melley J, Somiari S, Soon-Shiong P, Smith RD, Mural RJ, Rodland KD, Shriver CD, Kovatich AJ, Hu H. Proteogenomic characterization of difficult-to-treat breast cancer with tumor cells enriched through laser microdissection. Breast Cancer Res 2024; 26:76. [PMID: 38745208 PMCID: PMC11094977 DOI: 10.1186/s13058-024-01835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.
Collapse
Affiliation(s)
- Praveen-Kumar Raj-Kumar
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoying Lin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lori A Sturtz
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | - Brenda Deyarmin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Guisong Wang
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | - Anil K Shukla
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Jeffrey A Hooke
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Fantacone-Campbell
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Brad Mostoller
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Leonid Kvecher
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Kane
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jennifer Melley
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Stella Somiari
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | | | - Richard J Mural
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Albert J Kovatich
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA.
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Zhang C, Shen Q, Gao M, Li J, Pang B. The role of Cyclin Dependent Kinase Inhibitor 3 ( CDKN3) in promoting human tumors: Literature review and pan-cancer analysis. Heliyon 2024; 10:e26061. [PMID: 38380029 PMCID: PMC10877342 DOI: 10.1016/j.heliyon.2024.e26061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Background Although many experiments and clinical studies have proved the link between the expression of CDKN3 and human tumors, we have not been able to identify any bioinformatics study in which the extensive tumor-promoting effect of CDKN3 was systematically analyzed. Objective Explore the extensive tumor-promoting effects of CDKN3 and review the research progress of CDKN3 in cancer. Methods We systematically reviewed the literature on CDKN3 and tumors. We explored the potential tumor-promoting effects of CDKN3 on different tumors in the TCGA database and the GTEx database using multiple platforms and websites. We studied the expression level of CDKN3, survival, prognosis, diagnosis, genetic variation, immune infiltration, and enrichment analysis using databases such as TIMER 2.0, GEPIA2, cBioPortal, and STRING. Results We found that CDKN3 is highly expressed in most tumors. The expression of CDKN3 is closely related to the prognosis of some tumors. And CDKN3 may have diagnostic value. The conclusion of our literature review is roughly the same, but there are differences, which are worthy of further study. Moreover, CDKN3 may be related to immune cell infiltration in tumor tissues. The genetic alteration of LUAD, STAD, SARC, PCPG, and ESCA with "Amplification" as the main type. In addition, through enrichment analysis, we found that CDKN3 affects tumors mainly through the control of the cell cycle and mitosis. Conclusion CDKN3 is highly expressed in most tumor tissues and has a statistical correlation with survival prognosis. It has extensive tumor-promoting effects that may be related to mechanisms such as immune infiltration.
Collapse
Affiliation(s)
- Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Mengqi Gao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Wei JB, Zeng XC, Ji KR, Zhang LY, Chen XM. Identification of Key Genes and Related Drugs of Adrenocortical Carcinoma by Integrated Bioinformatics Analysis. Horm Metab Res 2023. [PMID: 38109896 DOI: 10.1055/a-2209-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant carcinoma with an extremely poor prognosis, and its pathogenesis remains to be understood to date, necessitating further investigation. This study aims to discover biomarkers and potential therapeutic agents for ACC through bioinformatics, enhancing clinical diagnosis and treatment strategies. Differentially expressed genes (DEGs) between ACC and normal adrenal cortex were screened out from the GSE19750 and GSE90713 datasets available in the GEO database. An online Venn diagram tool was utilized to identify the common DEGs between the two datasets. The identified DEGs were subjected to functional assessment, pathway enrichment, and identification of hub genes by performing the protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The differences in the expressions of hub genes between ACC and normal adrenal cortex were validated at the GEPIA2 website, and the association of these genes with the overall patient survival was also assessed. Finally, on the QuartataWeb website, drugs related to the identified hub genes were determined. A total of 114 DEGs, 10 hub genes, and 69 known drugs that could interact with these genes were identified. The GO and KEGG analyses revealed a close association of the identified DEGs with cellular signal transduction. The 10 hub genes identified were overexpressed in ACC, in addition to being significantly associated with adverse prognosis in ACC. Three genes and the associated known drugs were identified as potential targets for ACC treatment.
