1
|
Li Y, Chen L, Li S, Song H, Chen Y, Wang S. The m6A reader IGF2BP1 contributes to the activation of hepatic stellate cells through facilitating TUBB4B mRNA stabilization. J Gastroenterol Hepatol 2024. [PMID: 39403946 DOI: 10.1111/jgh.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The m6A reader insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is involved in multiple pathophysiological processes through enhanced expression of the proteins encoded by their target mRNAs. However, the functional role of IGF2BP1-mediated m6A in liver fibrosis remains elusive. Here, we report that IGF2BP1 is highly expressed in activated hepatic stellate cells (HSCs), the major driver of fibrogenesis, and TUBB4B is identified as a potential target of IGF2BP1 by re-analysis of the RNA-seq, RIP-seq, and m6A-seq data. The relevant findings were subsequently demonstrated by a series of molecular and cellular evidences. The knockdown of IGF2BP1 or TUBB4B and pharmacological inhibition of TUBB4B by mebendazole treatments significantly suppress the proliferation, migration, and activation of HSCs. Mechanistically, IGF2BP1 upregulates TUBB4B expression through stabilizing TUBB4B in an m6A-dependent manner, and TUBB4B induces liver fibrosis by activating the FAK signaling pathway. Collectively, our results indicate that targeting IGF2BP1/TUBB4B/FAK axis in HSCs could be a promising therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Yanshan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ling Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuyi Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoxin Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Hazari V, Samali SA, Izadpanahi P, Mollaei H, Sadri F, Rezaei Z. MicroRNA-98: the multifaceted regulator in human cancer progression and therapy. Cancer Cell Int 2024; 24:209. [PMID: 38872210 DOI: 10.1186/s12935-024-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
MicroRNA-98 (miR-98) stands as an important molecule in the intricate landscape of oncology. As a subset of microRNAs, these small non-coding RNAs have accompanied a new era in cancer research, underpinning their significant roles in tumorigenesis, metastasis, and therapeutic interventions. This review provides a comprehensive insight into the biogenesis, molecular properties, and physiological undertakings of miR-98, highlighting its double-edged role in cancer progression-acting both as a tumor promoter and suppressor. Intriguingly, miR-98 has profound implications for various aspects of cancer progression, modulating key cellular functions, including proliferation, apoptosis, and the cell cycle. Given its expression patterns, the potential of miR-98 as a diagnostic and prognostic biomarker, especially in liquid biopsies and tumor tissues, is explored, emphasizing the hurdles in translating these findings clinically. The review concludes by evaluating therapeutic avenues to modulate miR-98 expression, addressing the challenges in therapy resistance, and assessing the efficacy of miR-98 interventions. In conclusion, while miR-98's involvement in cancer showcases promising diagnostic and therapeutic avenues, future research should pivot towards understanding its role in tumor-stroma interactions, immune modulation, and metabolic regulation, thereby unlocking novel strategies for cancer management.
Collapse
Affiliation(s)
- Vajihe Hazari
- Department of Obstetrics and Gynecology, School of Medicine, Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sahar Ahmad Samali
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | | | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
6
|
Ai JH, Wen YZ, Dai SJ, Zhang LD, Huang ZJ, Shi J. Exosomal lncRNA HEIH, an essential communicator for hepatocellular carcinoma cells and macrophage M2 polarization through the miR-98-5p/STAT3 axis. J Biochem Mol Toxicol 2024; 38:e23686. [PMID: 38549433 DOI: 10.1002/jbt.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Part of human long noncoding RNAs (lncRNAs) has been elucidated to play an essential role in the carcinogenesis and progression of hepatocellular carcinoma (HCC), a type of malignant tumor with poor outcomes. Tumor-derived exosomes harboring lncRNAs have also been implicated as crucial mediators to orchestrate biological functions among neighbor tumor cells. The recruitment of tumor-associated macrophages (TAMs) exerting M2-like phenotype usually indicates the poor prognosis. Yet, the precise involvement of tumor-derived lncRNAs in cross-talk with environmental macrophages has not been fully identified. In this study, we reported the aberrantly overexpressed HCC upregulated EZH2-associated lncRNA (HEIH) in tumor tissues and cell lines was positively correlated with poor prognosis, as well as enriched exosomal HEIH levels in blood plasma and cell supernatants. Besides, HCC cell-derived exosomes transported HEIH into macrophages for triggering macrophage M2 polarization, thereby in turn promoting the proliferation, migration, and invasion of HCC cells. Mechanistically, HEIH acted as a miRNA sponge for miR-98-5p to up-regulate STAT3, which was then further verified in the tumor xenograft models. Collectively, our study provides the evidence for recognizing tumor-derived exosomal lncRNA HEIH as a novel regulatory function through targeting miR-98-5p/STAT3 axis in environmental macrophages, which may shed light on the complicated tumor microenvironment among tumor and immune cells for HCC treatment.
Collapse
Affiliation(s)
- Jun-Hua Ai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Yu-Zhong Wen
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Shi-Jie Dai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Li-Dong Zhang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Zhong-Jing Huang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| |
Collapse
|
7
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
8
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
9
|
Zhou H, Sun Q, Feng M, Gao Z, Jia S, Cao L, Yu X, Gao S, Wu H, Li K. Regulatory mechanisms and therapeutic implications of insulin-like growth factor 2 mRNA-binding proteins, the emerging crucial m 6A regulators of tumors. Theranostics 2023; 13:4247-4265. [PMID: 37554271 PMCID: PMC10405845 DOI: 10.7150/thno.86528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) serve essential biological functions as post-transcriptional performers, participating in the acquisition or maintenance of tumor hallmarks due to their distinct protein structures. Emerging evidence indicates that IGF2BPs belong to the class III type of RNA N6-methyladenosine (m6A) modification readers, controlling RNA stability, storage, localization, metabolism, and translation in multiple vital bioprocesses, particularly tumorigenesis and tumor progression. Here, we discuss the underlying regulatory mechanisms and pathological functions of IGF2BPs which act as m6A readers in the context of tumor pathogenesis and multidrug resistance. Furthermore, we highlight the potential of IGF2BPs as drug targets in clinical tumor treatment. Hence, precise and novel tumor therapeutic approaches could be uncovered by targeting epigenetic heterogeneity.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Qiang Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Mingliang Feng
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Ziming Gao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Lanxin Cao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
10
|
Du X, Zhou P, Zhang H, Peng H, Mao X, Liu S, Xu W, Feng K, Zhang Y. Downregulated liver-elevated long intergenic noncoding RNA (LINC02428) is a tumor suppressor that blocks KDM5B/IGF2BP1 positive feedback loop in hepatocellular carcinoma. Cell Death Dis 2023; 14:301. [PMID: 37137887 PMCID: PMC10156739 DOI: 10.1038/s41419-023-05831-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognoses worldwide. Many studies have reported that long noncoding RNAs (lncRNAs) are related to the progression and prognosis of HCC. However, the functions of downregulated liver-elevated (LE) lncRNAs in HCC remain elusive. Here we report the roles and mechanisms of downregulated LE LINC02428 in HCC. Downregulated LE lncRNAs played significant roles in HCC genesis and development. LINC02428 was upregulated in liver tissues compared with other normal tissues and showed low expression in HCC. The low expression of LINC02428 was attributed to poor HCC prognosis. Overexpressed LINC02428 suppressed the proliferation and metastasis of HCC in vitro and in vivo. LINC02428 was predominantly located in the cytoplasm and bound to insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) to prevent it from binding to lysine demethylase 5B (KDM5B) mRNA, which decreased the stability of KDM5B mRNA. KDM5B was found to preferentially bind to the promoter region of IGF2BP1 to upregulate its transcription. Therefore, LINC02428 interrupts the KDM5B/IGF2BP1 positive feedback loops to inhibit HCC progression. The KDM5B/IGF2BP1 positive feedback loop is involved in tumorigenesis and progression of HCC.
