1
|
Abstract
A variety of observational studies have demonstrated that coffee, likely acting through caffeine, improves health outcomes in patients with chronic liver disease. The primary pharmacologic role of caffeine is to act as an inhibitor of adenosine receptors. Because key liver cells express adenosine receptors linked to liver injury, regeneration, and fibrosis, it is plausible that the biological effects of coffee are explained by effects of caffeine on adenosinergic signaling in the liver. This review is designed to help the reader make sense of that hypothesis, highlighting key observations in the literature that support or dispute it.
Collapse
Affiliation(s)
- Jonathan A Dranoff
- Yale University School of Medicine and VA Connecticut Healthcare System, 950 Campbell Ave, West Haven, CT, 06515, USA.
| |
Collapse
|
2
|
Magni G, Ceruti S. Adenosine Signaling in Autoimmune Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090260. [PMID: 32971792 PMCID: PMC7558305 DOI: 10.3390/ph13090260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The molecular components of the purinergic system (i.e., receptors, metabolizing enzymes and membrane transporters) are widely expressed in the cells of the immune system. Additionally, high concentrations of adenosine are generated from the hydrolysis of ATP in any "danger" condition, when oxygen and energy availability dramatically drops. Therefore, adenosine acts as a retaliatory metabolite to counteract the nucleotide-mediated boost of the immune reaction. Based on this observation, it can be foreseen that the recruitment with selective agonists of the receptors involved in the immunomodulatory effect of adenosine might represent an innovative anti-inflammatory approach with potential exploitation in autoimmune disorders. Quite surprisingly, pro-inflammatory activity exerted by some adenosine receptors has been also identified, thus paving the way for the hypothesis that at least some autoimmune disorders may be caused by a derailment of adenosine signaling. In this review article, we provide a general overview of the roles played by adenosine on immune cells with a specific focus on the development of adenosine-based therapies for autoimmune disorders, as demonstrated by the exciting data from concluded and ongoing clinical trials.
Collapse
|
3
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
4
|
Zeng J, Chen S, Li C, Ye Z, Lin B, Liang Y, Wang B, Ma Y, Chai X, Zhang X, Zhou K, Zhang Q, Zhang H. Mesenchymal stem/stromal cells-derived IL-6 promotes nasopharyngeal carcinoma growth and resistance to cisplatin via upregulating CD73 expression. J Cancer 2020; 11:2068-2079. [PMID: 32127934 PMCID: PMC7052921 DOI: 10.7150/jca.37932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have implicated the important role of mesenchymal stem/stromal cells (MSCs) within tumor microenvironment (TME) in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), but the potential mechanisms are still unclear. Herein, we showed that an elevated IL-6 level was positively correlated with elevated expression of CD73 in TME of NPC. NPC specimens with an IL-6highCD73high phenotype showed higher expression levels of gp80, gp130, p-STAT3, MMP-9 and α-SMA, and clinically, a poorer prognosis than those with an IL-6lowCD73low phenotype. We found that stimulation with conditioned media derived from IL-6 gene knocked out MSC (MSCIL6KO-CM) down-regulated the expression of CD73, IL-6, gp80, p-STAT3, and proliferative cell nuclear antigen (PCNA) in CNE-2 NPC cells. Meanwhile, NPC cells co-cultured with MSCIL6KO-CM were more sensitive to cisplatin than those co-cultured with MSC-CM. Additionally, MSC-derived IL-6 transcriptionally upregulated CD73 expression via activating STAT3 signaling pathway in NPC cells. In summary, our findings suggest that MSCs promote NPC progression and chemoresistance by upregulation of CD73 expression via activating STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Shasha Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Caihong Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, The Fifth People's Hospital of Dongguan, Dongguan 523905, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Yan Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Xingxing Chai
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, 524023 China
| | - Keyuan Zhou
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Haitao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Intrahepatic biliary strictures after liver transplantation are morphologically similar to primary sclerosing cholangitis but immunologically distinct. Eur J Gastroenterol Hepatol 2020; 32:276-284. [PMID: 31895887 DOI: 10.1097/meg.0000000000001649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Biliary strictures are an important cause of morbidity and mortality in primary hepatic disease and after liver transplantation (LT). We aimed to characterize inflammatory cytokines in biliary fluids in biliary strictures to investigate their immunological origin. METHODS We conducted a retrospective study on 72 patients with strictures after LT, eight patients with primary sclerosing cholangitis (PSC) and 15 patients with secondary sclerosing cholangitis (SSC). We measured cytokines interleukin (IL)-2, -4, -6, -10, -17, monocyte chemoattractant protein (MCP)-1, fibroblast growth factor (FGF)-2 and interferon (IFN)-γ as well as biochemical components such as protein and phospholipids in biliary fluid obtained from endoscopic retrograde cholangiography (ERC). Cell viability assays were performed on human cholangiocytes (H69) after being treated with IL-6, IL-4 and IFN-γ. RESULTS Bile of patients with diffuse strictures after LT or due to SSC showed low values of all measured cytokines except for IL-6 levels, which were largely elevated in patients with diffuse strictures after LT. Patients high in biliary IL-6 showed an increase in profibrotic markers FGF-2 and MCP-1. In contrast, PSC bile was dominated by a Th1/Th17 profile with elevated IL-2, IL-17 and IFN-γ. In LT patients with biliary strictures, biliary IL-6 negatively predicted retransplantation-free survival after ERC. CONCLUSION PSC patients showed a biliary Th1/Th17 cytokine profile, while SSC and diffuse strictures showed low values of cytokines except IL-6. In diffuse intrahepatic strictures after LT, biliary IL-6 is strongly associated with retransplantation-free survival after ERC.
