1
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Gao F, Wang Y, Li H, Yin J. Study on serum miR-182 as a marker for diagnosis and prognosis of cervical cancer. Technol Health Care 2024; 32:3083-3095. [PMID: 38848201 DOI: 10.3233/thc-231681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Cervical cancer (CC) is a common female malignancy, with a global incidence rate second only to breast cancer. OBJECTIVE To propose a new idea for early treatment and auxiliary diagnosis of CC by exploring the diagnostic and prognostic implications of serum miR-182 in CC. METHODS We enrolled 70 CC patients, 35 cervical intraepithelial neoplasia (CIN) patients and 35 healthy controls (HCs), who visited The First Affiliated Hospital of Hainan Medical College Hospital between January 2015 and April 2016. miR-182 expression was quantified by real-time quantitative PCR and compared among the three groups. The correlation of serum miR-182 expression with patients' clinical features was evaluated. The receiver operating characteristic curve (ROC) and the Kaplan-Meier method were used to evaluate the early diagnostic value and prognostic value of serum miR-182. Cox regression analysis was performed to determine serum miR-182 expression and its important role in predicting CC patients' prognosis. RESULTS Serum miR-182 expression was determined to be 0.345 ± 0.094, 0.369 ± 0.076, and 0.586 ± 0.157 in CC patients, CIN patients, and HCs, respectively (P< 0.001). Serum miR-182 expression had an obvious association with lymph node metastasis and pathological differentiation (P< 0.05). The area under the ROC curve (AUC) of serum miR-182 was 0.709 (95% CI: 0.622-0.795), the critical value was 0.456, the sensitivity was 81.4%, and the specificity was 52.9%. CC patients were grouped as either the low- (miR-182 < 0.3) or high-level group (miR-182 ⩾ 0.03) based on serum miR-182 levels, and a Cox regression model of OS was established. Serum miR-182 expression was identified as a factor independently influencing CC patients' OS (P= 0.028); the death risk of the high-level group was 3.246 times that of the low-level group. CONCLUSION Serum miR-182 expression is not only a biomarker for early diagnosis of CC, but also one of the independent factors influencing the survival and prognosis of CC patients.
Collapse
Affiliation(s)
- Fei Gao
- Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
- Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Yongcun Wang
- District One of Cancer Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Hao Li
- Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Jilai Yin
- Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
3
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Amin FAS, Un Naher Z, Ali PSS. Molecular markers predicting the progression and prognosis of human papillomavirus-induced cervical lesions to cervical cancer. J Cancer Res Clin Oncol 2023; 149:8077-8086. [PMID: 37000261 DOI: 10.1007/s00432-023-04710-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Persistent Human Papillomavirus (HPV) infection is linked to 99% of cervical cancer (CC) cases. HPV types 16 and 18 alone result in 75% of CC cases and thus are considered to be high-risk types (HR-HPV). CC is the third most common cancer among women globally. Approximately, 7000 patients die from it yearly. It is worthy to note that not every patient with HPV precancerous lesions will progress to CC. OBJECTIVES The objectives of this review is to explore the utilization of molecular and viral biomarkers as a tool for early detection and prediction of HPV-induced cervical lesions that might progress to CC. METHODS The data bases PubMed, Google Scholar, EBSCO were searched using keywords CC screening, HPV, and recent molecular biomarkers. The search time frame was within the last 7 years. Studies on HPV-induced cancers other than CC were excluded; a total of 200 eligible articles were retrieved. RESULTS In this review we explored the current literature about HPV virology, virulence genes and early diagnostic/prognostic molecular biomarkers in CC. The oncogenic property of HPV is attributed to viral expression of various early proteins (E5, E6, E7). The interaction between viral oncoproteins and the cellular genetic apparatus alters the expression of many genes at different phases of the disease. There was an association between cervical lesions induced by HR-HPV and the overexpression of markers of oxidative DNA damage and other proteins. The markers p16INK4a, programmed cell death-1 (PD-1)/programmed cell death ligand 1, mismatch repair enzymes (MMR), miRNA-377, claudin family (CLDN) are dysregulated and are associated with high risk lesions. Furthermore, advanced older cervical lesions were associated with high methylation levels and higher risk to progress to CC. CONCLUSION Adding different the above markers to the CC screening program scheme might offer a triage for prioritizing patient management.