Collapse
Affiliation(s)
- Xuanlong Du
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pengcheng Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haidong Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hao Peng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Shiwei Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
11
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
12
|
Qin YF, Zhou ZY, Fu HW, Lin HM, Xu LB, Wu WR, Liu C, Xu XL, Zhang R. Hepatitis B Virus Surface Antigen Promotes Stemness of Hepatocellular Carcinoma through Regulating MicroRNA-203a. J Clin Transl Hepatol 2023; 11:118-129. [PMID: 36406317 PMCID: PMC9647105 DOI: 10.14218/jcth.2021.00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Patients with persistent positive hepatitis B surface antigen (HBsAg), even with a low HBV-DNA load, have a higher risk of hepatocellular carcinoma (HCC) than those without HBV infection. Given that tumor stemness has a critical role in the occurrence and maintenance of neoplasms, this study aimed to explore whether HBsAg affects biological function and stemness of HCC by regulating microRNA, and to explore underlying mechanisms. METHODS We screened out miR-203a, the most significant down-regulated microRNA in the microarray analysis of HBsAg-positive samples and focused on that miRNA in the ensuing study. In vitro and in vivo functional experiments were performed to assess its regulatory function. The effect of miR-203a on stemness and the possible correlation with BMI1 were analyzed in this study. RESULTS MiR-203a was significantly down-regulated in HBsAg-positive HCC with the sharpest decrease shown in microarray analysis. The negative correlation between miR-203a and HBsAg expression was confirmed by quantitative real-time PCR after stimulation or overexpression/knockdown of HBsAg in cells. We demonstrated the function of miR-203a in inhibiting HCC cell proliferation, migration, clonogenic capacity, and tumor development in vivo. Furthermore, the overexpression of miR-203a remarkably increases the sensitivity of tumor cells to 5-FU treatment and decreases the proportion of HCC cells with stem markers. In concordance with our study, the survival analysis of both The Cancer Genome Atlas database and samples in our center indicated a worse prognosis in patients with low level of miR-203a. We also found that BMI1, a gene maintains the self-renewal capacity of stem cells, showed a significant negative correlation with miR-203a in HCC specimen (p<0.001). Similarly, opposite BMI1 changes after overexpression/knockdown of miR-203a were also confirmed in vitro. Dual luciferase reporting assay suggested that miR-203a may regulate BMI1 expression by direct binding. CONCLUSIONS HBsAg may promote the development of HCC and tumor stemness by inhibiting miR-203a, resulting in poor prognosis. miR-203a may serve as a crucial treatment target in HBsAg-positive HCC. More explicit mechanistic studies and animal experiments need to be conducted as a next step.
Collapse
Affiliation(s)
- Yu-Fei Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-Yu Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hou-Wei Fu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao-Ming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei-Bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Lin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Xiao-Lin Xu, Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. E-mail: . Rui Zhang, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-3335-093. Tel: +86-20-34070133, Fax: +86-20-3407109, E-mail:
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Xiao-Lin Xu, Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. E-mail: . Rui Zhang, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-3335-093. Tel: +86-20-34070133, Fax: +86-20-3407109, E-mail:
| |
Collapse
|
13
|
Ji PT, Wang XY. Clinical application study on miR-98-5p as a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102077. [PMID: 36623770 DOI: 10.1016/j.clinre.2023.102077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND On the one hand, to investigate the targeted regulation of miR-98-5p on heparin-binding epidermal growth factor-like growth factor (HBEGF) in patients with hepatocellular carcinoma (HCC). On the other hand, elucidate the predictive effect of miR-98-5p combined with magnetic resonance imaging (MRI) data on the clinical prognosis of HCC patients. METHODS Serum samples from 98 HCC patients and 54 healthy subjects were selected in order to detect miR-98-5p as well as HBEGF expression levels via real-time quantitative PCR (RT-qPCR). A Luciferase reporter assay was performed to detect the interaction between miR-98-5p and HBEGF gene. The serum levels of IL-2, TNF-α, TGF-β1 and IFN-γ in HCC patients and in the control group (healthy subjects) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, receiver operator characteristic curve (ROC) was utilized to analyze the predictive ability of miR-98-5p combined with HBEGF for HCC. Finally, the survival curves were used to analyze the effect of HBEGF and miR-98-5p on the survival of patients with HCC. RESULTS RT-qPCR results showed that the expression level of miR-98-5p was significantly decreased, while HBEGF expression was significantly increased in the serum of HCC patients compared with the control group. Luciferase reporter assay confirmed that miR-98-5p could target and bind HBEGF. Additionally, according to ELISA, IL-2, TNF-α, and TGF-β1 were significantly increased, while IFN-γ was significantly decreased in the serum of HCC patients compared with the control group. The results of ROC indicated that expressive levels of miR-98-5p and HBEGF had a high diagnostic value for HCC. At the same time, the survival curve results indicated high HBEGF expression and low miR-98-5p expression, suggesting a poor prognosis for HCC patients. CONCLUSION MiR-98-5p can target the down-regulating HBEGF gene. In addition, miR-98-5p combined with MRI data is of crucial guiding value in assessing the prognosis of patients with HCC in the clinic.
Collapse
Affiliation(s)
- Peng-Tian Ji
- Department of Interventional Radiology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China.
| | - Xiao-Yan Wang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
| |
Collapse
|
14
|
Habashy DA, Hamad MHM, Ragheb M, Khalil ZA, El Sobky SA, Hosny KA, Esmat G, El-Ekiaby N, Fawzy IO, Abdelaziz AI. Regulation of IGF2BP1 by miR-186 and its impact on downstream lncRNAs H19, FOXD2-AS1, and SNHG3 in HCC. Life Sci 2022; 310:121075. [DOI: 10.1016/j.lfs.2022.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
15
|
Bioinformatic Deconstruction of Differentially Expressed Sequence Tags in Hepatocellular Carcinoma Based on Artificial Neural Network. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6716324. [PMID: 36299828 PMCID: PMC9576451 DOI: 10.1155/2022/6716324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 01/26/2023]
Abstract
Traditional medical imaging methods for diagnosing hepatocellular carcinoma can only provide information for differential diagnosis in terms of morphology and blood supply of the lesion, and the determination of the nature of the lesion still relies on tissue biopsy. Although ultrasound or CT-guided biopsy has become an effective method for the diagnosis of liver cancer in recent years, the puncture has the possibility of tumor irritation, liver tumor rupture, or needle tract metastasis. In this paper, the use of bioinformatics method is to gradually screen potentially high-risk genes associated with HCC recurrence on a genome-wide scale would help to discover the key target molecules. The ANN method was used to establish a gene prediction model that can predict the recurrence and survival of HCC, so as to construct a tool to identify patients at risk of HCC recurrence. It provided a certain therapeutic basis for future clinical work, thereby improving the prognosis of patients with HCC. Using the "survfit" function of the "survival" package in the R language, the log-rank test (the log-rank test was a common method for comparing two survival curves) was performed on all genes with posthoc recurrence of hepatocellular carcinoma as the outcome event. Then, the BLAST tool (Basic Local Alignment Search Tool) was used to search the similarity of each hepatocellular carcinoma database to find out the genes with similar sequences to each hepatocellular carcinoma, so as to determine the function of each differentially expressed sequence tag. This paper found that the AUC of the ANN model was greater than that of the discriminant analysis model (P < 0.05). This paper promoted the development of new therapeutic measures for hepatocellular carcinoma and provided important theoretical guidance for human beings to fight cancer.
Collapse
|
16
|
Ma Y, Yuan X, Han M, Xu Y, Han K, Liang P, Liu S, Chen J, Xing H. miR-98-5p as a novel biomarker suppress liver fibrosis by targeting TGFβ receptor 1. Hepatol Int 2022; 16:614-626. [PMID: 35188624 DOI: 10.1007/s12072-021-10277-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hepatic fibrosis is the repair reaction of excessive deposition and abnormal distribution of extracellular matrix after various liver injuries, especially chronic HBV infection, which is a key step in the development of various chronic liver diseases to cirrhosis. Recent studies have showed that microRNAs (miRNAs) can regulate a series of liver fibrosis-related gene express and play an important role in the development of liver fibrosis. But the miRNAs expression profiling and the differentially expressed miRNAs in patients with HBV-related liver fibrosis were little known. This study aims to have a record of a systemic screening for liver fibrosis-associated miRNAs in patients infected with HBV. METHODS A IlluminaHiSeq sequencing of plasma miRNAs from the HBV-related liver fibrosis patients (S2/3, n = 8) based on Scheuer's staging criteria and from healthy volunteers 42 (n = 7) was performed. Cluster analysis and target gene prediction were performed for the differentially expressed miRNAs. Gene ontology (GO) analysis and KEGG pathway enrichment analysis also were performed on the differentially expressed target miRNA genes. RESULTS Compared with the healthy control group, 77 miRNAs were screened out from the liver fibrosis group, among which 51 miRNAs were up-regulated and 26 miRNAs were down-regulated. Eventually, miR-98-5p was identified as a candidate predictor of liver fibrosis progression. miR-98-5p is reduced in activated LX2 cells, and miR-98-5p overexpression inhibited the HSCs activation. Mechanically, MiR-98-5p prevents liver fibrosis by targeting TGFbR1 and blocking TGFb1/Smad3 signaling pathway. Furthermore, serum miR-98-5p levels were measured from a total of 70 recruited patients with chronic HBV infection and 29 healthy individuals as controls. Serum miR-98-5p level was significantly lower in patients with liver fibrosis than in healthy controls and HBV carriers. CONCLUSIONS The expression of miRNAs in patients with liver fibrosis is significantly different from that of healthy volunteers. Many signal pathways of hepatic fibrosis are regulated by miRNAs. The potential value of miR-98-5p is as diagnostic biomarkers and therapeutic targets for HBV-related liver fibrosis.
Collapse
Affiliation(s)
- Yanhua Ma
- Peking University Ditan Teaching Hospital, Peking University Health Science Center, Beijing, China
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, 8 East Jingshun Street, Beijing, 100015, China
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, 8 East Jingshun Street, Beijing, 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, 8 East Jingshun Street, Beijing, 100015, China
| | - Yifan Xu
- Peking University Ditan Teaching Hospital, Peking University Health Science Center, Beijing, China
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, 8 East Jingshun Street, Beijing, 100015, China
| | - Kai Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, 8 East Jingshun Street, Beijing, 100015, China
| | - Pu Liang
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, 8 East Jingshun Street, Beijing, 100015, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, 8 East Jingshun Street, Beijing, 100015, China
| | - Jun Chen
- Peking University Ditan Teaching Hospital, Peking University Health Science Center, Beijing, China.