Collapse
Affiliation(s)
- Jian-Bin Wei
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Zeng
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kui-Rong Ji
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Ling-Yi Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xiao-Min Chen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Gao C, Fan X, Liu Y, Han Y, Liu S, Li H, Zhang Q, Wang Y, Xue F. Comprehensive Analysis Reveals the Potential Roles of CDKN3 in Pancancer and Verification in Endometrial Cancer. Int J Gen Med 2023; 16:5817-5839. [PMID: 38106976 PMCID: PMC10723185 DOI: 10.2147/ijgm.s438479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Background Cyclin-dependent kinase inhibitor 3 (CDKN3) has been studied in many cancers. However, the comprehensive and systematic pancancer analysis of CDKN3 genes is still lacking. Methods Data were downloaded from online databases. R was used for analysis of the differential expression and gene alteration of CDKN3 and of the associations between CDKN3 expression and survival, signaling pathways, and drug sensitivity. Clinical samples and in vitro experiments were selected for verification. Results CDKN3 expression was higher in most types of cancers, and this phenotype was significantly correlated with poor survival. CDKN3 showed gene alterations and copy number alterations in many cancers and associated with some immune-related pathways and factors. Drug sensitivity analysis elucidated that CDKN3 could be a useful marker for therapy selection. Clinical samples elucidated CDKN3 expressed high in endometrial cancer tissue. In vitro studies showed that CDKN3 induced pro-tumor effect in immune environment and facilitated endometrial cancer cell proliferation and G1/S phase transition. Conclusion CDKN3 has been shown to be highly expressed in most types of cancers and promoted cancer cell progression. CDKN3 may serve as a novel marker in clinical diagnosis, treatment, and prognosis prediction in future.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Obstetrics and Gynecology, Zaozhuang Municipal Hospital, Shandong, People’s Republic of China
| | - Yanyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Wang XX, Wu HY, Yang Y, Ma MM, Zhang YW, Huang HZ, Li SH, Pan SL, Tang J, Peng JH. CCNB1 is involved in bladder cancer pathogenesis and silencing CCNB1 decelerates tumor growth and improves prognosis of bladder cancer. Exp Ther Med 2023; 26:382. [PMID: 37456156 PMCID: PMC10347295 DOI: 10.3892/etm.2023.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
In search of an effective therapeutic target for bladder urothelial carcinoma (BLCA), the present study aimed to investigate the expression of cyclin B1 (CCNB1) and its putative mechanism in BLCA. BLCA sequencing data from Gene Expression Omnibus and The Cancer Genome Atlas were used to analyze expression of CCNB1 mRNA and high CCNB1 expression had a poorer prognosis compared with those with low expression. Immunohistochemistry (IHC) samples collected from the Human Protein Atlas database were analyzed for CCNB1 protein expression. Short hairpin (sh) CCNB1-transfected BLCA T24 and 5637 cells were used to investigate the effects of CCNB1 and inhibit the proliferation, migration and invasion of BLCA cells, affect the cell cycle distribution and promote apoptosis of 5637 cells. A sh-CCNB1 BLCA chicken embryo chorioallantoic membrane (CAM) transplantation model was established to observe the impacts of sh-CCNB1 on the tumorigenesis of BLCA in vivo. Analysis of sequencing data showed that CCNB1 mRNA was significantly elevated in tumor and BLCA compared with normal tissues [standardized mean difference (SMD)=1.21; 95% CI: 0.26-2.15; I²=95.9%]. IHC indicated that CCNB1 protein was localized in the nucleus and cytoplasm and was significantly increased in BLCA tumor tissues. The in vitro tests demonstrated that proliferation of T24 and 5637 cells transfected with sh-CCNB1 was significantly inhibited and cell migration and invasion ability were significantly decreased. sh-CCNB1 decreased the percentage of T24 cells in G0/G1, 5637 cells in the G0/G1 phase and S phase and increased percentage of 5637 cells in the G2/M phase and increased early apoptosis of 5637 cells. The in vivo experiments demonstrated that the mass of transplanted tumors was significantly decreased compared with the control group following silencing of CCNB1. The present results suggested that CCNB1 was involve in the development and prognosis of BLCA and silencing of CCNB1 may be a promising targeted therapy for BLCA.
Collapse
Affiliation(s)
- Xue-Xuan Wang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Hua-Yu Wu
- Medical Experimental Center, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Ying Yang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Miao-Miao Ma
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Wei Zhang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hai-Zhen Huang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Jun Tang
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
6
|
Ma J, Zhou W, Yuan Y, Wang B, Meng X. PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression. Cancer Gene Ther 2023; 30:1072-1083. [PMID: 37037907 DOI: 10.1038/s41417-023-00609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Proteasome 26S subunit, non-ATPase 12 (PSMD12) genes have been implicated in several types of malignancies but the role of PSMD12 in pancreatic cancer (PC) remains elusive. Bioinformatics analysis showed that PSMD12 was highly expressed in PC patients and was associated with shorter overall survival. PSMD12 was also shown to be highly expressed in PC tissues and cell lines. Upregulated PSMD12 showed enhanced cell viability, increased colony formation rate and upregulated levels of PCNA and c-Myc, while the inhibition of PSMD12 abated these levels. PSMD12 knockdown promoted cell apoptosis. The results of xenografts in nude mice confirmed that PSMD12 promoted PC tumor growth in vivo. Protein‒protein interaction network and functional enrichment analyses implied that PSMD12 may have a connection with cyclin-dependent kinase inhibitor 3 (CDKN3). Co‑immunoprecipitation and western blot results confirmed that PSMD12 could interact with and abate the ubiquitination level of CDKN3, thus stabilizing the CDKN3 protein. Rescue assays showed that PSMD12 overexpression caused cell proliferation and that knockdown-induced cell apoptosis could be reversed by CDKN3 regulation. This work reveals the essential roles of PSMD12 in the proliferation and apoptosis of PC development. PSMD12 may regulate CDKN3 expression by interacting with and abating the ubiquitination level of CDKN3, thereby participating in the malignant behavior of PC.
Collapse
Affiliation(s)
- Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenyang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yifeng Yuan
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosheng Wang
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiangpeng Meng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Deng X, Ma J, Zhou W, Yuan Y, Wang B, Meng X. GID2 Interacts With CDKN3 and Regulates Pancreatic Cancer Growth and Apoptosis. J Transl Med 2023; 103:100122. [PMID: 36828188 DOI: 10.1016/j.labinv.2023.100122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Dysregulation of deubiquitinase or ubiquitinase-mediated protein expression contributes to various diseases, including cancer. In the present study, we identified GID2, a subunit of the glucose-induced degradation-deficient (GID) complex that functions as an E3 ubiquitin ligase, as a potential key candidate gene in pancreatic cancer (PC) progression. The functional role and potential mechanism of GID2 in PC progression were investigated. Integrated bioinformatics analysis was performed to identify differentially expressed genes in PC based on the Gene Expression Profiling Interactive Analysis data sets. We found that GID2 was upregulated in PC tissues and that a high level of GID2 expression in clinical PC samples was positively associated with tumor stage and poor survival. Functional assays elucidated that GID2 expression promoted cell growth in vitro and accelerated tumor growth in vivo. GID2 knockdown effectively attenuated the malignant behaviors of PC cells and tumor formation. Furthermore, the protein network that interacted with the GID2 protein was constructed based on the GeneMANIA website. Cyclin-dependent kinase inhibitor 3 (CDKN3), a cell cycle regulator, was identified as a potential target of the GID2 protein. We revealed that GID2 positively regulated CDKN3 expression and inhibited CDKN3 ubiquitination. Furthermore, CDKN3 downregulation reversed the promoting effects of GID2 on PC progression. Therefore, the present study demonstrated that GID2 might regulate PC progression by maintaining the stability of the CDKN3 protein. These findings highlight the potential roles of the GID2/CDKN3 axis as a potential therapeutic target in PC.