Collapse
Affiliation(s)
| | - Zeba Un Naher
- School of Medicine, Maldives National University, Male', Maldives
| | - P Shaik Syed Ali
- School of Medicine, Maldives National University, Male', Maldives
| |
Collapse
|
5
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
6
|
Yi H, Han Y, Li S. Oncogenic circular RNA circ_0007534 contributes to paclitaxel resistance in endometrial cancer by sponging miR-625 and promoting ZEB2 expression. Front Oncol 2022; 12:985470. [PMID: 35992812 PMCID: PMC9386306 DOI: 10.3389/fonc.2022.985470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) and epithelial to mesenchymal transition (EMT) have been implicated in the development of human cancer and paclitaxel resistance. CircRNA circ_0007534 has been described as a key oncogenic circular RNA that is upregulated in a variety of cancer tissues. However, whether circ_0007534 causes EMT and paclitaxel resistance in endometrial cancer is still unknown. In this work, we revealed that circ_0007534 levels were significantly higher in endometrial cancer tissues, and that high circ_0007534 expression was associated with poor differentiation, advanced tumor stage, cancer invasion, cancer metastasis, and poor prognosis in endometrial cancer patients. Overexpression of circ_0007534 boosted endometrial cancer cell proliferation, invasion, EMT, and paclitaxel resistance. Knockdown of circ_0007534 restored paclitaxel sensitivity and reversed EMT in endometrial cancer cells. We also showed that circ_0007534 enhanced endometrial cancer aggressiveness, progression, and paclitaxel resistance by sponging microRNA-625 (miR-625) and subsequently increasing the expression of the miR-625 target gene ZEB2. Our cell functional studies demonstrated that inhibiting miR-625 or increasing ZEB2 mimicked the effects of circ_0007534 overexpression. Consequently, our data show that circ_0007534 plays a crucial role in EMT and paclitaxel resistance through miR-625/ZEB2 signaling. Targeting the circ_0007534/miR-625/ZEB2 pathway might be an effective strategy for overcoming paclitaxel resistance in endometrial cancer.
Collapse
Affiliation(s)
- Hanjie Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqing Han
- Department of Oncology, ShangRao People’s Hospital, Shangrao, China
| | - Shanfeng Li
- Department of Nosocomial Infection Management, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Shanfeng Li,
| |
Collapse
|
7
|
MicroRNA hsa-miR-657 promotes retinoblastoma malignancy by inhibiting peroxisome proliferator-activated receptor alpha expression. Anticancer Drugs 2022; 33:478-488. [PMID: 35324527 DOI: 10.1097/cad.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinoblastoma is a familial inherited embryonic neuroretinal malignancy with a low survival rate and poor prognosis. Our study aimed to evaluate the potential interaction between microRNA miR-657 and the peroxisome proliferator-activated receptor alpha (PPARA) in retinoblastoma. Expression of miR-657 and PPARA was analyzed in retinoblastoma tissues and cells using RT-qPCR. Cell proliferation, apoptosis, and migration were measured in retinoblastoma cell lines, and xenografting experiments were performed using nude mice. Our study showed that miR-657 expression was markedly increased, whereas that of PPARA was markedly decreased in retinoblastoma. Additionally, PPARA knockdown enhanced the development of retinoblastoma. miR-657 enhanced the retinoblastoma tumorigenesis by directly inhibiting PPARA expression, suggesting that PPARA targeting by miR-657 facilitates retinoblastoma development by enhancing cell growth. This study provides novel insights into the miR-657- and PPARA-mediated mechanisms underlying retinoblastoma progression and suggests that the interaction between miR-657 and PPARA may serve as an effective target for therapeutic intervention.