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, 8 East Jingshun Street, Beijing, 100015, China.
| | - Huichun Xing
- Peking University Ditan Teaching Hospital, Peking University Health Science Center, Beijing, China.
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, 8 East Jingshun Street, Beijing, 100015, China.
| |
Collapse
|
17
|
PITPNA-AS1/miR-98-5p to Mediate the Cisplatin Resistance of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7981711. [PMID: 35578599 PMCID: PMC9107361 DOI: 10.1155/2022/7981711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) is the most deadly gastrointestinal malignancy with high incidence and mortality. Although, molecular mechanisms which drive gastric cancer progression are extensively investigated, the roles of long noncoding RNA (lncRNA) in gastric cancer growth and drug sensitivity remain unclear. Platinum is a mainstay to treat gastric cancer, and platinum resistance always leads to the local recurrence of gastric cancer. Therefore, it is important to identify biomarkers or therapeutic targets to sensitize gastric cancer to platinum. In this study, we employ noncoding RNA sequencing and found that lncRNA PITPNA-AS1 is overexpressed in gastric cancer tissues and associated with poor survival of gastric cancer patients. Kockdown of PITPNA-AS1 in gastric cancer cells significantly inhibited cell growth and triggered apoptotic cell death in gastric cancer cells. Also, cisplatin treatment could decrease PITPNA-AS1 levels in gastric cancer cells through inhibiting H3K27ac. Besides, PITPNA-AS1 is elevated in cisplatin-resistant gastric cancer cells and tissues, PITPNA-AS1 knockdown could sensitize gastric cancer cells to cisplatin treatment. Furthermore, we identified that PITPNA-AS1 directly interacts and inhibits miR-98-5p. Therefore, PITPNA-AS1 could be served as a potential biomarkers and curative therapeutic targets for gastric cancer progression.
Collapse
|
18
|
Lv X, Fang Z, Qi W, Xu Y, Chen W. Long Non-coding RNA HOXA11-AS Facilitates Proliferation of Lung Adenocarcinoma Cells via Targeting the Let-7c-5p/IGF2BP1 Axis. Front Genet 2022; 13:831397. [PMID: 35368660 PMCID: PMC8969016 DOI: 10.3389/fgene.2022.831397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: This study investigates the relationship between the HOXA11-AS/let-7c-5p/IGF2BP1 regulatory axis and lung adenocarcinoma. Methods: The expression levels of HOXA11-AS, let-7c-5p, and IGF2BP1 were evaluated in LUAD tissue and cell lines. Subcellular fractionation detection assay was adopted to verify the HOXA11-AS distribution in LUAD cells. The interaction relationship between let-7c-5p and HOXA11-AS or IGF2BP1 was validated by dual-luciferase reporter detection. In RNA binding protein immunoprecipitation assay, the binding relationship between HOXA11-AS and let-7c-5p was identified. The cell viability of transfected cells was tested by the Cell Counting Kit-8 assay. The mouse xenograft model was used to identify the effect of HOXA11-AS on tumor growth in vivo. Results: Upregulation of lncRNA HOXA11-AS was found in LUAD, and suppression of HOXA11-AS could suppress the proliferative ability of LUAD cells. The let-7c-5p was expressed to be downregulated, which played an inhibitory role in LUAD cell proliferation. Let-7c-5p was negatively regulated by HOXA11-AS. HOXA11-AS promoted LUAD cell proliferation, while let-7c-5p had an inverse effect. Besides, IGF2BP1, regulated by let-7c-5p, had a positive relation with HOXA11-AS, while overexpression of IGF2BP1 could suppress the inhibition of silencing HOXA11-AS on LUAD cell proliferation. Experiments on mice confirmed that HOXA11-AS facilitated LUAD cell growth in vivo through regulating the let-7c-5p/IGF2BP1 axis. Conclusion: HOXA11-AS promoted LUAD cell proliferation by targeting let-7c-5p/IGF2BP1, which could be potential molecular targets for LUAD.
Collapse
Affiliation(s)
- Xiaodong Lv
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhixian Fang
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Wenyu Chen, ; Yufen Xu,
| | - Wenyu Chen
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Wenyu Chen, ; Yufen Xu,
| |
Collapse
|
19
|
Ye J, Yan Y, Xin L, Liu J, Tang T, Bao X. Long non-coding RNA TMPO-AS1 facilitates the progression of colorectal cancer cells via sponging miR-98-5p to upregulate BCAT1 expression. J Gastroenterol Hepatol 2022; 37:144-153. [PMID: 34370878 DOI: 10.1111/jgh.15657] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM Colorectal cancer, as a common malignant carcinoma in the gastrointestinal tract, has a high mortality globally. However, the specific molecular mechanisms of long non-coding RNA (lncRNA) thymopoietin antisense transcript 1 (TMPO-AS1) in colorectal cancer were unclear. METHODS We tested the expression level of TMPO-AS1 via qRT-PCR in colorectal cancer cells, while the protein levels of branched chain amino acid transaminase 1 (BCAT1) and the stemness-related proteins were evaluated by western blot analysis. Colony formation, EdU staining, TUNEL, flow cytometry, and sphere formation assays were to assess the biological behaviors of colorectal cancer cells. Then, luciferase reporter, RIP, and RNA pull down assay were applied for confirming the combination between microRNA-98-5p (miR-98-5p) and TMPO-AS1/BCAT1. RESULTS TMPO-AS1 was aberrantly expressed at high levels in colorectal cancer cells. Silenced TMPO-AS1 restrained cell proliferation and stemness and promoted apoptosis oppositely, while overexpressing TMPO-AS1 exerted the adverse effects. Furthermore, miR-98-5p was proven to a target of TMPO-AS1 inhibit cell progression in colorectal cancer. Additionally, BCAT1 was proved to enhance cell progression as the target of miR-98-5p, and it offset the effect of silenced TMPO-AS1 on colorectal cancer cells. CONCLUSION TMPO-AS1 promotes the progression of colorectal cancer cells via sponging miR-98-5p to upregulate BCAT1 expression.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Yukuang Yan
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Jidong Liu
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Tao Tang
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| |
Collapse
|
20
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey. .,Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
21
|
Bonner MA, Morales-Hernández A, Zhou S, Ma Z, Condori J, Wang YD, Fatima S, Palmer LE, Janke LJ, Fowler S, Sorrentino BP, McKinney-Freeman S. 3' UTR-truncated HMGA2 overexpression induces non-malignant in vivo expansion of hematopoietic stem cells in non-human primates. Mol Ther Methods Clin Dev 2021; 21:693-701. [PMID: 34141824 PMCID: PMC8181581 DOI: 10.1016/j.omtm.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protocols. Indeed, lentiviral-based gene therapy treatments of hematologic disease can result in oligoclonal blood reconstitution in the transduced cell graft. Specifically, clonal expansion of hematopoietic stem cells (HSCs) highly expressing HMGA2, a chromatin architectural factor found in many human cancers, is reported in patients undergoing gene therapy for hematologic diseases, raising concerns about the safety of these integrations. Here, we show for the first time in vivo multilineage and multiclonal expansion of non-human primate HSCs expressing a 3' UTR-truncated version of HMGA2 without evidence of any hematologic malignancy >7 years post-transplantation, which is significantly longer than most non-human gene therapy pre-clinical studies. This expansion is accompanied by an increase in HSC survival, cell cycle activation of downstream progenitors, and changes in gene expression led by the upregulation of IGF2BP2, a mRNA binding regulator of survival and proliferation. Thus, we conclude that prolonged ectopic expression of HMGA2 in hematopoietic progenitors is not sufficient to drive hematologic malignancy and is not an acute safety concern in lentiviral-based gene therapy clinical protocols.