Collapse
Affiliation(s)
- Xin Deng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenyang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yifeng Yuan
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosheng Wang
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiangpeng Meng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Celastrol with a Knockdown of miR-9-2, miR-17 and miR-19 Causes Cell Cycle Changes and Induces Apoptosis and Autophagy in Glioblastoma Multiforme Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a cancer with extremely high aggressiveness, malignancy and mortality. Because of all of the poor prognosis features of GBM, new methods should be sought that will effectively cure it. We examined the efficacy of a combination of celastrol and a knockdown of the miR-9-2, miR-17 and miR-19 genes in the human glioblastoma U251MG cell line. U251MG cells were transfected with specific siRNA and exposed to celastrol. The effect of the knockdown of the miRs genes in combination with exposure to celastrol on the cell cycle (flow cytometry) and the expression of selected genes related to its regulation (RT-qPCR) and the regulation of apoptosis and autophagy was investigated. We found a significant reduction in cell viability and proliferation, an accumulation of the subG1-phase cells and a decreased population of cells in the S and G2/M phases, as well as the induction of apoptosis and autophagy. The observed changes were not identical in the case of the silencing of each of the tested miRNAs, which indicates a different mechanism of action of miR9-2, miR-17, miR-19 silencing on GBM cells in combination with celastrol. The multidirectional effects of the silencing of the genes encoding miR-9-2, miR-17 and miR-19 in combination with exposure to celastrol is possible. The studied strategy of silencing the miR overexpressed in GBM could be important in developing more effective treatments for glioblastoma. Additional studies are necessary in order to obtain a more detailed interpretation of the obtained results. The siRNA-induced miR-9-2, miR-17 and miR-19 mRNA knockdowns in combination with celastrol could offer a novel therapeutic strategy to more effectively control the growth of human GBM cells.
Collapse
|
9
|
Zhan J, Wu S, Zhao X, Jing J. A Novel DNA Damage Repair-Related Gene Signature for Predicting Glioma Prognosis. Int J Gen Med 2022; 14:10083-10101. [PMID: 34992431 PMCID: PMC8711246 DOI: 10.2147/ijgm.s343839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background Glioma is one of the most prevalent tumors in the central nervous system of adults and shows a poor prognosis. This study aimed to develop a DNA damage repair (DDR)-related gene signature to evaluate the prognosis of glioma patients. Methods Differentially expressed genes (DEGs) were extracted based on 276 DDR genes. Then, a gene signature was developed for the survival prediction in glioma patients by means of univariate, multivariate Cox, and least absolute shrinkage and selector operation (Lasso) analyses. After analyzing the clinical parameters, a nomogram was constructed and assessed. A total of 693 gliomas from the Chinese Glioma Genome Atlas (CGGA) were used for external validation. In addition, we used glioma tumor tissues for qPCR experiment to verify. Results A 12-DDR-related gene signature was identified from the 75 DEGs to stratify the survival risk of glioma patients. The overall survival of high-risk group was significantly shorter than that of low-risk group (P < 0.001). Besides, according to the risk score assessment, patients in high- or low-risk group also had significant correlations with clinicopathological parameters, including age (P < 0.01), grade (P < 0.001), IDH status (P < 0.001) and 1p19q codeletion status (P < 0.001). The nomogram provided favorable C-index and calibration plots. The C-index of training set and verification set was 0.761 and 0.746, respectively, and the calibration curve also showed that both training set and verification set were close to the standard curve. The qPCR results showed that there were significant differences in the expression of some typical DDR-related genes in tumor tissues and paracancer tissues (P(WEE1)=0.0002, P(RECQL)=0.0117, P(RPA1)=0.021, P(RRM1)=0.0035, P(PARP4)=0.0006, P(ELOA)=0.0023). Conclusion Our study developed a novel 12 DDR-related gene signature as a practical prognostic predictor for glioma patients. A nomogram combining the signature and clinical parameters was established as an individual clinical prediction tool.
Collapse
Affiliation(s)
- Jiaoyang Zhan
- Department of Anorectal Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shuang Wu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, People's Republic of China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, Liaoning, People's Republic of China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
10
|
Cen J, Liang Y, Huang Y, Pan Y, Shu G, Zheng Z, Liao X, Zhou M, Chen D, Fang Y, Chen W, Luo J, Zhang J. Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Mol Cancer 2021; 20:19. [PMID: 33468140 PMCID: PMC7816303 DOI: 10.1186/s12943-021-01314-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. METHOD Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. RESULTS Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. CONCLUSION Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Junjie Cen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yanping Liang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yong Huang
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yihui Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Guannan Shu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Xiaozhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport road, Guangzhou, 510405, People's Republic of China
| | - Mi Zhou
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Danlei Chen
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
11
|
Heitor da Silva Maués J, Ferreira Ribeiro H, de Maria Maués Sacramento R, Maia de Sousa R, Pereira de Tommaso R, Dourado Kovacs Machado Costa B, Cardoso Soares P, Pimentel Assumpção P, de Fátima Aquino Moreira-Nunes C, Mário Rodriguez Burbano R. Downregulated genes by silencing MYC pathway identified with RNA-SEQ analysis as potential prognostic biomarkers in gastric adenocarcinoma. Aging (Albany NY) 2020; 12:24651-24670. [PMID: 33351778 PMCID: PMC7803532 DOI: 10.18632/aging.202260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