Collapse
|
8
|
Shan B, Qu S, Lv S, Fan D, Wang S. YY1-induced long non-coding RNA small nucleolar RNA host gene 8 promotes the tumorigenesis of melanoma via the microRNA-656-3p/SERPINE1 mRNA binding protein 1 axis. Bioengineered 2022; 13:4832-4843. [PMID: 35156513 PMCID: PMC8973976 DOI: 10.1080/21655979.2022.2034586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long non-coding (lnc) RNA serves a vital role in the cellular processes of carcinoma. This study aimed to explore the accurate mechanism underlying lncRNA small nucleolar RNA host gene 8 (SNHG8) in melanoma. In this study, lncRNA SNHG8 expression were upregulated in melanoma tissues and cells, and lncRNA SNHG8 knockdown reduced melanoma cell viability, migration and invasion. Moreover, lncRNA SNHG8 expression could be induced by transcription factor YY1. In addition, we found that miR-656 could directly bind to lncRNA SNHG8 and SERPINE1 mRNA binding protein 1 (SERBP1). Rescue assays indicated that miR-656 overexpression inhibited the aforementioned cellular activities in melanoma cells, which were reversed by SERBP1 overexpression. In conclusion, this work elucidated that YY1-induced upregulation of lncRNA SNHG8 boosted the development of melanoma via the miR-656-3p/SERBP1 axis, providing a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Baihui Shan
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Shengming Qu
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Dandan Fan
- Department of Dermatology, Jilin Province People’s Hospital, China
| | - Shu Wang
- Department of Radio Therapy, The Second Hospital of Jilin University, China
| |
Collapse
|
9
|
Geng F, Jia WC, Li T, Li N, Wei W. Knockdown of lncRNA NEAT1 suppresses proliferation and migration, and induces apoptosis of cervical cancer cells by regulating the miR‑377/FGFR1 axis. Mol Med Rep 2021; 25:10. [PMID: 34779493 PMCID: PMC8600400 DOI: 10.3892/mmr.2021.12526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the role of NEAT1 and the microRNA (miR)-377/fibroblast growth factor receptor 1 (FGFR1) axis in cervical cancer (CC), the expression levels of NEAT1, FGFR1 and miR-377 were detected in CC tissues and cell lines. NEAT1 or FGFR1 was knocked down by transfection with short hairpin RNA (sh)-NEAT1 or sh-FGFR1, and miR-377 was overexpressed by transfection with miR-377 mimics in HeLa and C33A cells. Cell viability and migration were measured using MTT and Transwell assays, respectively. Cell apoptosis was determined by flow cytometry. A dual luciferase reporter assay was performed to confirm the presence of binding sites between miR-377 and FGFR1. The results revealed that the expression levels of NEAT1 and FGFR1 were significantly elevated, whereas miR-377 expression was markedly decreased in CC tissues and cell lines. In HeLa and C33A cells, after NEAT1 knockdown, miR-377 expression was increased, cell viability and migration were inhibited, and apoptosis was induced. Similarly, silencing FGFR1 inhibited cell viability and migration, and induced apoptosis of HeLa and C33A cells. A dual luciferase reporter gene assay verified a targeting relationship between NEAT1 and miR-377. Inhibition of miR-377 or overexpression of FGFR1 reversed the effects of NEAT1 knockdown on cell function in HeLa and C33A cells. Moreover, a dual luciferase reporter assay confirmed that FGFR1 was a direct target of miR-377. In conclusion, suppression of NEAT1 inhibited cell viability and migration, and promoted apoptosis of CC cells, and these effects were achieved through regulation of the miR-377/FGFR1 axis.
