1
|
Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, Lou YH, Zhang XY, Chen X, Wang SL, Wang ZC, Zhang YX, Mazlan N, OO SS, Thet T, Sharma PN, Jauharlina J, Sukorini IH, Ibisate MT, Rahman SM, Ansari NA, Chen AD, Zhu ZR, Heong KL, Lu G, Huang HJ, Li JM, Chen JP, Zhan S, Zhang CX. The genomic history and global migration of a windborne pest. SCIENCE ADVANCES 2024; 10:eadk3852. [PMID: 38657063 PMCID: PMC11042747 DOI: 10.1126/sciadv.adk3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
Collapse
Affiliation(s)
- Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang-Qi Fang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Han Lou
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Chen
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Si-Liang Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhe-Chao Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xiang Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Norida Mazlan
- Institute of Tropical Agriculture and Food Security, and Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Malaysia
| | - San San OO
- Taungoo University, Taungoo 05063, Myanmar
| | - Thet Thet
- Taungoo University, Taungoo 05063, Myanmar
| | - Prem Nidhi Sharma
- Entomology Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Kathmandu 44600, Nepal
| | - Jauharlina Jauharlina
- Department of Plant Protection, Faculty of Agriculture, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Ir Henik Sukorini
- Agrotechnology Study Program, Muhammadiyah University of Malang, Malang 65145, Indonesia
| | - Michael T. Ibisate
- College of Agriculture, Forestry and Environmental Sciences, Aklan State University, Banga, Aklan 5601, Philippines
| | - S.M. Mizanur Rahman
- Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Naved Ahmad Ansari
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Ai-Dong Chen
- Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Zeng-Rong Zhu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Kong Luen Heong
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuai Zhan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Han EK, Tamaki I, Oh SH, Park JS, Cho WB, Jin DP, Kim BY, Yang S, Son DC, Choi HJ, Gantsetseg A, Isagi Y, Lee JH. Genetic and demographic signatures accompanying the evolution of the selfing syndrome in Daphne kiusiana, an evergreen shrub. ANNALS OF BOTANY 2023; 131:751-767. [PMID: 36469429 PMCID: PMC10184445 DOI: 10.1093/aob/mcac142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/23/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The evolution of mating systems from outcrossing to self-fertilization is a common transition in flowering plants. This shift is often associated with the 'selfing syndrome', which is characterized by less visible flowers with functional changes to control outcrossing. In most cases, the evolutionary history and demographic dynamics underlying the evolution of the selfing syndrome remain poorly understood. METHODS Here, we characterize differences in the demographic genetic consequences and associated floral-specific traits between two distinct geographical groups of a wild shrub, Daphne kiusiana, endemic to East Asia; plants in the eastern region (southeastern Korea and Kyushu, Japan) exhibit smaller and fewer flowers compared to those of plants in the western region (southwestern Korea). Genetic analyses were conducted using nuclear microsatellites and chloroplast DNA (multiplexed phylogenetic marker sequencing) datasets. KEY RESULTS A high selfing rate with significantly increased homozygosity characterized the eastern lineage, associated with lower levels of visibility and herkogamy in the floral traits. The two lineages harboured independent phylogeographical histories. In contrast to the western lineage, the eastern lineage showed a gradual reduction in the effective population size with no signs of a severe bottleneck despite its extreme range contraction during the last glacial period. CONCLUSIONS Our results suggest that the selfing-associated morphological changes in D. kiusiana are of relatively old origin (at least 100 000 years ago) and were driven by directional selection for efficient self-pollination. We provide evidence that the evolution of the selfing syndrome in D. kiusiana is not strongly associated with a severe population bottleneck.