MYC overexpression is a common phenomenon in gastric carcinogenesis. In this study, we identified genes differentially expressed with a downregulated profile in gastric cancer (GC) cell lines with silenced MYC. The TTLL12, CDKN3, CDC16, PTPRA, MZT2B, UBE2T genes were validated using qRT-PCR, western blot and immunohistochemistry in tissues of 213 patients with diffuse and intestinal GC. We identified high levels of TTLL12, MZT2B, CDC16, UBE2T, associated with early and advanced stages, lymph nodes, distant metastases and risk factors such as H. pylori. Our results show that in the diffuse GC the overexpression of CDC16 and UBE2T indicate markers of poor prognosis higher than TTLL12. That is, patients with overexpression of these two genes live less than patients with overexpression of TTLL12. In the intestinal GC, patients who overexpressed CDC16 had a significantly lower survival rate than patients who overexpressed MZT2B and UBE2T, indicating in our data a worse prognostic value of CDC16 compared to the other two genes. PTPRA and CDKN3 proved to be important for assessing tumor progression in the early and advanced stages. In summary, in this study, we identified diagnostic and prognostic biomarkers of GC under the control of MYC, related to the cell cycle and the neoplastic process.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Helem Ferreira Ribeiro
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Center of Biological and Health Sciences, Department of Biomedicine, University of Amazon, Belém 66060-000, PA, Brazil
| | | | - Rafael Maia de Sousa
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | | | | | - Paulo Cardoso Soares
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Paulo Pimentel Assumpção
- Oncology Research Nucleus, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-000, PA, Brazil
| | | | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| |
Collapse
|
12
|
Li D, Liu Z, Ning G. [Expression of CDC25A in non-small cell lung cancer and its relationship with let-7 gene]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1622-1627. [PMID: 33243735 DOI: 10.12122/j.issn.1673-4254.2020.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the expression of CDC25A in non- small cell lung cancer (NSCLC) tissues and explore its correlation with the clinicpathological features of the patients and the expressions of let-7a1 and let-7c. METHODS We collected surgical specimens of pathologically confirmed NSCLC tissues and paired adjacent lung tissues from 44 patients and tissues of benign lung lesions from 9 patients. The expressions of CDC25A protein and mRNA in the tissues were detected by immunohistochemistry and fluorescence quantitative RT-PCR, respectively; the expressions of let-7a1 and let-7c mRNA were detected using tail-adding fluorescence quantitative RT-PCR. RESULTS The positivity rate of CDC25A protein expression was significantly higher in NSCLC tissues than in the adjacent tissues and benign pulmonary lesions (P < 0.05). CDC25A protein expression in NSCLC was not correlated with the patients' age, gender, pathological type, degree of tumor differentiation, or clinical stages (P > 0.05), and was significantly correlated with smoking and lymph node metastasis (P < 0.05). CDC25A mRNA expression was also significantly higher in NSCLC tissues than in the adjacent tissues and benign pulmonary lesions (F=6.33, P < 0.05), and was similar between the latter two tissues (P > 0.05). Pearson correlation analysis showed that CDC25A expression had a significant negative correlation with let-7c expression in both NSCLC tissues (r=-0.42) and adjacent lung tissues (r=-0.40) but was not correlated with let-7a1 expression. CONCLUSIONS The expression level of CDC25A is significantly increased in NSCLC with a negative correlation with Let-7c expression, which identifies CDC25A as a possible downstream target gene of Let-7c.
Collapse
Affiliation(s)
- Dianming Li
- Department of Respiratory and Critical Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhaofei Liu
- Department of Respiratory Medicine, Linquan County People's Hospital, Linquan 236400, China
| | - Guolan Ning
- Department of Respiratory and Critical Care Medicine, Fuyang Second People's Hospital, Fuyang 236000, China
| |
Collapse
|
13
|
Jiang CH, Yuan X, Li JF, Xie YF, Zhang AZ, Wang XL, Yang L, Liu CX, Liang WH, Pang LJ, Zou H, Cui XB, Shen XH, Qi Y, Jiang JF, Gu WY, Li F, Hu JM. Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma. J Transl Med 2020; 18:40. [PMID: 32000807 PMCID: PMC6993496 DOI: 10.1186/s12967-020-02229-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver tumour, and is closely related to liver cirrhosis. Previous studies have focussed on the pathogenesis of liver cirrhosis developing into HCC, but the molecular mechanism remains unclear. The aims of the present study were to identify key genes related to the transformation of cirrhosis into HCC, and explore the associated molecular mechanisms. Methods GSE89377, GSE17548, GSE63898 and GSE54236 mRNA microarray datasets from Gene Expression Omnibus (GEO) were analysed to obtain differentially expressed genes (DEGs) between HCC and liver cirrhosis tissues, and network analysis of protein–protein interactions (PPIs) was carried out. String and Cytoscape were used to analyse modules and identify hub genes, Kaplan–Meier Plotter and Oncomine databases were used to explore relationships between hub genes and disease occurrence, development and prognosis of HCC, and the molecular mechanism of the main hub gene was probed using Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis. Results In total, 58 DEGs were obtained, of which 12 and 46 were up- and down-regulated, respectively. Three hub genes (CDKN3, CYP2C9 and LCAT) were identified and associated prognostic information was obtained. CDKN3 may be correlated with the occurrence, invasion, and recurrence of HCC. Genes closely related to changes in the CDKN3 hub gene were screened, and Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway analysis identified numerous cell cycle-related genes. Conclusion CDKN3 may affect the transformation of liver cirrhosis into HCC, and represents a new candidate molecular marker of the occurrence and progression of HCC.