Collapse
Affiliation(s)
- Feng Geng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wen-Cong Jia
- Department of Obstetrics and Gynecology, Binzhou Second People's Hospital, Binzhou, Shandong 256800, P.R. China
| | - Tao Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Na Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wei Wei
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
10
|
Henderson J, Dubey PK, Patil M, Singh S, Dubey S, Namakkal Soorappan R, Kannappan R, Sethu P, Qin G, Zhang J, Krishnamurthy P. microRNA-377 Signaling Modulates Anticancer Drug-Induced Cardiotoxicity in Mice. Front Cardiovasc Med 2021; 8:737826. [PMID: 34485421 PMCID: PMC8415717 DOI: 10.3389/fcvm.2021.737826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX, an anthracycline) is a widely used chemotherapy agent against various forms of cancer; however, it is also known to induce dose-dependent cardiotoxicity leading to adverse complications. Investigating the underlying molecular mechanisms and strategies to limit DOX-induced cardiotoxicity might have potential clinical implications. Our previous study has shown that expression of microRNA-377 (miR-377) increases in cardiomyocytes (CMs) after cardiac ischemia-reperfusion injury in mice, but its specific role in DOX-induced cardiotoxicity has not been elucidated. In the present study, we investigated the effect of anti-miR-377 on DOX-induced cardiac cell death, remodeling, and dysfunction. We evaluated the role of miR-377 in CM apoptosis, its target analysis by RNA sequencing, and we tested the effect of AAV9-anti-miR-377 on DOX-induced cardiotoxicity and mortality. DOX administration in mice increases miR-377 expression in the myocardium. miR-377 inhibition in cardiomyocyte cell line protects against DOX-induced cell death and oxidative stress. Furthermore, RNA sequencing and Gene Ontology (GO) analysis revealed alterations in a number of cell death/survival genes. Intriguingly, we observed accelerated mortality and enhanced myocardial remodeling in the mice pretreated with AAV9-anti-miR-377 followed by DOX administration as compared to the AAV9-scrambled-control-pretreated mice. Taken together, our data suggest that in vitro miR-377 inhibition protects against DOX-induced cardiomyocyte cell death. On the contrary, in vivo administration of AAV9-anti-miR-377 increases mortality in DOX-treated mice.
Collapse
Affiliation(s)
- John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praveen K Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajasekaran Namakkal Soorappan
- Division of Molecular & Cellular Pathology, Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Fardi M, Mohammadi A, Baradaran B, Safaee S. ZEB2 Knock-down Induces Apoptosis in Human Myeloid Leukemia HL-60 Cells. Curr Gene Ther 2021; 21:149-159. [PMID: 33475058 DOI: 10.2174/1566523221999210120210017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most prevalent type of cancer in the adult hematopoietic system. Conventional therapies are associated with unfavorable side effects in individuals diagnosed with AML. These after-effects with partial remission reflect the urgent need for novel therapeutic approaches for inducing apoptosis, specifically in malignant cells, without affecting other cells. As a transcription factor (TF), ZEB2 (Zinc Finger E-Box Binding Homeobox 2) regulates the expression of specific genes in normal conditions. However, increased expression of ZEB2 is reported in various cancers, especially in AML, which is related to a higher degree of apoptosis inhibition of malignant cells. In this work, the role of ZEB2 in apoptosis inhibition is surveyed through ZEB2 specific knocking-down in human myeloid leukemia HL-60 cells. MATERIALS AND METHODS Transfection of HL-60 cells was conducted using ZEB2-siRNA at concentrations of 20, 40, 60, and 80 pmol within 24, 48, and 72 h. After determining the optimum dose and time, flow cytometry was used to measure the apoptosis rate. The MTT assay was also utilized to evaluate the cytotoxic impact of transfection on the cells. The expression of candidate genes was measured before and after transfection using qRT-PCR. RESULTS According to obtained results, suppression of ZEB2 expression through siRNA was associated with the induction of apoptosis, increased pro-apoptotic, and decreased anti-apoptotic gene expression. Transfection of ZEB2-siRNA was also associated with reduced cell proliferation and viability. CONCLUSION Our study results suggest that ZEB2 suppression in myeloid leukemia cells through apoptosis induction could be a proper therapeutic method.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Dostal Z, Sebera M, Srovnal J, Staffova K, Modriansky M. Dual Effect of Taxifolin on ZEB2 Cancer Signaling in HepG2 Cells. Molecules 2021; 26:1476. [PMID: 33803107 PMCID: PMC7963166 DOI: 10.3390/molecules26051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols, secondary metabolites of plants, exhibit different anti-cancer and cytoprotective properties such as anti-radical, anti-angiogenic, anti-inflammation, or cardioprotective. Some of these activities could be linked to modulation of miRNAs expression. MiRNAs play an important role in posttranscriptional regulation of their target genes that could be important within cell signalling or preservation of cell homeostasis, e.g., cell survival/apoptosis. We evaluated the influence of a non-toxic concentration of taxifolin and quercetin on the expression of majority human miRNAs via Affymetrix GeneChip™ miRNA 3.0 Array. For the evaluation we used two cell models corresponding to liver tissue, Hep G2 and primary human hepatocytes. The array analysis identified four miRNAs, miR-153, miR-204, miR-211, and miR-377-3p, with reduced expression after taxifolin treatment. All of these miRNAs are linked to modulation of ZEB2 expression in various models. Indeed, ZEB2 protein displayed upregulation after taxifolin treatment in a dose dependent manner. However, the modulation did not lead to epithelial mesenchymal transition. Our data show that taxifolin inhibits Akt phosphorylation, thereby diminishing ZEB2 signalling that could trigger carcinogenesis. We conclude that biological activity of taxifolin may have ambiguous or even contradictory outcomes because of non-specific effect on the cell.