Collapse
Affiliation(s)
- Melissa A. Bonner
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhijun Ma
- Department of Bone Marrow Transplant and Cell Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jose Condori
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Soghra Fatima
- Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lance E. Palmer
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Laura J. Janke
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephanie Fowler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian P. Sorrentino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
22
|
Lou W, Wang W, Chen J, Wang S, Huang Y. ncRNAs-mediated high expression of SEMA3F correlates with poor prognosis and tumor immune infiltration of hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:845-855. [PMID: 34026328 PMCID: PMC8121632 DOI: 10.1016/j.omtn.2021.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is notorious for its poor prognosis. Increasing evidence has demonstrated that semaphorin 3F (SEMA3F) plays key roles in initiation and progression of several types of human cancer. However, the specific role and mechanism of SEMA3F in HCC remains not fully determined. In this study, we first performed pan-cancer analysis for SEMA3F's expression and prognosis using The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) data and found that SEMA3F might be a potential oncogene in HCC. Subsequently, noncoding RNAs (ncRNAs) contributing to SEMA3F overexpression were identified by a combination of a series of in silico analyses, including expression analysis, correlation analysis, and survival analysis. Finally, the TMPO-AS1/SNHG16-let-7c-5p axis was identified as the most potential upstream ncRNA-related pathway of SEMA3F in HCC. Moreover, SEMA3F level was significantly positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. Collectively, our findings elucidated that ncRNAs-mediated upregulation of SEMA3F correlated with poor prognosis and tumor immune infiltration in HCC.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Wenlong Wang
- Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jing Chen
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314000 Zhejiang, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China
| |
Collapse
|
23
|
Liu X, Wang P, Teng X, Zhang Z, Song S. Comprehensive Analysis of Expression Regulation for RNA m6A Regulators With Clinical Significance in Human Cancers. Front Oncol 2021; 11:624395. [PMID: 33718187 PMCID: PMC7946859 DOI: 10.3389/fonc.2021.624395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background N6-methyladenosine (m6A), the most abundant chemical modification on eukaryotic messenger RNA (mRNA), is modulated by three class of regulators namely "writers," "erasers," and "readers." Increasing studies have shown that aberrant expression of m6A regulators plays broad roles in tumorigenesis and progression. However, it is largely unknown regarding the expression regulation for RNA m6A regulators in human cancers. Results Here we characterized the expression profiles of RNA m6A regulators in 13 cancer types with The Cancer Genome Atlas (TCGA) data. We showed that METTL14, FTO, and ALKBH5 were down-regulated in most cancers, whereas YTHDF1 and IGF2BP3 were up-regulated in 12 cancer types except for thyroid carcinoma (THCA). Survival analysis further revealed that low expression of several m6A regulators displayed longer overall survival times. Then, we analyzed microRNA (miRNA)-regulated and DNA methylation-regulated expression changes of m6A regulators in pan-cancer. In total, we identified 158 miRNAs and 58 DNA methylation probes (DMPs) involved in expression regulation for RNA m6A regulators. Furthermore, we assessed the survival significance of those regulatory pairs. Among them, 10 miRNAs and 7 DMPs may promote cancer initiation and progression; conversely, 3 miRNA/mRNA pairs in kidney renal clear cell carcinoma (KIRC) may exert tumor-suppressor function. These findings are indicative of their potential prognostic values. Finally, we validated two of those miRNA/mRNA pairs (hsa-miR-1307-3p/METTL14 and hsa-miR-204-5p/IGF2BP3) that could serve a critical role for potential clinical application in KIRC patients. Conclusions Our findings highlighted the importance of upstream regulation (miRNA and DNA methylation) governing m6A regulators' expression in pan-cancer. As a result, we identified several informative regulatory pairs for prognostic stratification. Thus, our study provides new insights into molecular mechanisms of m6A modification in human cancers.
Collapse
Affiliation(s)
- Xiaonan Liu
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xufei Teng
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhui Song
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Wang YD, Mao JD, Wang JF, Xu MQ. MiR-590 Suppresses Proliferation and Induces Apoptosis in Pancreatic Cancer by Targeting High Mobility Group A2. Technol Cancer Res Treat 2021; 19:1533033820928143. [PMID: 32588766 PMCID: PMC7325540 DOI: 10.1177/1533033820928143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a common malignancy with high morbidity. MicroRNAs have been demonstrated to be critical posttranscriptional regulators in tumorigenesis. This study aimed to investigate the effect of microRNA-590 on the proliferation and apoptosis of pancreatic ductal adenocarcinoma. MATERIAL AND METHODS The expression of microRNA-590 and high mobility group AT-hook 2 were examined in clinical pancreatic ductal adenocarcinoma tissues. Pancreatic ductal adenocarcinoma cell line Capan-2 was employed and transfected with microRNA-590 mimics or inhibitor. The correlation between microRNA-590 and high mobility group AT-hook 2 was verified by luciferase reporter assay. Cell viability and apoptosis were detected by MTT and flow cytometry assay. The protein level of high mobility group AT-hook 2, AKT, p-AKT, mTOR, and phosphorylated mTOR were analyzed by Western blotting. RESULTS MicroRNA-590 was found to be negatively correlated with the expression of high mobility group AT-hook 2 in pancreatic ductal adenocarcinoma tissues. Further studies identified high mobility group AT-hook 2 as a direct target of microRNA-590. Moreover, overexpression of microRNA-590 downregulated expression of high mobility group AT-hook 2, reduced cell viability, and promoted cell apoptosis, while knockdown of miR-590 led to an inverse result. MicroRNA-590 also suppressed the phosphorylation of AKT and mTOR without altering total AKT and mTOR levels. CONCLUSION Our study indicated that microRNA-590 negatively regulates the expression of high mobility group AT-hook 2 in clinical specimens and in vitro. MicroRNA-590 can inhibit cell proliferation and induce cell apoptosis in pancreatic ductal adenocarcinoma cells. This regulatory effect of microRNA-590 may be associated with AKT signaling pathway. Therefore, microRNA-590 has the potential to be used as a biomarker for predicting the progression of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ya-Dong Wang
- Department of general surgery, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, People’s Republic of China
| | - Jia-Ding Mao
- Department of General Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
- Jia-Ding Mao, Department of General Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, People’s Republic of China.
| | - Jun-Feng Wang
- Department of General Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Mao-Qi Xu
- Department of general surgery, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, People’s Republic of China
| |
Collapse
|
25
|
Wu H, Xie D, Yang Y, Yang Q, Shi X, Yang R. Ultrasound-Targeted Microbubble Destruction-Mediated miR-206 Overexpression Promotes Apoptosis and Inhibits Metastasis of Hepatocellular Carcinoma Cells Via Targeting PPIB. Technol Cancer Res Treat 2020; 19:1533033820959355. [PMID: 33111654 PMCID: PMC7607806 DOI: 10.1177/1533033820959355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Ultrasound-targeted microbubble destruction (UTMD) has been found to be an effective method for delivering microRNAs (miRNAs, miRs). The current study is aimed at discovering the potential anti-cancer effects of UTMD-mediated miR-206 on HCC. Methods: In our study, the expressions of miR-206 and peptidyl-prolyl cis-trans isomerase B (PPIB) in HCC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PPIB expressions in HCC and adjacent normal tissues were analyzed by gene expression profiling interactive analysis (GEPIA). MiR-206 mimic and mimic control were transfected into HCC cells using UTMD. Potential binding sites between miR-206 and PPIB were predicted and confirmed by TargetScan and dual-luciferase reporter assay, respectively. Cell migration, invasion, and apoptosis were detected by wound healing assay, Transwell, and flow cytometry, respectively. The expressions of apoptosis-related proteins (Bax, Bcl-2), Epithelial-to-mesenchymal (EMT) markers (E-cadherin, N-cadherin and Snail) and PPIB were measured by Western blot. Results: MiR-206 expression was downregulated while PPIB expression was upregulated in HCC, and PPIB was recognized as a target gene of miR-206 in HCC tissues. UTMD-mediated miR-206 inhibited HCC cell migration and invasion while promoting apoptosis via regulating the expressions of proteins related to apoptosis, migration, and invasion by targeting PPIB. Conclusion: Our results suggested that the delivery of UTMD-mediated miR-206 could be a potential therapeutic method for HCC treatment, given its effects on inhibiting cell migration and invasion and promoting cell apoptosis.
Collapse
Affiliation(s)
- Huating Wu
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Dawei Xie
- Department of General Surgery, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Yingxia Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Qing Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Xiajun Shi
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Rong Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| |
Collapse
|
26
|
Hu Y, Xiong J, Wen H, Wei H, Zeng X. MiR-98-5p promotes ischemia/reperfusion-induced microvascular dysfunction by targeting NGF and is a potential biomarker for microvascular reperfusion. Microcirculation 2020; 28:e12657. [PMID: 32892409 DOI: 10.1111/micc.12657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study examined the correlation between serum miR-98-5p levels and indices of microvascular reperfusion in patients undergoing primary percutaneous coronary intervention (pPCI) after ST-segment elevation myocardial infarction (STEMI). Additionally, we evaluated the mechanisms by which miR-98-5p promoted ischemia/reperfusion (I/R)-induced injury in both cultured cell lines and an animal model. METHODS Circulating miR-98-5p levels were measured and compared from 171 STEMI patients undergoing pPCI, who were divided into two groups: no-reflow and reflow. The levels of miR-98-5p, nerve growth factor (NGF), and transient receptor potential vanilloid 1 (TRPV1) were analyzed in cultured human coronary endothelial cells (HCECs) exposed to hypoxia/reoxygenation (H/R). The effects of antagomir-98-5p on myocardial I/R-induced microvascular dysfunction in vivo were evaluated. Target gene expression and activity were assessed. RESULTS Higher miR-98-5p levels were associated with compromised indices of microvascular reperfusion. In vitro experiments on HCECs showed that exposure to H/R significantly increased miR-98-5p levels. We identified NGF as a novel target of miR-98-5p. Further, antagomir-98-5p relieved microvascular dysfunction and enhanced the expression of NGF and TRPV1 in the rat myocardial I/R model. CONCLUSIONS MiR-98-5p promotes microvascular dysfunction by targeting the NGF-TRPV1 axis. Serum miR-98-5p serves as a potential biomarker for microvascular reperfusion.