Collapse
Affiliation(s)
- Chen Hao Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xin Yuan
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Jiang Fen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Yu Fang Xie
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - An Zhi Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xue Li Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Chun Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Wei Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Li Juan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Hong Zou
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xiao Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xi Hua Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Yan Qi
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Jin Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Wen Yi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China. .,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China.
| |
Collapse
|
14
|
Tu H, Wu M, Huang W, Wang L. Screening of potential biomarkers and their predictive value in early stage non-small cell lung cancer: a bioinformatics analysis. Transl Lung Cancer Res 2019; 8:797-807. [PMID: 32010558 PMCID: PMC6976355 DOI: 10.21037/tlcr.2019.10.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains the first leading cause of death in malignancies worldwide. Despite the early screening of NSCLC by low-dose spiral computed tomography (CT) in high-risk individuals caused a 20% reduction in the mortality, there still exists imperative needs for the identification of novel biomarkers for the diagnosis and treatment of lung cancer. METHODS mRNA microarray datasets GSE19188, GSE33532, and GSE44077 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. Functional and pathway enrichment analyses were performed for the DEGs using DAVID database. Protein-protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was done through MCODE. The overall survival (OS) analysis of genes from MCODE was performed with the Kaplan Meier-plotter. RESULTS A total of 221 DEGs were obtained, which were mainly enriched in the terms related to cell division, cell proliferation, and signal transduction. A PPI network was constructed, consisting of 221 nodes and 739 edges. A significant module including 27 genes was identified in the PPI network. Elevated expression of these genes was associated with poor OS of NSCLC patients, including UBE2T, UNF2, CDKN3, ANLN, CCNB2, and CKAP2L. The enriched functions and pathways included protein binding, ATP binding, cell cycle, and p53 signaling pathway. CONCLUSIONS The DEGs in NSCLC have the potential to become useful targets for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Hongbin Tu
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai 200438, China
| | - Weiling Huang
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, China
| | - Lixin Wang
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, China
| |
Collapse
|
15
|
Yu H, Yao J, Du M, Ye J, He X, Yin L. CDKN3 promotes cell proliferation, invasion and migration by activating the AKT signaling pathway in esophageal squamous cell carcinoma. Oncol Lett 2019; 19:542-548. [PMID: 31897169 DOI: 10.3892/ol.2019.11077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 01/25/2023] Open
Abstract
In China, esophageal squamous cell carcinoma (ESCC), capable of direct invasion and early metastasis, exhibits high mortality. Identification of the molecular basis driving ESCC progression and development of new diagnostic biomarkers are urgently needed. Cyclin-dependent kinase inhibitor 3 (CDKN3) performs crucial roles in the modulation of tumor development. The present study aimed to explore the functions and underlying mechanism of CDKN3 in regulating ESCC cell proliferation and invasion. The expression levels of CDKN3 in ESCC cells were evaluated by reverse transcription-quantitative PCR. Cell counting kit-8 and colony forming assays were used to evaluate cell viability. Wound-healing assay was performed to explore cell migration. Transwell invasion analysis was conducted to investigate the invasive capacity of ESCC cells. Protein levels were detected by western blot assay. The results demonstrated that the expression of CDKN3 was significantly upregulated in ESCC tissues, as predicted using the UALCAN and Gene Expression Omnibus databases. PCR and western blot assays confirmed that CDKN3 was upregulated in ESCC cell lines. Functional assays revealed that CDKN3 knockdown with small interfering RNA decreased the ability of ESCC cells to proliferate, invade and migrate and suppressed G1/S transition. Further mechanistic analyses demonstrated that CDKN3 promoted cell proliferation and invasion by activating the AKT signaling pathway in ESCC cells. To the best of our knowledge, the present study is the first to identify the functions of CDKN3 in ESCC and provide evidence that CDKN3 regulates tumor progression by activating the AKT signaling pathway. Therefore, CDKN3 may serve as a potential effective therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Hanxu Yu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiotherapy, Lianshui County People's Hospital, Lianshui, Jiangsu 223001, P.R. China
| | - Jun Yao
- Department of Radiotherapy, Yancheng Second People's Hospital, Yancheng, Jiangsu 22400, P.R. China
| | - Mingyu Du
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jinjun Ye
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Li Yin
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
16
|
Qi L, Zhou B, Chen J, Hu W, Bai R, Ye C, Weng X, Zheng S. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer 2019; 10:6618-6634. [PMID: 31777591 PMCID: PMC6856906 DOI: 10.7150/jca.33433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/31/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Abnormal status of gene expression plays an important role in tumorigenesis, progression and metastasis of breast cancer. Mechanisms of gene silence or activation were varied. Methylation of genes may contribute to alteration of gene expression. This study aimed to identify differentially expressed hub genes which may be regulated by DNA methylation and evaluate their prognostic value in breast cancer by bioinformatic analysis. Methods: GEO2R was used to obtain expression microarray data from GSE54002, GSE65194 and methylation microarray data from GSE20713, GSE32393. Differentially expressed-aberrantly methylated genes were identified by FunRich. Biological function and pathway enrichment analysis were conducted by DAVID. PPI network was constructed by STRING and hub genes was sorted by Cytoscape. Expression and DNA methylation of hub genes was validated by UALCAN and MethHC. Clinical outcome analysis of hub genes was performed by Kaplan Meier-plotter database for breast cancer. IHC was performed to analyze protein levels of EXO1 and Kaplan-Meier was used for survival analysis. Results: 677 upregulated-hypomethylated and 361 downregulated-hypermethylated genes were obtained from GSE54002, GSE65194, GSE20713 and GSE32393 by GEO2R and FunRich. The most significant biological process, cellular component, molecular function enriched and pathway for upregulated-hypomethylated genes were viral process, cytoplasm, protein binding and cell cycle respectively. For downregulated-hypermethylated genes, the result was peptidyl-tyrosine phosphorylation, plasma membrane, transmembrane receptor protein tyrosine kinase activity and Rap1 signaling pathway (All p< 0.05). 12 hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) were sorted from 677 upregulated-hypomethylated genes. 4 hub genes (EGFR, FGF2, BCL2, PIK3R1) were sorted from 361 downregulated-hypermethylated genes. Differential expression of 16 hub genes was validated in UALCAN database (p<0.05). 7 in 12 upregulated-hypomethylated and 2 in 4 downregulated-hypermethylated hub genes were confirmed to be significantly hypomethylated or hypermethylated in breast cancer using MethHC database (p<0.05). Finally, 12 upregulated hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) and 3 downregulated genes (FGF2, BCL2, PIK3R1) contributed to significant unfavorable clinical outcome in breast cancer (p<0.05). High expression level of EXO1 protein was significantly associated with poor OS in breast cancer patients (p=0.03). Conclusion: Overexpression of TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2 and downregulation of FGF2, BCL2, PIK3R1 might serve as diagnosis and poor prognosis biomarkers in breast cancer by more research validation. EXO1 was identified as an individual unfavorable prognostic factor. Methylation might be one of the major causes leading to abnormal expression of those genes. Functional analysis and pathway enrichment analysis of those genes would provide novel ideas for breast cancer research.