Collapse
|
6
|
Vuerich M, Harshe RP, Robson SC, Longhi MS. Dysregulation of Adenosinergic Signaling in Systemic and Organ-Specific Autoimmunity. Int J Mol Sci 2019; 20:ijms20030528. [PMID: 30691212 PMCID: PMC6386992 DOI: 10.3390/ijms20030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Exact causes for autoimmune diseases remain unclear and no cures are available. Breakdown of immunotolerance could set the stage for unfettered immune responses that target self-antigens. Impaired regulatory immune mechanisms could have permissive roles in autoreactivity. Abnormal regulatory immune cell function, therefore, might be a major determinant of the pathogenesis of autoimmune disease. All current treatments are associated with some level of clinical toxicity. Treatment to specifically target dysregulated immunity in these diseases would be a great advance. Extracellular adenosine is a signaling mediator that suppresses inflammation through activation of P1 receptors, most active under pathological conditions. Mounting evidence has linked alterations in the generation of adenosine from extracellular nucleotides by ectonucleotidases, and associated perturbations in purinergic signaling, to the immunological disruption and loss of immunotolerance in autoimmunity. Targeted modulation of the purinergic signaling by either targeting ectonucleotidases or modulating P1 purinergic receptors could therefore restore the balance between autoreactive immune responses; and thereby allow reestablishment of immunotolerance. We review the roles of CD39 and CD73 ectoenzymes in inflammatory states and with the dysregulation of P1 receptor signaling in systemic and organ-specific autoimmunity. Correction of such perturbations could be exploited in potential therapeutic applications.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Rasika P Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Abstract
Extracellular adenosine nucleoside is a potent, endogenous mediator that signals through specific G protein-coupled receptors, and exerts pleiotropic effects on liver physiology, in health and disease. Particularly, adenosinergic or adenosine-mediated signaling pathways impact the progression of hepatic fibrosis, a common feature of chronic liver diseases, through regulation of matrix deposition by liver myofibroblasts. This review examines the current lines of evidence on adenosinergic regulation of liver fibrosis and myofibroblasts, identifies unanswered research questions, and proposes important future areas of investigation.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
8
|
Huang Y, Fan X, Tao R, Song Q, Wang L, Zhang H, Kong H, Huang J. Effect of miR-182 on hepatic fibrosis induced by Schistosomiasis japonica by targeting FOXO1 through PI3K/AKT signaling pathway. J Cell Physiol 2018; 233:6693-6704. [PMID: 29323718 DOI: 10.1002/jcp.26469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
The study aimed to investigate the impact of miR-182 and FOXO1 on S. japonica-induced hepatic fibrosis. Microarray analysis was performed to screen out differential expressed miRNAs and mRNAs. Rat hepatic fibrosis model and human hepatocellular cell line LX-2 were used to study the effect of miR-182 and FOXO1. qRT-PCR and Western blot were used to detect the expression of miR-182, FOXO1 or other fibrosis markers. The targeting relationship between FOXO1 and miR-182 was verified by luciferase reporter assay. Immunohistochemistry or immunofluorescence staining was conducted to detect FOXO1 or α-SMA in rat hepatic tissues. Cell viability and apoptosis were detected by MTT assay and flow cytometry. The expression of PI3K/AKT pathway-related proteins was detected by Western blot. miR-182 was highly expressed in liver fibrosis samples, and FOXO1 expression was negatively correlated with miR-182 expression. After transfection of miR-182, FOXO1 expression was down-regulated, with the results of LX-2 cells proliferation inhibition and apoptosis induction, as well as the aggravation of rat hepatic fibrosis. The expression of p-AKT/AKT and p-S6/S6 was increased, meaning that the PI3K/AKT signal pathway was activated. The results were reversed when treated with Wortmannin (PI3K inhibitor). After transfection of miR-182 inhibitor, FOXO1 expression was up-regulated, LX-2 cell proliferation was inhibited, and apoptosis rate was increased. High-expressed miR-182 and low-expressed FOXO1 promoted proliferation and inhibiting apoptosis on liver fibrosis cells, stimulating the development of S. japonica-induced hepatic fibrosis through feeding back to PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yu Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Nephrology, The First People's Hospital of Yichang, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xiangxue Fan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department and Institute of Infectious Disease, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqin Song
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Likui Wang
- Savaid Medical School, University of Chinese Academy of Sciences Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongyue Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|