Collapse
Affiliation(s)
- Eun-Kyeong Han
- Department of Biology Education, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu 501-3714, Japan
| | - Sang-Hun Oh
- Department of Biology, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Soo Park
- Department of Botany, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Won-Bum Cho
- Department of Plant Variety Protection, National Forest Seed and Variety Center, Chungju 27495, Republic of Korea
| | - Dong-Pil Jin
- Urban Biodiversity Research Division, Sejong National Arboretum, Sejong 30106, Republic of Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon 11186, Republic of Korea
| | - Hyeok-Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Amarsanaa Gantsetseg
- Department of Biology Education, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yuji Isagi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Jung-Hyun Lee
- Department of Biology Education, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Divergence in flowering time is a major component contributing to reproductive isolation between two wild rice species (Oryza rufipogon and O. nivara). SCIENCE CHINA. LIFE SCIENCES 2020; 63:1714-1724. [PMID: 32318909 DOI: 10.1007/s11427-019-1678-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
It is of critical importance for our understanding of speciation process to determine the forms of reproductive isolation and their relative importance in species divergence. Oryza nivara and O. rufipogon are direct ancestors of Asian cultivated rice and a progenitor-daughter species pair. Investigating the reproductive isolation between them provides insights into plant speciation and helps understanding of the rice domestication. Here, we quantitatively measured the major components of reproductive isolation between the two species based on common garden and crossing experiments for three pairs of sympatric populations in Nepal, Cambodia and Laos. We revealed significant differences in the flowering times between species pairs, with O. nivara flowering much earlier than O. rufipogon. A very weak reduction in seed set but no reduction in F1 viability and fertility were detected for the crosses between species relative to those within species. Moreover, we detected asymmetrical compatibility between species and found that emasculation significantly decreased pollination success in O. nivara but not in O. rufipogon. Our study demonstrates that the divergence between O. nivara and O. rufipogon is maintained almost entirely by the difference in flowering times and suggests that differential flowering times contribute to both habitat preferences and reproductive isolation between species.
Collapse
|
4
|
Zhou W, Ji X, Obata S, Pais A, Dong Y, Peet R, Xiang QYJ. Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. Mol Phylogenet Evol 2018; 126:1-16. [PMID: 29631052 DOI: 10.1016/j.ympev.2018.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 01/08/2023]
Abstract
Nyssa sylvatica complex consists of several woody taxa occurring in eastern North America. These taxa were recognized as two or three species including three or four varieties by different authors. Due to high morphological similarities and complexity of morphological variation, classification and delineation of taxa in the group have been difficult and controversial. Here we employ data from RAD-seq to elucidate the genetic structure and phylogenetic relationships within the group. Using the genetic evidence, we evaluate previous classifications and delineate species. We also employ Species Distribution Modeling (SDM) to evaluate impacts of climatic changes on the ranges of the taxa and to gain insights into the relevant refugia in eastern North America. Results from Molecular Variance Analysis (AMOVA), STRUCTURE, phylogenetic analyses using Maximum likelihood, Bayesian Inference, and Splittree methods of RAD-seq data strongly support a two-clade pattern, largely separating samples of N. sylvatica from those of N. biflora-N. ursina mix. Divergence time analysis with BEAST suggests the two clades diverged in the mid Miocene. The ancestor of the present trees of N. sylvatica was suggested to be in the Pliocene and that of N. biflora-N. ursina mix in the end of the Miocene. Results from SDM predicted a smaller range in the southern part of the species present range of each clade during the Last Glacial Maximum (LGM). A northward expansion of the ranges during interglacial period and a northward shift of the ranges in the future under a model of global warming were also predicted. Our results support the recognition of two species in the complex, N. sylvatica and N. biflora, following the phylogenetic species concept. We found no genetic evidence supporting recognitions of intraspecific taxa. However, we propose subsp. ursina and subsp. biflora within N. biflora due to their distinction in habits, distributions, and habitats. Our results further support movements of trees in eastern North America in response to climatic changes. Finally, our study demonstrates that RAD-seq data and a combination of population genomics and SDM are valuable in resolving relationship and biogeographic history of closely related species that are taxonomically difficult.