Collapse
Affiliation(s)
- Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Rui Bai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xingyue Weng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
17
|
Abstract
Kaposi sarcoma (KS) is an endothelial tumor etiologically related to Kaposi sarcoma herpesvirus (KSHV) infection. The aim of our study was to screen out candidate genes of KSHV infected endothelial cells and to elucidate the underlying molecular mechanisms by bioinformatics methods. Microarray datasets GSE16354 and GSE22522 were downloaded from Gene Expression Omnibus (GEO) database. the differentially expressed genes (DEGs) between endothelial cells and KSHV infected endothelial cells were identified. And then, functional enrichment analyses of gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed. After that, Search Tool for the Retrieval of Interacting Genes (STRING) was used to investigate the potential protein-protein interaction (PPI) network between DEGs, Cytoscape software was used to visualize the interaction network of DEGs and to screen out the hub genes. A total of 113 DEGs and 11 hub genes were identified from the 2 datasets. GO enrichment analysis revealed that most of the DEGs were enrichen in regulation of cell proliferation, extracellular region part and sequence-specific DNA binding; KEGG pathway enrichments analysis displayed that DEGs were mostly enrichen in cell cycle, Jak-STAT signaling pathway, pathways in cancer, and Insulin signaling pathway. In conclusion, the present study identified a host of DEGs and hub genes in KSHV infected endothelial cells which may serve as potential key biomarkers and therapeutic targets, helping us to have a better understanding of the molecular mechanism of KS.
Collapse
Affiliation(s)
- Hai-Bo Gong
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region
| | - Xiu-Juan Wu
- Department of Dermatology, Central Hospital of Shanghai Xuhui District, Shanghai
| | - Xiong-Ming Pu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiao-Jing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
18
|
Liu J, Min L, Zhu S, Guo Q, Li H, Zhang Z, Zhao Y, Xu C, Zhang S. Cyclin-Dependent Kinase Inhibitor 3 Promoted Cell Proliferation by Driving Cell Cycle from G1 to S Phase in Esophageal Squamous Cell Carcinoma. J Cancer 2019; 10:1915-1922. [PMID: 31205550 PMCID: PMC6547974 DOI: 10.7150/jca.27053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background and aims. Cyclin-dependent kinase inhibitor 3 (CDKN3) has been found playing a varying role in carcinogenesis, but its biological function in esophageal squamous cell carcinoma (ESCC) is unclear. The aim of this study was to demonstrate the role of CDKN3 in ESCC. Materials and Methods: Real-time PCR and Western blot was performed in 15 pairs of ESCC tissues and adjacent normal esophageal tissues. Then cell proliferation ability, cloning ability, cell cycle status and migration and invasion ability were explored in CDKN3 overexpressed TE1 cell line and CDKN3 siRNA transfected TE1 and KYSE70 cell lines. Finally, cell cycle related proteins CyclinD1, CDK4, pAKT, P53, P21, and P27 were tested by Western blot. Results: mRNA level was higher in 11 ESCC tissues compared to adjacent normal tissues, and an increased protein expression was further detected in 8 of those 11 ESCC tissues. Functional assays showed that CDKN3 overexpression promoted ESCC cell proliferation, colony formation, migration and invasion, and facilitated G1/S transition. Opposite results were also got after transfected with CDKN3 siRNA. Cell cycle associated protein pAKT, CyclinD1, CDK4 and P27 were upregulated and P53, P21 and were downregulated under CDKN3 overexpression. All the protein levels were found changed in the opposite direction when CDKN3 expression was disturbed by siRNA. Conclusions: Our study suggested that CDKN3 acted as an oncogene in human ESCC and may accelerate the G1/S transition by affecting CyclinD-CDK4 complex via regulating pAKT-p53-p21 axis and p27 independent of AKT.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Changqin Xu
- Shandong Provincial Hospital affiliated to Shandong university
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| |
Collapse
|
19
|
Wang J, Che W, Wang W, Su G, Zhen T, Jiang Z. CDKN3 promotes tumor progression and confers cisplatin resistance via RAD51 in esophageal cancer. Cancer Manag Res 2019; 11:3253-3264. [PMID: 31114363 PMCID: PMC6489875 DOI: 10.2147/cmar.s193793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: Esophageal cancer (ESCA) progression and chemoresistance are critical factors that impact the survival of patients with esophageal cancer. Cyclin dependent kinase inhibitor 3 (CDKN3) is an important regulator of the cell cycle that has received little attention, therefore the purpose of this study was to investigate CDKN3 involvement in ESCA. Methods: We first explored the public database in addition to our cohort to evaluate the expression of CDKN3 in ESCA patients. We performed bioinformative analysis on specific processes regulated by CDKN3, then we investigated the role of CDKN3 in ESCA progression and chemoresistance in vitro and in vivo. Finally, we sought to elucidate the mechanism of CDKN3 regulation of chemoresistance in ESCA. Results: We discovered that CDKN3 was highly expressed in ESCA and serves as an independent prognostic factor of this disease. Bioinformatic analysis showed CDKN3 involvement in DNA replication, the cell cycle G2/M phase transition, DNA damage repair (DDR) signaling pathways, et al Functional experiments in vitro and in vivo demonstrated that CDKN3 promoted ESCA progression and enhanced cisplatin resistance. Furthermore, CDKN3 inhibition resulted in reduced expression of RAD51, which plays a pivotal role in DDR. Overexpression of RAD51 reversed cisplatin-induced DNA damage and chemosensitivity in CDKN3 inhibited ESCA cell lines. Conclusion: The present research indicated that CDKN3 promoted ESCA progression and enhanced cisplatin resistance via RAD51, thereby influencing overall patient survival.