Collapse
Affiliation(s)
- Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| | - Martin Sebera
- Faculty of Sport Studies, Masaryk University, 60177 Brno, Czech Republic;
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Martin Modriansky
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| |
Collapse
|
13
|
Wang H, Qi C, Wan D. MicroRNA-377-3p targeting MMP-16 inhibits ovarian cancer cell growth, invasion, and interstitial transition. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:124. [PMID: 33569426 PMCID: PMC7867897 DOI: 10.21037/atm-20-8027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background To evaluate role of microRNA (miRNA)-377-3p on the remission of ovarian cancer (OC) cell proliferation, invasion, and interstitial transition in vivo and vitro. Methods SKOV3 cells were used as the object of in vitro research and four-week-old immunodeficient BABL/c female nude mice were used to form the xenograft model. Cell models were constructed by transfecting NC mimics, miR-377 mimic, plasmid cloning DNA (pcDNA), pc-matrix metalloproteinase (MMP)-16, or co-transfecting miR-377 mimic and pc-MMP-16. TargetScan software was used to predict the targeting relationship between miRNA-377-3p and MMP-16 in OC cells. The combination of miRNA-377-3p and MMP-16 was detected by dual luciferase report experiment. miRNA expression levels of miRNA-377-3p and MMP-16 in each transfection group cells were detected by reverse transcription-polymerase chain reaction (RT-PCR). The proliferation of SKOV3 cells were assessed by 5-ethynyl-2'-deoxyuridine (EdU) staining and microtubule formation, while the invasion ability of SKOV3 cells was detected by Transwell assay. Protein expression levels of MMP-16, survivin, Ki67, vascular endothelial growth factor (VEGF), E-cadherin, and N-cadherin were detected by Western blot (WB), and the positive cells of Ki67 and VEGF were detected by immunohistochemistry (IHC). Results MMP-16 overexpression markedly increased the EDU-positive cell percentage, upregulated survivin and Ki67 levels, increased the number of invasive cells per field, and enhanced VEGF and N-cadherin expression. Importantly, co-transfection of miRNA-377-3p and MMP-16 reversed these abnormal phenomena. Xenotransplantation mouse models were formed by injecting SKOV-3 cells subcutaneously. Tumor size, tumor volume, and tumor weight were all reduced in the miR-377-3p mimic–transfected group. The results of IHC indicated that Ki67 and VEGF expression were decreased in the miR-377-3p mimic–transfected group. Conclusions These findings indicate that miR-377-3p could be a promising therapeutic agent for OC cell growth, invasion, and interstitial transition with MMP-16 being its likely target.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Obstetrics and Gynecology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Changmin Qi
- Department of Cardiac Surgery Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Wan
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
14
|
Circ_0001247 functions as a miR-1270 sponge to accelerate cervical cancer progression by up-regulating ZEB2 expression level. Biotechnol Lett 2021; 43:745-755. [PMID: 33386495 DOI: 10.1007/s10529-020-03059-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is increasing evidence that circular RNA (circRNA) disorders have an impact on the progression of various malignancies. The expression characteristics, function and underlying mechanism of circ_0001247 in cervical cancer (CC) have not been confirmed. METHODS GSE147483 datasets of circRNAs expression in CC cell line and normal cervical cell line were retrieved from GEO database, and the circRNA with significant difference was selected; circ_0001247, miR-1270, and Zinc finger E-box binding homeobox 2 (ZEB2) expressions in CC tissues and cell lines were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) assay; cell counting kit-8 (CCK-8) assay and BrdU assay were applied to monitor the proliferative ability of CC cells; Transwell assay was conducted to examine the migration and invasion of CC cells, and flow cytometry was used to evaluate the apoptosis; Western blot assay was adopted to detect ZEB2 protein expressions; dual-luciferase report gene assay was used to verify the targeting relationship between circ_0001247 and miR-1270, and miR-1270 and the 3'UTR of ZEB2. RESULTS Analysis of GSE147483 suggested that circ_0001247 could probably be an oncogenic circRNA in CC. Compared with that in adjacent tissues and normal cervical epithelial cells, circ_0001247 expression in CC tissues and cell lines was significantly increased; knocking down circ_0001247 expression could inhibit the proliferation and metastasis of CC cells, and promote apoptosis, while circ_0001247 overexpression worked oppositely; circ_0001247 sponged miR-1270 in CC cells; miR-1270 diminished the promoting effect of circ_0001247 by inactivating the ZEB2. CONCLUSION Circ_0001247 promotes progression of CC by sponging miR-1270 to upregulate ZEB2 expression level.