Collapse
Affiliation(s)
- Yisen Hu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, P.R. China
| | - Jingjie Xiong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, P.R. China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, P.R. China
| | - Heng Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, P.R. China
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, P.R. China
| |
Collapse
|
27
|
Shen Q, Jiang S, Wu M, Zhang L, Su X, Zhao D. LncRNA HEIH Confers Cell Sorafenib Resistance in Hepatocellular Carcinoma by Regulating miR-98-5p/PI3K/AKT Pathway. Cancer Manag Res 2020; 12:6585-6595. [PMID: 32821157 PMCID: PMC7419617 DOI: 10.2147/cmar.s241383] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/10/2020] [Indexed: 12/31/2022] Open
Abstract
Background The hepatocellular carcinoma up-regulated EZH2-associated long non-coding RNA (HEIH) has been identified to act as an oncogene to promote cell tumorigenesis in hepatocellular carcinoma (HCC); however, the roles of HEIH in sorafenib resistance in HCC cells remain elusive. Materials and Methods The expression of HEIH and microRNA (miR)-98-5p was detected using quantitative real-time polymerase chain reaction. Cell viability, apoptosis, migration and invasion were analyzed using cell counting kit-8 assay, flow cytometry and transwell assay. Western blot was used to measure the levels of apoptosis-related protein and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein. The interaction between HEIH and miR-98-5p was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay. In vivo experiments were performed using murine xenograft models. Results HEIH was up-regulated in sorafenib-resistant HCC tissues and cell lines, and HEIH silence weakened sorafenib resistance by suppressing cell viability, invasion and migration, decreasing the IC50 values to sorafenib, and increasing apoptosis in sorafenib-resistant HCC cells in vitro and reinforced the anti-tumor effects of sorafenib in vivo. HEIH was a sponge of miR-98-5p, and miR-98-5p inhibition reversed the sorafenib sensitivity induced by HEIH deletion in sorafenib-resistant HCC cells. MiR-98-5p inhibition could activate PI3K/AKT pathway, and enhanced sorafenib resistance by regulating the activation of PI3K/AKT pathway in sorafenib-resistant HCC cells. Besides, HEIH also activated PI3K/AKT pathway through regulating miR-98-5p in sorafenib-resistant HCC cells. Conclusion HEIH conferred an advantage to sorafenib resistance in HCC by the activation of PI3K/AKT pathway through miR-98-5p, indicating a potential therapeutic strategy for HCC chemotherapy.
Collapse
Affiliation(s)
- Qian Shen
- Department of Nephrology, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Shenhua Jiang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Mingyun Wu
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Lei Zhang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xue Su
- Department of Nephrology, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Ding Zhao
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, 224000, People's Republic of China
| |
Collapse
|
28
|
Fei X, Zhang P, Pan Y, Liu Y. MicroRNA-98-5p Inhibits Tumorigenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma by Targeting NF-κB-Inducing Kinase. Yonsei Med J 2020; 61:460-470. [PMID: 32469170 PMCID: PMC7256008 DOI: 10.3349/ymj.2020.61.6.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE MicroRNAs play key regulatory roles in the tumorigenesis of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). This study aimed to explore the regulatory effects of microRNA-98-5p (miR-98-5p) on the proliferation, migration, invasion, and apoptosis of HBV-HCC cells, as well as the underlying mechanisms involving nuclear factor-κB-inducing kinase (NIK). MATERIALS AND METHODS The expressions of miR-98-5p and NIK in HBV-HCC tissues and cells, and the level of HBV DNA in HBV-HCC cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of HBV-HCC cells were analyzed by cell counting kit-8, wound healing, transwell, and flow cytometry assay, respectively. The targeting relationship between miR-98-5p and NIK was predicted by StarBase3.0 and verified by dual-luciferase reporter assay. HBV-HCC xenograft tumor model was constructed in mice to observe the tumor growth in vivo. RESULTS The expression of miR-98-5p was declined in HBV-HCC tissues and cells. Overexpression of miR-98-5p markedly reduced the level of HBV DNA; inhibited the proliferation, migration, and invasion; and promoted the apoptosis of HBV-HCC cells. NIK was a target of miR-98-5p. Overexpression of miR-98-5p markedly decreased the protein expression of NIK in MHCC97H-HBV cells. NIK reversed the tumor-suppressing effect of miR-98-5p on HBV-HCC cells. Furthermore, overexpression of miR-98-5p significantly inhibited the xenograft tumor growth and decreased the expression of NIK in mice. CONCLUSION MiR-98-5p inhibits the secretion of HBV, proliferation, migration, and invasion of HBV-HCC cells by targeting NIK.
Collapse
Affiliation(s)
- Xiukun Fei
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Peipei Zhang
- Department of Liver Disease, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, China
| | - Yu Pan
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China.
| |
Collapse
|
29
|
Luo H, Yang L, Liu C, Wang X, Dong Q, Liu L, Wei Q. TMPO-AS1/miR-98-5p/EBF1 feedback loop contributes to the progression of bladder cancer. Int J Biochem Cell Biol 2020; 122:105702. [PMID: 32087328 DOI: 10.1016/j.biocel.2020.105702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023]
Abstract
As reported in numerous studies, long non-coding RNAs (lncRNAs) exert significant effect on the regulation of tumor development. LncRNA TMPO antisense RNA 1 (TMPO-AS1) has been confirmed to be implicated in the development of several cancers. However, its clinical significance is still largely unknown in bladder cancer (BCa). In this study, high expression of TMPO-AS1 was revealed in BCa tissues and cell lines, and TMPO-AS1 predicted poor prognosis. Moreover, TMPO-AS1 facilitated cell growth. Additionally, TMPO-AS1 also boosted the migration and invasion of BCa cells. Mechanistically, overexpressed EBF transcription factor 1 (EBF1) in BCa cell was verified to promote the transcription of TMPO-AS1. Later, we found that TMPO-AS1 was a cytoplasmic RNA and could sponge miR-98-5p. Besides, it was validated that EBF1 is a target gene of miR-98-5p and negatively correlated with miR-98-5p in terms of expression level. According to the results of rescue experiments, we observed that EBF1 overexpression restored the repressive effect of TMPO-AS1 silencing on BCa development. Our research is the first to disclose the biological role and molecular mechanism of TMPO-AS1 in BCa, and TMPO-AS1 might be identified as a new therapeutic target for BCa patients.
Collapse
Affiliation(s)
- Hua Luo
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610000, Sichuan, PR China; Department of Urology, The Second Peoples Hospital of Deyang City, Deyang, 618000, Sichuan, PR China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610000, Sichuan, PR China
| | - Chen Liu
- Department of Urology, The Second Peoples Hospital of Deyang City, Deyang, 618000, Sichuan, PR China
| | - Xiaobo Wang
- Department of Urology, The Second Peoples Hospital of Deyang City, Deyang, 618000, Sichuan, PR China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610000, Sichuan, PR China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610000, Sichuan, PR China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610000, Sichuan, PR China.
| |
Collapse
|
30
|
Wang Y, Zhang J, Su Y, Wang C, Zhang G, Liu X, Chen Q, Lv M, Chang Y, Peng J, Hou M, Huang X, Zhang X. miRNA-98-5p Targeting IGF2BP1 Induces Mesenchymal Stem Cell Apoptosis by Modulating PI3K/Akt and p53 in Immune Thrombocytopenia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:764-776. [PMID: 32428701 PMCID: PMC7232042 DOI: 10.1016/j.omtn.2020.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Immune thrombocytopenia (ITP) is a common hematological autoimmune disease, in which defective mesenchymal stem cells (MSCs) are potentially involved. Our previous study suggested that MSCs in ITP patients displayed enhanced apoptosis. MicroRNAs (miRNAs) play important roles in ITP by affecting megakaryopoiesis, platelet production and immunoregulation, whereas the roles of miRNAs in ITP-MSCs remain unknown. In a previous study, we performed microarray analysis to obtain mRNA and miRNA profiles of ITP-MSCs. In the present study, we reanalyze the data and identify miR-98-5p as a candidate miRNA contributing to MSC deficiency in ITP. miR-98-5p acts through targeting insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and the subsequent downregulation of insulin-like growth factor 2 (IGF-2) causes inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is involved in the process of MSC deficiency. Furthermore, miR-98-5p upregulates p53 by inhibiting β-transducin repeat-containing protein (β-TrCP)-dependent p53 ubiquitination. Moreover, miR-98-5p overexpression impairs the therapeutic effect of MSCs in ITP mice. All-trans retinoic acid (ATRA) protects MSCs from apoptosis by downregulating miR-98-5p, thus providing a potential therapeutic approach for ITP. Our findings demonstrate that miR-98-5p is a critical regulator of ITP-MSCs, which will help us thoroughly understand the pathogenesis of ITP.