Collapse
Affiliation(s)
- Jiansong Wang
- Graduate Department, Weifang Medical University, Weifang, Shandong 261031, People's Republic of China
| | - Wencheng Che
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, Shandong 255022, People's Republic of China
| | - Weimin Wang
- Graduate Department, Weifang Medical University, Weifang, Shandong 261031, People's Republic of China
| | - Gongzhang Su
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Tianchang Zhen
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Zhongmin Jiang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
20
|
Chen ZX, Zou XP, Yan HQ, Zhang R, Pang JS, Qin XG, He RQ, Ma J, Feng ZB, Chen G, Gan TQ. Identification of putative drugs for gastric adenocarcinoma utilizing differentially expressed genes and connectivity map. Mol Med Rep 2018; 19:1004-1015. [PMID: 30569111 PMCID: PMC6323227 DOI: 10.3892/mmr.2018.9758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/20/2018] [Indexed: 11/05/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is a challenging disease with dim prognosis even after surgery; hence, novel treatments for GAC are in urgent need. The aim of the present study was to explore new potential compounds interfering with the key pathways related to GAC progression. The differentially expressed genes (DEGs) between GAC and adjacent tissues were identified from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Connectivity Map (CMap) was performed to screen candidate compounds for treating GAC. Subsequently, pathways affected by compounds were overlapped with those enriched by the DEGs to further identify compounds which had anti-GAC potential. A total of 843 DEGs of GAC were identified. Via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 13 pathways were significantly enriched. Moreover, 78 compounds with markedly negative correlations with DEGs were revealed in CMap database (P<0.05 and Enrichment <0). Subpathways of cell cycle and p53 signaling pathways, and core genes of these compounds, cyclin B1 (CCNB1) and CDC6, were identified. This study further revealed seven compounds that may be effective against GAC; in particular methylbenzethonium chloride and alexidine have never yet been reported for GAC treatment. In brief, the candidate drugs identified in this study may provide new options to improve the treatment of patients with GAC. However, the biological effects of these drugs need further investigation.
Collapse
Affiliation(s)
- Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Ping Zou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Huang-Qun Yan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Shu Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
21
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Guo E, Liang C, He X, Song G, Liu H, Lv Z, Guan J, Yang D, Zheng J. Long Noncoding RNA LINC00958 Accelerates Gliomagenesis Through Regulating miR-203/CDK2. DNA Cell Biol 2018; 37:465-472. [PMID: 29570358 DOI: 10.1089/dna.2018.4163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Erkun Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chaohui Liang
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin He
- Department of Neurosurgery, Armed Police General Hospital, Beijing, China
| | - Guozhi Song
- Department of Neurosurgery, Central Hospital of Handan City, Handan, China
| | - Hongjiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianchao Guan
- Department of Surgery, People's Hospital of Nanhe, Hebei, China
| | - Dezhen Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiapeng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
23
|
Chang SL, Chen TJ, Lee YE, Lee SW, Lin LC, He HL. CDKN3 expression is an independent prognostic factor and associated with advanced tumor stage in nasopharyngeal carcinoma. Int J Med Sci 2018; 15:992-998. [PMID: 30013440 PMCID: PMC6036165 DOI: 10.7150/ijms.25065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Through data mining from the public transcriptome of NPC, cyclin-dependent kinase inhibitor 3 (CDKN3) was identified as a significantly upregulated gene in NPC. CDKN3 functions as a key factor in cell cycle regulation. This study was aimed to investigate the expression of CDKN3 in NPC tissues and its prognostic significance. Methods: Immunohistochemistry was performed for 124 NPC patients to assess the protein expression of CDKN3. The stainings of CDKN3 were scored by using H-score method. The relationships between CDKN3 expression status and clinicopathological parameters, disease-specific survival (DSS), distant metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) were statistically analyzed. Results: High expression of CDKN3 was significantly associated with higher primary nodal status (P=0.030) and higher TNM stage (P=0.019). In univariate analysis, high expression of CDKN3 predicted worse DSS (P<0.0001), DMeFS (P<0.0001), and LRFS (P<0.0001). In multivariate analysis, CDKN3 overexpression still acted as an independent prognostic factor for worse DSS (P<0.001; hazard ratio [HR]=11.999, 95% CI: 5.378-26.771), DMeFS (P<0.001; HR=15.069, 95% CI: 5.884-38.592), and LRFS (P<0.001; HR=5.000, 95% CI: 2.312-10.815). Conclusion: High expression of CDKN3 was an independent negative prognostic factor for NPC and was associated with advanced disease status. It might serve as potential therapeutic target and aid in risk stratification for patients with NPC.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ying-En Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
24
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
25
|
Wang J, Du S, Fan W, Wang P, Yang W, Yu M. TACC3 as an independent prognostic marker for solid tumors: a systematic review and meta-analysis. Oncotarget 2017; 8:75516-75527. [PMID: 29088887 PMCID: PMC5650442 DOI: 10.18632/oncotarget.20466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Recent studies have showed that the transforming acidic coiled coil 3 (TACC3), was aberrantly up-regulated in various solid tumors and was reported to be correlated with unfavorable prognosis in cancer patients. This study aimed to examine the relationship between TACC3 and relevant clinical outcomes. Pubmed, Web of Science, Embase and Cochrane Library were systematically searched to obtain all eligible articles. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the influence of TACC3 expression on overall survival (OS) and disease-free survival (DFS) in solid tumors patients. A total of 1943 patients from 11 articles were included. The result indicated that a significantly shorter OS was observed in patients with high expression level of TACC3 (HR=1.90, 95% CI=1.63-2.23). In the subgroup analysis, the association was also observed in patients with cancers of digestive system (HR=1.85, 95% CI=1.53-2.24). Statistical significance was also observed in subgroup meta-analysis stratified by the cancer type, analysis type and sample size. Furthermore, poorer DFS was observed in patients with high expression level of TACC3 (HR=2.67, 95% CI=2.10-3.40). Additionally, the pooled odds ratios (ORs) showed that increased TACC3 expression was also related to positive lymph node metastasis (OR=1.68, 95% CI=1.26-2.25), tumor differentiation (OR=1.90, 95% CI=1.25-2.88) and TNM stage (OR=1.66, 95% CI=1.25-2.20). In conclusion, the increased expression level of TACC3 was associated with unfavorable prognosis, suggesting that it was a valuable prognosis biomarker or a promising therapeutic target of solid tumors. Further studies should be conducted to confirm the clinical utility of TACC3 in human solid tumors.