Collapse
|
15
|
Chen M, Liu LX. MiR-525-5p Repressed Metastasis and Anoikis Resistance in Cervical Cancer via Blocking UBE2C/ZEB1/2 Signal Axis. Dig Dis Sci 2020; 65:2442-2451. [PMID: 31679088 DOI: 10.1007/s10620-019-05916-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating evidence indicated that miRNAs are important regulators involved in cancer biology. AIMS We aimed to investigate the biological functions and potentially underlying molecular mechanism of miR-525-5p in CC. METHODS RT-PCR and Western blot assay were performed to detect mRNA and protein expression. Cell proliferation, anoikis resistance, and cell invasion were analyzed. RESULTS We observed that the expression of miR-525-5p was declined in several CC cell lines. Additionally, introduction of miR-525-5p dramatically hampered cell viability, invasiveness, and migration ability through modulating epithelial-to-mesenchymal transition (EMT) marked genes as reflected by the upregulation of E-cadherin, as well as the downregulation of vimentin and N-cadherin. Furthermore, administration of miR-525-5p markedly reduced anchorage-independent growth and anoikis resistance accompanied by a decrease in the expression of anti-apoptotic protein Bcl-2 and an increase in the expression of pro-apoptotic protein Bax, C-caspase 3, and C-PARP1. Most importantly, analysis using publicly available algorithms predicted that UBE2C was a direct and functional target of miR-525-5p. Luciferase assays coupled with RT-PCR and Western blot analysis further verified that miR-525-5p negatively regulated UBE2C expression. Interestingly, miR-525-5p modulated ZEB1/2 expression via targeting UBE2C. Mechanically, administration of UBE2C partially blunted the salutary effects of miR-525-5p on invasive ability, EMT, and anoikis resistance, indicating that miR-525-5p acts as a tumor suppressor in CC largely through repression of UBE2C/ZEB1/2 signaling. CONCLUSIONS Taken together, our data identify a novel signaling axis of miR-525-5p/UBE2C/ZEB1/2 in repressing EMT and anoikis resistance, and likely serve as a potential therapeutic target for CC metastasis and prognosis as well as a therapeutic application.
Collapse
Affiliation(s)
- Mei Chen
- Department of Gynecology, Affiliated Hospital of Shaanxi University of Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712021, Shaanxi, People's Republic of China
| | - Li-Xiu Liu
- Department of Gynecology, Affiliated Hospital of Shaanxi University of Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712021, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Miao J, Regenstein JM, Xu D, Zhou D, Li H, Zhang H, Li C, Qiu J, Chen X. The roles of microRNA in human cervical cancer. Arch Biochem Biophys 2020; 690:108480. [PMID: 32681832 DOI: 10.1016/j.abb.2020.108480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Although a potentially preventable disease, cervical cancer (CC) is the second most commonly diagnosed gynaecological cancer with at least 530,000 new cases annually, and the prognosis with CC is still poor. Studies suggest that aberrant expression of microRNA (miRNA) contributes to the progression of CC. As a group of small non-coding RNA with 18-25 nucleotides, miRNA regulate about one-third of all human genes. They function by repressing translation or inducing mRNA cleavage or degradation, including genes involved in diverse and important cellular processes, including cell cycling, proliferation, differentiation, and apoptosis. Results showed that misexpression of miRNA is closely related to the onset and progression of CC. This review will provide an overview of the function of miRNA in CC and the mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Dan Zhou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Hua Zhang
- Department of Food Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150010, China
| | - Chunfeng Li
- Gastrointestinal Surgical Ward, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China.