Collapse
Affiliation(s)
- Yanan Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Jiamin Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Yan Su
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Chencong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Gaochao Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Xiao Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China.
| |
Collapse
|
31
|
Jafarzadeh-Esfehani R, Mostafa Parizadeh S, Sabeti Aghabozorgi A, Yavari N, Sadr-Nabavi A, Alireza Parizadeh S, Ghandehari M, Javanbakht A, Rezaei-Kalat A, Mahdi Hassanian S, Vojdanparast M, Ferns GA, Khazaei M, Avan A. Circulating and tissue microRNAs as a potential diagnostic biomarker in patients with thrombotic events. J Cell Physiol 2020; 235:6393-6403. [PMID: 32198752 DOI: 10.1002/jcp.29639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Venous and arterial thrombosis are conditions that have a considerable burden if left untreated. The hypoxia-induced by the occluded vessel can disrupt the circulation of any organ, the cornerstone of treating thrombosis is rapid diagnosis and appropriate treatment. Diagnosis of thrombosis may be made by using laboratory tests or imaging techniques in individuals who have clinical manifestations of a thrombotic event. The use of serum micro ribonucleic acids (RNAs) has recently been applied to the diagnosis of thrombosis. These small RNA molecules are emerging as new diagnostic markers but have had very limited applications in vascular disease. Most of the articles provided various microRNAs with different levels of accuracy. However, there remains a lack of an appropriate panel of the most specific microRNA in the literature. The purpose of the present review was to summarize the existing data on the use of microRNAs as a diagnostic biomarker for venous thrombosis.
Collapse
Affiliation(s)
- Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mostafa Parizadeh
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negar Yavari
- Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Parizadeh
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Javanbakht
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Vojdanparast
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Khazaei
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Yang J, Qin T, Liu S, Tang H, Liu M, Wang Q. Interaction analysis of miR-1275/IGF2BP1/IGF2BP3 with the susceptibility to hepatocellular carcinoma. Biomark Med 2020; 14:283-292. [PMID: 32134323 DOI: 10.2217/bmm-2019-0332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The aim of this study was to investigate the association of miR-1275 rs16759, IGF2BP1 rs11079850 and IGF2BP3 rs34414305 with hepatocellular carcinoma (HCC) risk. Materials & methods: Genotyping of the rs16759 and rs11079850 was performed using a Taqman assay and genotyping of the rs34414305 was performed using PCR. Relative expression of miR-1275, IGF2BP1 and IGF2BP3 was examined using quantitative PCR. Results: Comparison of the rs16759GG, CG/GG and CC genotype showed an increased risk of HCC. When comparing G with C allele, a significantly increased risk of HCC was also found. The rs16759, rs11079850 and rs34414305 had combined the interactive effects on the carcinogenesis of HCC. Moreover, the rs34414305 Del/ATT-Del/Del carriers displayed lower levels of IGF2BP3. Conclusion: The rs16759, rs11079850 and rs34414305 may singly and interactively contribute to carcinogenesis of HCC.
Collapse
Affiliation(s)
- Jun Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tao Qin
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Shanshan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Hui Tang
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Mengqing Liu
- The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Qian Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
33
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
34
|
Zhang H, Bao J, Zhao S, Huo Z, Li B. MicroRNA-490-3p suppresses hepatocellular carcinoma cell proliferation and migration by targeting the aurora kinase A gene ( AURKA). Arch Med Sci 2020; 16:395-406. [PMID: 32190151 PMCID: PMC7069437 DOI: 10.5114/aoms.2019.91351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/09/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the most common and prevalent cancer type among liver cancers. In this study, expression of miR-490-3p and aurora kinase A gene (AURKA) was investigated in HCC. Additionally, we explored the microRNA (miR)-490-3p/AURKA relationship as well as the influence on HCC cell proliferation and migration. MATERIAL AND METHODS The dual luciferase reporter assay serves to verify the target relationship between miR-490-3p and AURKA. miR-490-3p mimics, AURKA siRNA and AURKA cDNA, were transfected into HCC cells. Quantitative real-time polymerase chain reaction and western blot were chosen for examining the relative expression of miR-490-3p and AURKA in HCC tissues, adjacent tissues, HCC cells and normal cells. The study detected the proliferation of HCC cells with the application of MTT assay and colony formation assay. Transwell assay was applied for the observation of migration, and wound healing assay for invasion. RESULTS The experiment results showed that miR-490-3p expression was down-regulated and AURKA expression was up-regulated in HCC cells and tissues. AURKA was the target gene of miR-490-3p and overexpression of miR-490-3p could inhibit the expression of AURKA in HCC cells. miR-490-3p overexpression could inhibit HCC cell migration and invasion, while AURKA promoted HCC cell migration. All experiment results indicated that miR-490-3p was low-expressed while AURKA was over-expressed in HCC cells and tissues compared to normal liver cells and tissues. CONCLUSIONS miR-490-3p could down-regulate the expression of AURKA, thus suppressing the proliferation and migration of HCC cells.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Junhui Bao
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Shahe Zhao
- Department of Radiology, the First Hospital of Yongnian District, Handan, Hebei, China
| | - Zhongchao Huo
- Department of Radiotherapy, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Baowei Li
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| |
Collapse
|
35
|
Elhefnawi M, Salah Z, Soliman B. The Promise of miRNA Replacement Therapy for Hepatocellular Carcinoma. Curr Gene Ther 2019; 19:290-304. [DOI: 10.2174/1566523219666191023101433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is a devastating tumor which accounts for death mortality rate
94% globally, and about 780,000 new cases each year. Tumor suppressor miRNAs represent a class of
noncoding RNAs, which exhibit decreased or inhibited expression in the case of carcinogenesis.
Therefore, the replacement of these molecules leads to post-transcriptional regulation of tens to hundreds
of oncogenic targets and limiting the tumor. Interestingly, there is a group of tumor silencer
miRNAs that have been highlighted in HCC and herein, our review will discuss the prominent examples
of these miRs in terms of their efficient delivery using vectors, nano-delivery systems, their successful
models either in vitro or in vivo and pre-clinical trials. Collectively, tumor suppressor miRNAs
can act as novel therapeutics for HCC and more studies should be directed towards these promising
therapeutics.
Collapse
Affiliation(s)
- Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| | - Zeinab Salah
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| | - Bangly Soliman
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
36
|
miR-98 Modulates Cytokine Production from Human PBMCs in Systemic Lupus Erythematosus by Targeting IL-6 mRNA. J Immunol Res 2019; 2019:9827574. [PMID: 31886314 PMCID: PMC6914974 DOI: 10.1155/2019/9827574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
Objective There is evidence that interleukin-6 (IL-6) upregulation plays a critical role in immunopathology of systemic lupus erythematosus (SLE). MicroRNA- (miRNA-) 98 was predicted to bind with the 3′-untranslated region (3′-UTR) of IL-6 gene. We hypothesized miR-98 through its regulation of IL-6 gene expression to influence cytokine production from peripheral blood mononuclear cells (PBMCs) in SLE. Methods The expression of miR-98 and IL-6 mRNA in the PBMCs of 41 SLE patients and 20 healthy controls (HC) was detected by quantitative reverse transcription PCR (qRT-PCR). The correlations between miR-98 expression and clinical features were evaluated. Luciferase reporter assay was performed to identify miR-98 targets. miR-98 mimics, miR-98 inhibitor, and IL-6 overexpression vector were generated. Cell viability of PBMCs was assessed using MTT assay. Gene expression and protein level were determined by qRT-PCR and Western blotting. TNF-α, IL-8, IL-1β, and IL-10 levels in cultured supernatants were quantified using ELISA. Results The expression of miR-98 was downregulated in PBMCs of SLE patients, and its expression is negatively associated with IL-6 levels. miR-98 expression was correlated with disease activity, lupus nephritis, and anti-dsDNA antibody. IL-6 mRNA was a target gene of miR-98. IL-6 overexpression promoted the proliferation of PBMCs and increased the levels of TNF-α, IL-8, IL-1β, and IL-10. Those effects were further enhanced by miR-98 inhibitor, while were suppressed by miR-98 mimics. miR-98 regulated the levels of STAT3 phosphorylation via its target gene IL-6. Conclusion The current study revealed that miR-98 could ameliorate STAT3-mediated cell proliferation and inflammatory cytokine production via its target gene IL-6 in patients with SLE. These results suggest that miR-98 might serve as a potential target for SLE treatment and other IL-6-mediated diseases.