Collapse
Affiliation(s)
- June Wang
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Shenlin Du
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Wei Fan
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Wang
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weiqing Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
26
|
Huang C, Xiang Y, Chen S, Yu H, Wen Z, Ye T, Sun H, Kong H, Li D, Yu D, Chen B, Zhou M. Dermokine contributes to epithelial-mesenchymal transition through increased activation of signal transducer and activator of transcription 3 in pancreatic cancer. Cancer Sci 2017; 108:2130-2141. [PMID: 28795470 PMCID: PMC5665845 DOI: 10.1111/cas.13347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Dermokine (DMKN) was first identified in relation to skin lesion healing and skin carcinoma. Recently, its expression was associated with pancreatic cancer tumorigenesis, although its involvement remains poorly understood. Herein, we showed that DMKN loss of function in Patu‐8988 and PANC‐1 pancreatic cancer cell lines resulted in reduced phosphorylation of signal transducer and activator of transcription 3, and increased activation of ERK1/2 and AKT serine/threonine kinase. This decreased the proliferation ability of pancreatic ductal adenocarcinoma (PDAC) cells. In addition, DMKN knockdown decreased the invasion and migration of PDAC cells, partially reversed the epithelial–mesenchymal transition, retarded tumor growth in a xenograft animal model by decreasing the density of microvessels, and attenuated the distant metastasis of human PDAC in a mouse model. Taken together, these data suggested that DMKN could be a potential prognostic biomarker and therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Chaohao Huang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yukai Xiang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengchuan Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huajun Yu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengde Wen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Ye
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongru Kong
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dapei Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Dinglai Yu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Yu M, Xue Y, Zheng J, Liu X, Yu H, Liu L, Li Z, Liu Y. Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol Cancer 2017; 16:110. [PMID: 28651608 PMCID: PMC5485714 DOI: 10.1186/s12943-017-0677-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioma is one of the most frequent intracranial malignant tumors. LncRNAs have been identified as new modulators in the origination and progression of glioma. METHODS Quantitative real-time PCR were conducted to evaluate the expression of linc00152 and miRNA-103a-3p in glioma tissues and cells. Western blot were used to determine the expression of FEZF1 and CDC25A in glioma tissues and cells. Stable knockdown of linc00152 or over-expression of miR-103a-3p in glioma stem cells (GSCs) were established to explore the function of linc00152 and miR-103a-3p in GSCs. Further, luciferase reports were used to investigate the correlation between linc00152 and miR-103a-3p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate the function of linc00152 and miR-103a-3p in GSC malignant biological behaviors. ChIP assays were employed to ascertain the correlations between FEZF1 and CDC25A. RESULTS Linc00152 was up-regulated in glioma tissues as well as in GSCs. Knockdown of linc00152 inhibited cell proliferation, migration and invasion, while promoted GSC apoptosis. Linc00152 regulated the malignant behavior of GSCs by binding to miR-103a-3p, which functions as a tumor suppressor. In addition, knockdown of linc00152 down-regulated forebrain embryonic zinc finger protein 1 (FEZF1), a direct target of miR-103a-3p which played an oncogenic role in GSCs. FEZF1 elevated promoter activities and up-regulated expression of the oncogenic gene cell division cycle 25A (CDC25A). CDC25A over-expression activated the PI3K/AKT pathways, which regulated the malignant behavior of GSCs. CONCLUSIONS Linc00152/miR-103a-3p/FEZF1/CDC25A axis plays a novel role in regulating the malignant behavior of GSCs, which may be a new potential therapeutic strategy for glioma therapy.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
28
|
Wang H, Chen H, Zhou H, Yu W, Lu Z. Cyclin-Dependent Kinase Inhibitor 3 Promotes Cancer Cell Proliferation and Tumorigenesis in Nasopharyngeal Carcinoma by Targeting p27. Oncol Res 2017; 25:1431-1440. [PMID: 28109073 PMCID: PMC7840971 DOI: 10.3727/096504017x14835311718295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck that arises from the nasopharynx epithelium and is highly invasive. Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the dual-specificity protein phosphatase family, which plays a key role in regulating cell division. Abnormal expression of CDKN3 has been found in numerous types of cancer. In the current study, we explored the possible role of CDKN3 in cell proliferation, ability to invade, and radiosensitivity in NPC cells. We reported that CDKN3 was upregulated and p27 was downregulated in NPC tissues and is associated with a worse prognosis for patients. In addition, downregulation of CDKN3 and upregulation of p27 decreased cell proliferation, induced cell cycle arrest, increased apoptosis, decreased cell invasion, and enhanced radiosensitivity. Silencing of p27 significantly inhibited the effects of the knockdown of CDKN3. Moreover, downregulation of CDKN3 and upregulation of p27 inhibited the increase in tumor volume and weight in implanted tumors, decreased the phosphorylation of Akt, and increased the expression of cleaved caspase 3 in tumors. CDKN3 expression was also inversely correlated with p27 expression in NPC patients. Knockdown of CDKN3 increased p27 expression. Silencing of p27 markedly inhibited the effects of CDKN3 on cell proliferation, cell cycle progression, apoptosis, invasion, and radiosensitivity. These results demonstrate that upregulation of p27 is involved in the knockdown of CDKN3-induced decrease in cell proliferation, increase in cell cycle arrest and apoptosis, decrease in invasion, and increase in radiosensitivity. The results demonstrate that the CDKN3/p27 axis may be a novel target in the treatment of NPC.
Collapse
|