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China
| |
Collapse
|
17
|
Huang L, Liu Z, Hu J, Luo Z, Zhang C, Wang L, Wang Z. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res 2020; 156:104774. [PMID: 32220639 DOI: 10.1016/j.phrs.2020.104774] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/16/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling is a common event in the development of colorectal cancer (CRC). It is important to identify new molecules and mechanisms that can negatively regulate Wnt/β-catenin signaling. MicroRNAs are considered as promising candidates for cancer diagnosis and therapy. In our study, we found that miR-377-3p was significantly decreased in CRC samples compared to the normal mucosa tissues, especially in the patients at stage III/IV. Functional studies showed that overexpression of miR-377-3p suppressed and silence of miR-377-3p enhanced the proliferation, migration and chemoresistance of CRC cells. Molecularly, miR-377-3p inhibited Wnt/β-catenin signaling by directly targeting ZEB2 and XIAP, which were the positive regulators of Wnt/β-catenin signaling. Overexpression of ZEB2/XIAP could counteract the tumor suppressing phenotypes induced by miR-377-3p. Therefore, we uncovered the anti-cancer role and the relevant mechanisms of miR-377-3p in CRC, which might provide novel targets for designing new anti-tumor strategies.
Collapse
Affiliation(s)
- Lifeng Huang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhibo Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Luo
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Xu G, Zhu H, Xu J, Wang Y, Zhang Y, Zhang M, Zhu D. Long non-coding RNA POU6F2-AS2 promotes cell proliferation and drug resistance in colon cancer by regulating miR-377/BRD4. J Cell Mol Med 2020; 24:4136-4149. [PMID: 32100443 PMCID: PMC7171422 DOI: 10.1111/jcmm.15070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 12/17/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to explore the molecular mechanism of lncRNA POU6F2‐AS2 in proliferation and drug resistance of colon cancer. Total paired 70 colon cancer and adjacent normal tissues were collected from colon cancer patients. Colon cancer and normal colonic epithelial cells were purchased. POU6F2‐AS2 was up‐ or down‐expressed by vectors. LC50 of all cell lines before and after transfection with these plasmids was detected. qRT‐PCR was used to detect the expression of POU6F2‐AS2, miR‐377 and BRD4 before or after transfection. In situ hybridization was also undertaken to detect the level of POU6F2‐AS2. Different concentrations of 5‐Fu (0, 1, 2.5, 5, 10, 20, 40 and 80 μg/mL) were used for 5‐FU insensitivity assay. CCK‐8 and crystal violet staining assay were used for detecting cell proliferation, and flow cytometry was used for identifying cell cycle distribution and apoptosis. In order to detect the fragmented DNA in apoptotic cells, TUNEL assay was used. RNA pull‐down assay and luciferase reporter assay were used to verify the binding site. Rescue assay confirmed the subtractive effect of miR‐377 inhibitors. POU6F2‐AS2 was highly expressed in colon cancer, which was associated with clinical pathology. Up‐regulated POU6F2‐AS2 promoted cell proliferation and cell cycle of colon cancer cells. Overexpression of POU6F2‐AS2 inhibited the expression of miR‐377 and then up‐regulated the expression of BRD4. Up‐regulated BRD4 ultimately promoted cell proliferation and cell survival Down‐regulated POU6F2‐AS2 showed enhanced sensitivity of 5‐FU. POU6F2‐AS2 promoted cell proliferation and drug resistance in colon cancer by regulating miR‐377/BRD4 gene.