Collapse
|
37
|
Khan R, Kadamkode V, Kesharwani D, Purkayastha S, Banerjee G, Datta M. Circulatory miR-98-5p levels are deregulated during diabetes and it inhibits proliferation and promotes apoptosis by targeting PPP1R15B in keratinocytes. RNA Biol 2019; 17:188-201. [PMID: 31615341 DOI: 10.1080/15476286.2019.1673117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although deregulated circulatory miRNA signatures during diabetes have been identified for some years now, the effects of such miRNAs on several target tissues are not yet thoroughly investigated. The skin that is nourished by components present in the circulation exhibits several notable abnormal features during diabetes. We, therefore, hypothesized that such altered circulatory miRNA levels might be critical in the onset and progression of impaired skin health during diabetes. RNA sequencing from blood samples of normal and type 2 diabetic human subjects identified 9 upregulated and 19 downregulated miRNAs. miR-98-5p was significantly downregulated and its overexpression down-regulated PPP1R15B levels in HaCaT cells and this was prevented by the miR-98-5p inhibitor. This was validated in human primary epidermal keratinocytes and further supported by a dual reporter luciferase assay of the PPP1R15B 3'UTR where miR-98-5p significantly decreased the luciferase activity which was prevented in the presence of the miRNA inhibitor and by mutation in the miRNA binding site. By targeting PPP1R15B, miR-98-5p increases levels of p-eIF2α, BiP and CHOP. Consequently, there was induction of apoptosis accompanied with decreased proliferation in the presence of miR-98-5p. Conversely, miR-98-5p inhibition alone inhibited apoptosis and promoted proliferation. Taken together, our data suggest that by targeting PPP1R15B, miR-98-5p induces apoptosis and decreases proliferation. As opposed to this since circulatory miR-98-5p levels are decreased in diabetes, we believe that this decrease in the circulation that feeds the skin layers might be a major contributor of hyperproliferation as seen in the skin during diabetes.Abbreviations: miRNAs: MicroRNAs; PPP1R15B: PPP1R15B: Protein Phosphatase 1 Regulatory Subunit 15B; TGFβR1: Transforming Growth Factor Beta Receptor 1; ER: Endoplasmic Reticulum; Bip: Binding Immunoglobulin Protein; Chop: CCAAT-enhancer-binding protein homologous protein; p-eIF2α: Eukaryotic Translation Initiation Factor 2a; Bax: Bcl2-associated X protein; Bcl-2: B-cell CLL/lymphoma 2; PCNA: Proliferating Cell Nuclear Antigen; K5: Cytokeratin 5; qRT-PCR: Quantitative Real-Time PCR; ESCC: Oesophageal squamous cell carcinoma; HCC: Hepatocellular carcinoma; CTHRC1: Collagen triple helix repeat containing 1; SALL4: Sal-like protein 4; TNFα: Tumour Necrosis Factor alpha; PGC-1β: Peroxisome Profilerator-activated receptor-γ coactivator-1β; IGF2BP1: Insulin-like growth factor 2 mRNA binding protein 1.
Collapse
Affiliation(s)
- Rukshar Khan
- CSIR-Institute of Genomics & Integrative Biology (IGIB), New-Delhi, India
| | | | - Devesh Kesharwani
- CSIR-Institute of Genomics & Integrative Biology (IGIB), New-Delhi, India.,Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, India
| | | | | | - Malabika Datta
- CSIR-Institute of Genomics & Integrative Biology (IGIB), New-Delhi, India.,Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, India
| |
Collapse
|
38
|
Zheng F, Wang F, Xu Z. MicroRNA-98-5p prevents bone regeneration by targeting high mobility group AT-Hook 2. Exp Ther Med 2019; 18:2660-2666. [PMID: 31555368 DOI: 10.3892/etm.2019.7835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (mRNAs or miRs) serve an important role in the regulation of gene expression. In the present study, the role of miR-98-5p in bone regeneration was determined. Three osteoblast cell models were established, including primary human stem cells (BMMSC), mouse BMMSC's and MC3T3-E1 cells. miR-98-5p expression was determined using reverse transcription-quantitative (RT-q)PCR. Osteoblast markers, including alkaline phosphatase, runt related transcription factor 2 and transcription factor Sp7, were determined using RT-qPCR and western blot analysis, respectively. Alkaline phosphatase activity was determined in the present study and cell proliferation and apoptosis assays were performed. Furthermore, an association between miR-98-5p and high mobility group AT-Hook 2 (HMGA2) was revealed. This association was determined using TargetScan and a dual luciferase reporter assay. The current study demonstrated that miR-98-5p was downregulated during osteogenic differentiation and further demonstrated that HMGA2 may be a direct target of miR-98-5p. The results also demonstrated that miR-98-5p upregulation significantly inhibited the osteogenic differentiation of MC3T3-E1 cells, an effect that was reversed by an increased HMGA2 expression. Additionally, the results revealed that miR-98-5p upregulation inhibited MC3T3-E1 cell viability and induced cell apoptosis and these effects were eliminated by HMGA2 overexpression. In conclusion, miR-98-5p may prevent bone regeneration through inhibiting osteogenic differentiation and osteoblast growth by targeting HMGA2.
Collapse
Affiliation(s)
- Feng Zheng
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Furong Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zhe Xu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
39
|
Yang H, Fu G, Liu F, Hu C, Lin J, Tan Z, Fu Y, Ji F, Cao M. LncRNA THOR promotes tongue squamous cell carcinomas by stabilizing IGF2BP1 downstream targets. Biochimie 2019; 165:9-18. [PMID: 31220513 DOI: 10.1016/j.biochi.2019.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
THOR, a highly conserved lncRNA, is potentially involved in various cancer development. However, its involvement in tongue squamous cell carcinoma (TSCC) remains unclear. The present study aims to explore the biological function and molecular mechanism of THOR in TSCC progression. The expressions of THOR and IGF2BP1 in TSCC tissues and adjacent non-cancerous tongue tissues (ANT) were examined through qRT-PCR. THOR levels were manipulated in TSCC cells to explore its function in cancer progression in vitro and in vivo, which were subsequently evaluated by CCK8, colony formation assay, flow cytometry, xenograft tumor assays. In situ hybridization, RIP and Western blot assay were performed to explore the underlying molecular mechanisms. We discovered that THOR and IGF2BP1 were dramatically upregulated in TSCC tissues. The expression of THOR is positively correlated with IGF2BP1 mRNA level. THOR mediated IGF2 expression via interacting with IGF2BP1, and affected the downstream MEK-ERK signaling pathway to regulate TSCC cells proliferation. THOR/IGF2BP1/IGF2-MEK-ERK axis regulated the proliferation of TSCC cells, implying that THOR would be a promising therapeutic target for TSCC patients.
Collapse
Affiliation(s)
- Haojie Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ganglan Fu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Funing Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuwen Hu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junjie Lin
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zicong Tan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengtao Ji
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
40
|
Jiang LP, Wang SR, Chung HK, Buddula S, Wang JY, Rao JN. miR-222 represses expression of zipcode binding protein-1 and phospholipase C-γ1 in intestinal epithelial cells. Am J Physiol Cell Physiol 2019; 316:C415-C423. [PMID: 30649922 DOI: 10.1152/ajpcell.00165.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both zipcode binding protein-1 (ZBP1) and phospholipase C-γ1 (PLCγ1) are intimately involved in many aspects of early intestinal mucosal repair after acute injury, but the exact mechanisms that control their cellular abundances remain largely unknown. The present study shows that microRNA-222 (miR-222) interacts with the mRNAs encoding ZBP1 and PLCγ1 and regulates ZBP1 and PLCγ1 expression in intestinal epithelial cells (IECs). The biotinylated miR-222 bound specifically to the ZBP1 and PLCγ1 mRNAs in IECs. Ectopically expressed miR-222 precursor destabilized the ZBP1 and PLCγ1 mRNAs and consequently lowered the levels of cellular ZBP1 and PLCγ1 proteins. Conversely, decreasing the levels of cellular miR-222 by transfection with its antagonism increased the stability of the ZBP1 and PLCγ1 mRNAs and increased the levels of ZBP1 and PLCγ1 proteins. Overexpression of miR-222 also inhibited cell migration over the wounded area, which was partially abolished by overexpressing ZBP1 and PLCγ1. Furthermore, prevention of the increased levels of ZBP1 and PLCγ1 in the miR-222-silenced cells by transfection with specific small interfering RNAs targeting ZBP1 or PLCγ1 mRNA inhibited cell migration after wounding. These findings indicate that induced miR-222 represses expression of ZBP1 and PLCγ1 at the posttranscriptional level, thus inhibiting IEC migration during intestinal epithelial restitution after wounding.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| | - Saharsh Buddula
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| |
Collapse
|
41
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
42
|
Vasuri F, Visani M, Acquaviva G, Brand T, Fiorentino M, Pession A, Tallini G, D’Errico A, de Biase D. Role of microRNAs in the main molecular pathways of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2647-2660. [PMID: 29991871 PMCID: PMC6034147 DOI: 10.3748/wjg.v24.i25.2647] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignant neoplasia. HCC is characterized by a poor prognosis. The need to find new molecular markers for its diagnosis and prognosis has led to a progressive increase in the number of scientific studies on this topic. MicroRNAs (miRNAs) are small non-coding RNA that play a role in almost all main cellular pathways. miRNAs are involved in the regulation of expression of the major tumor-related genes in carcinogenesis, acting as oncogenes or tumor suppressor genes. The aim of this review was to identify papers published in 2017 investigating the role of miRNAs in HCC tumorigenesis. miRNAs were classified according to their role in the main molecular pathways involved in HCC tumorigenesis: (1) mTOR; (2) Wnt; (3) JAK/STAT; (4) apoptosis; and (5) MAPK. The role of miRNAs in prognosis/response prediction was taken into consideration. Bearing in mind that the analysis of miRNAs in serum and other body fluids would be crucial for clinical management, the role of circulating miRNAs in HCC patients was also investigated. The most represented miRNA-regulated pathway in HCC is mTOR, but apoptosis, Wnt, JAK/STAT or MAPK pathways are also influenced by miRNA expression levels. These miRNAs could thus be used in clinical practice as diagnostic, prognostic or therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S.Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna - School of Medicine, Bologna 40138, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna - School of Medicine, Bologna 40138, Italy