Collapse
Affiliation(s)
- Guangru Xu
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Hongxing Zhu
- Shanghai University of Medicine&Health Sciences, Shanghai, China
| | - Jinhua Xu
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Yan Wang
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Yang Zhang
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Minghui Zhang
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Dichao Zhu
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| |
Collapse
|
19
|
Tang L, Yang B, Cao X, Li Q, Jiang L, Wang D. MicroRNA-377-3p inhibits growth and invasion through sponging JAG1 in ovarian cancer. Genes Genomics 2019; 41:919-926. [PMID: 31041680 DOI: 10.1007/s13258-019-00822-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ovarian cancer is the one of the most deadly gynecologic malignancy among cancer related death in women. However, the treatment for ovarian cancer is still limited. In this study, we aimed to explore the inhibition potential of miR-377-3p in ovarian cancer and explore the mechanism of this effect. METHODS Quantitative real-time PCR was used to detect the mRNA or microRNA (miRNA) levels. CCK-8, wound-healing, transwell assay were used to detect cell proliferation, migration and invasion. The protein levels were examined by western blot. The dual luciferase reporter assay was conducted to examine the luciferase activity. Tumor volume was measured and Ki67 was detected via immunohistochemistry. RESULTS qRT-PCR results showed that miR-377-3p was downregulated in ovarian cancer patients. MiR-377-3p mimics suppressed cell proliferation, migration, invasion and decreased the JAG1 level. However, miR-377-3p inhibitor promoted these appearances. Interestingly, we found JAG1 was a target gene of miR-377-3p. JAG1 overexpression reversed the miR-377-3p-induced inhibition of proliferation and invasion. In addition, miR-377-3p inhibited ovarian cancer tumorigenesis in vivo, indicating by decreased tumor volume and staining of Ki67. CONCLUSION The results showed that miR-377-3p inhibited growth and invasion of ovarian cancer cells by targeting JAG1.
Collapse
Affiliation(s)
- Liulin Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, No. 15 Le Qun Road, Guilin, 541001, Guangxi, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, No. 15 Le Qun Road, Guilin, 541001, Guangxi, China.
| | - Xiaolan Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, No. 15 Le Qun Road, Guilin, 541001, Guangxi, China
| | - Qin Li
- Department of Ultrasound, Affiliated Hospital of Guilin Medical University, No. 15 Le Qun Road, Guilin, 541001, Guangxi, China
| | - Li Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, No. 15 Le Qun Road, Guilin, 541001, Guangxi, China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, No. 15 Le Qun Road, Guilin, 541001, Guangxi, China
| |
Collapse
|
20
|
Chu JYS, Chau MKM, Chan CCY, Tai ACP, Cheung KF, Chan TM, Yung S. miR-200c Prevents TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Fibrogenesis in Mesothelial Cells by Targeting ZEB2 and Notch1. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:78-91. [PMID: 31226520 PMCID: PMC6586597 DOI: 10.1016/j.omtn.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022]
Abstract
Peritoneal fibrosis and loss of transport function is a common complication contributing to adverse outcomes in patients on long-term peritoneal dialysis (PD). Epithelial-to-mesenchymal transition (EMT) in mesothelial cells is a salient feature, but its triggering mechanisms remain obscure. Dysregulation of microRNA (miR) expression is implicated in EMT and tissue fibrosis. We investigated the role of miR-200c in EMT and fibrogenesis in a murine PD model and in cultured peritoneal mesothelial cells. PD-fluid-treated mice showed peritoneal miR-200c expression reduced by 76.2% compared with PBS-treated mice, and this was accompanied by increased peritoneal α-smooth muscle actin, fibronectin, and collagen expression. PD fluid and TGF-β1 both reduced miR-200c expression in cultured mesothelial cells, accompanied by downregulation of E-cadherin and decorin, and induction of fibronectin, collagen I and III, and transcription factors related to EMT. Decorin prevented the suppression of miR-200c by TGF-β1. Lentivirus-mediated miR-200c overexpression prevented the induction of fibronectin, collagen I, and collagen III by TGF-β1, independent of decorin, and partially prevented E-cadherin suppression by TGF-β1. Target genes of miR-200c were identified as ZEB2 and Notch1. Our data demonstrate that miR-200c regulates EMT and fibrogenesis in mesothelial cells, and loss of peritoneal miR-200c contributes to PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Jessica Y S Chu
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mel K M Chau
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Caleb C Y Chan
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Andrew C P Tai
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kwok Fan Cheung
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Susan Yung
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
21
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|