| | - Thomas Brand
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie), University of Bologna, Bologna 40127, Italy
| | - Michelangelo Fiorentino
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S.Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie), Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna 40138, Italy
| | - Giovanni Tallini
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna - School of Medicine, Bologna 40138, Italy
| | - Antonia D’Errico
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S.Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie), Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
43
|
Fu Y, Liu X, Chen Q, Liu T, Lu C, Yu J, Miao Y, Wei J. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. J Exp Clin Cancer Res 2018; 37:130. [PMID: 29970191 PMCID: PMC6029016 DOI: 10.1186/s13046-018-0807-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 06/23/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aberrant expression of microRNAs (miRNAs) has emerged as important hallmarks of cancer. However, the molecular mechanisms underlying the differences of miRNA expression remain unclear. Many studies have reported that miR-98-5p plays vital functions in the development and progression of multiple cancers. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS The expression of miR-98-5p and its specific target gene were determined in human PDAC specimens and cell lines by miRNA qRT-PCR, qRT-PCR and western blot. The effects of miR-98-5p depletion or ectopic expression on PDAC proliferation, migration and invasion were evaluated in vitro using CCK-8 proliferation assays, colony formation assays, wound healing assays and transwell assays. Furthermore, the in vivo effects were investigated using the mouse subcutaneous xenotransplantation and pancreatic tail xenotransplantation models. Luciferase reporter assays were employed to identify interactions between miR-98-5p and its specific target gene. RESULTS MiR-98-5p expression was significantly lower in cancerous tissues and associated with tumor size, TNM stage, lymph node metastasis and survival. Notably, a series of gain- and loss-of-function assays elucidated that miR-98-5p suppressed PDAC cell proliferation, migration and invasion both in vitro and in vivo. Luciferase reporter assays, western blot and qRT-PCR revealed MAP4K4 to be a direct target of miR-98-5p. The effects of ectopic miR-98-5p were rescued by MAP4K4 overexpression. In contrast, the effects of miR-98-5p depletion were impaired by MAP4K4 knockdown. Furthermore, miR-98-5p suppressed the MAPK/ERK signaling pathway through downregulation of MAP4K4. In addition, the expression level of miR-98-5p was negatively correlated with MAP4K4 expression in PDAC tissues and cell lines. CONCLUSIONS These results suggest that downregulation of miR-98-5p promotes tumor development by downregulation of MAP4K4 and inhibition of the downstream MAPK/ERK signaling, thus, highlighting the potential of miR-98-5p as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Yue Fu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
- Department of General Surgery, The Affiliated Changzhou NO.2 People’s Hospital With Nanjing Medical University, 68 Gehu Road, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinchun Liu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Qiuyang Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Tongtai Liu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Cheng Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jun Yu
- Department of Surgery, Johns Hopkins Medical Institutions, 600 N Wolfe Street, Baltimore, MD USA
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jishu Wei
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
44
|
Huang X, Zhang H, Guo X, Zhu Z, Cai H, Kong X. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 2018; 11:88. [PMID: 29954406 PMCID: PMC6025799 DOI: 10.1186/s13045-018-0628-y] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) plays essential roles in embryogenesis and carcinogenesis. IGF2BP1 serves as a post-transcriptional fine-tuner regulating the expression of some essential mRNA targets required for the control of tumor cell proliferation and growth, invasion, and chemo-resistance, associating with a poor overall survival and metastasis in various types of human cancers. Therefore, IGF2BP1 has been traditionally regarded as an oncogene and potential therapeutic target for cancers. Nevertheless, a few studies have also demonstrated its tumor-suppressive role. However, the details about the contradictory functions of IGF2BP1 are unclear. The growing numbers of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified as its direct regulators, during tumor cell proliferation, growth, and invasion in multiple cancers. Thus, the mechanisms of post-transcriptional modulation of gene expression mediated by IGF2BP1, miRNAs, and lncRNAs in determining the fate of the development of tissues and organs, as well as tumorigenesis, need to be elucidated. In this review, we summarized the tissue distribution, expression, and roles of IGF2BP1 in embryogenesis and tumorigenesis, and focused on modulation of the interconnectivity between IGF2BP1 and its targeted mRNAs or non-coding RNAs (ncRNAs). The potential use of inhibitors of IGF2BP1 and its related pathways in cancer therapy was also discussed.
Collapse
Affiliation(s)
- Xinwei Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming City, 650504, Yunnan Province, China
- Medical School, Kunming University of Science and Technology, Kunming City, 650504, Yunnan Province, China
| | - Hong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan Province, China
| | - Xiaoran Guo
- Medical School, Kunming University of Science and Technology, Kunming City, 650504, Yunnan Province, China
| | - Zongxin Zhu
- Medical School, Kunming University of Science and Technology, Kunming City, 650504, Yunnan Province, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, 655400, Yunnan Province, China.
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming City, 650504, Yunnan Province, China.
| |
Collapse
|
45
|
Matin F, Jeet V, Moya L, Selth LA, Chambers S, Clements JA, Batra J. A Plasma Biomarker Panel of Four MicroRNAs for the Diagnosis of Prostate Cancer. Sci Rep 2018; 8:6653. [PMID: 29703916 PMCID: PMC5923293 DOI: 10.1038/s41598-018-24424-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is diagnosed in over 1 million men every year globally, yet current diagnostic modalities are inadequate for identification of significant cancer and more reliable early diagnostic biomarkers are necessary for improved clinical management of prostate cancer patients. MicroRNAs (miRNAs) modulate important cellular processes/pathways contributing to cancer and are stably present in body fluids. In this study we profiled 372 cancer-associated miRNAs in plasma collected before (~60% patients) and after/during commencement of treatment (~40% patients), from age-matched prostate cancer patients and healthy controls, and observed elevated levels of 4 miRNAs - miR-4289, miR-326, miR-152-3p and miR-98-5p, which were validated in an independent cohort. The miRNA panel was able to differentiate between prostate cancer patients and controls (AUC = 0.88). Analysis of published miRNA transcriptomic data from clinical samples demonstrated low expression of miR-152-3p in tumour compared to adjacent non-malignant tissues. Overexpression of miR-152-3p increased proliferation and migration of prostate cancer cells, suggesting a role for this miRNA in prostate cancer pathogenesis, a concept that was supported by pathway analysis of predicted miR-152-3p target genes. In summary, a four miRNA panel, including miR-152-3p which likely targets genes with key roles in prostate cancer pathogenesis, has the potential to improve early prostate cancer diagnosis.
Collapse
Affiliation(s)
- Farhana Matin
- Australian Prostate Cancer Research Centre- Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Varinder Jeet
- Australian Prostate Cancer Research Centre- Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Leire Moya
- Australian Prostate Cancer Research Centre- Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, SA, 5000, Australia
| | - Suzanne Chambers
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Judith A Clements
- Australian Prostate Cancer Research Centre- Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre- Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia. .,Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia.
| |
Collapse
|
46
|
Ye ZH, Gui DW. miR‑539 suppresses proliferation and induces apoptosis in renal cell carcinoma by targeting high mobility group A2. Mol Med Rep 2018; 17:5611-5618. [PMID: 29436648 PMCID: PMC5866001 DOI: 10.3892/mmr.2018.8578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common urinary malignancies with a high rate of morbidity. MicroRNAs (miRNAs) have been shown to be critical post-transcriptional regulators in tumorigenesis. The present study aimed to investigate the effect of miRNA (miR)-539 on the proliferation and apoptosis of RCC. The expression of miR-539 and high mobility group AT-hook 2(HMGA2) were examined in clinical RCC specimens. The 786-O RCC cell line was also used and was transfected with miR-539 mimics or inhibitors. The correlation between miR-539 and HMGA2 was confirmed using a luciferase reporter assay. Cell viability and apoptosis were detected using MTT and flow cytometry assays. The protein levels of HMGA2, AKT, phosphorylated (p)-AKT, mammalian target of rapamycin (mTOR) and p-mTOR were analyzed using western blot analysis. The results revealed that miR-539 was negatively correlated with the expression of HMGA2 in clinical RCC specimens. Further experiments identified HMGA2 as a direct target of miR-539. The overexpression of miR-539 downregulated the expression of HMGA2, reduced cell proliferation and promoted cell apoptosis, whereas the knockdown of miR-539 led to the opposite results. miR-539 also suppressed the phosphorylation of AKT and mTOR, without altering the levels of total AKT and mTOR. Taken together, the results of the present study indicated that miR-539 negatively regulated the expression of HMGA2 in clinical specimens and in vitro. miR539 inhibited cell proliferation and induced apoptosis in RCC cells. This regulatory effect of miR-539 may be associated with the AKT signaling pathway. Therefore, miR-539 may be used as a biomarker for predicting the progression of RCC.
Collapse
Affiliation(s)
- Zhi-Hua Ye
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Ding-Wen Gui
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|