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| | - Xiang Ji
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Shihori Obata
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| | - Andrew Pais
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| | - Yibo Dong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| | - Robert Peet
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA.
| |
Collapse
|
5
|
Abstract
According to the present taxonomical treatment, Paeonia subsect. Delavayanae consists of only two species (P. delavayi and P. ludlowii) endemic to the Himalayan-Hengduan Mountains. Although P. ludlowii can be distinguished from P. delavayi on the basis of a series of morphological characters, the species delimitation remains controversial because the more widespread one, P. delavayi, exhibits considerable morphological diversity. Both chloroplast DNA markers and nuclear microsatellites or simple sequence repeats (nSSR) are used herein to reveal genetic diversity and relationships of the two taxa included in this subsection, and ecological niche modeling (ENM) is employed to get insights into their paleodistribution. Our results show that genetic boundaries between the two currently recognized species are unclear, probably due to recent divergence. Paeonia ludlowii is budding from P. delavayi, probably by genetic isolation but also by shifting its niche to the harsher upland Tibetan conditions. Paeonia delavayi itself would be, however, under active speciation, showing significant genetic differentiation and morphological diversity. Whereas P. ludlowii would have endured the Pleistocene glacial periods by in situ persistence in local, small refugia, a 'dual' model seems to apply for P. delavayi (in situ persistence and retreat to refugia). The rarity of P. ludlowii and high evolutionary potential of P. delavayi imply high priority for in situ conservation of both taxa. The Himalayan-Hengduan Mountains are an ideal arena for differentiation within subsect. Delavayanae of Paeonia, by means of expansions/contractions/displacements, vertical migrations, and local survival/extinctions in response to the Neogene climate fluctuations and geological changes.
Collapse
|
6
|
Comparison of genetic variation between northern and southern populations of Lilium cernuum (Liliaceae): Implications for Pleistocene refugia. PLoS One 2018; 13:e0190520. [PMID: 29300767 PMCID: PMC5754063 DOI: 10.1371/journal.pone.0190520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
The so-called "Baekdudaegan" (BDDG), a mountain range that stretches along the Korean Peninsula, has been recently proposed as a major "southern" glacial refugium for boreal or temperate plant species based on palaeoecological and, especially, genetic data. Genetic studies comparing genetic variation between population occurring on the BDDG and more northern ones (i.e. in NE China and/or in Russian Far East) are, however, still too few to draw firm conclusions on the role of the BDDG as a refugium and a source for possible northward post-glacial recolonizations. In order to fill this gap, we selected a boreal/temperate herb, Lilium cernuum, and compared levels of allozyme-based genetic diversity of five populations from NE China with five populations from South Korea (home of its hypothesized refuge areas). As a complementary tool, we used the maximum entropy algorithm implemented in MaxEnt to infer the species' potential distribution for the present time, which was projected to different past climate scenarios for the Last Glacial Maximum (LGM). Permutation tests revealed that Korean populations harbored significantly higher levels of within-population genetic variation than those from NE China (expected heterozygosity = 0.173 vs. 0.095, respectively). Our results suggest that the lowered levels of genetic diversity in NE Chinese populations might be due to founder effects associated with post-glacial migration from southern regions. Congruent with genetic data, past distribution models showed higher probability of occurrence in southern ranges than in northern ones during the LGM. In addition, a positive correlation was detected between the expected heterozygosity and environmental LGM suitability. From a conservation perspective, our results further suggest that the southern populations in South Korea may be particularly worthy of protection.
Collapse
|
7
|
Thomas E, Tovar E, Villafañe C, Bocanegra JL, Moreno R. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia. RICE (NEW YORK, N.Y.) 2017; 10:13. [PMID: 28421550 PMCID: PMC5395511 DOI: 10.1186/s12284-017-0150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. RESULTS Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. CONCLUSIONS Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian CWRs, effective in situ conservation might best be achieved through tailor-made management plans and exclusion of GM rice cultivation in areas holding the most genetically diverse CWR populations. This may be combined with assisted migration of populations to suitable areas where rice is unlikely to be cultivated under current and future climate conditions.
Collapse
Affiliation(s)
| | - Eduardo Tovar
- The Alexander von Humboldt Biological Resources Research Institute, Laboratory of Conservation Genetics, Bogota, Colombia
| | - Carolina Villafañe
- Ministry of Environment and Sustainable Development, Genetic Resources Group, Bogota, Colombia
| | - José Leonardo Bocanegra
- The Alexander von Humboldt Biological Resources Research Institute, International Affairs, Policy and Cooperation Office, Bogota, Colombia
| | - Rodrigo Moreno
- The Alexander von Humboldt Biological Resources Research Institute, International Affairs, Policy and Cooperation Office, Bogota, Colombia
| |
Collapse
|
8
|
López-Pujol J, López-Vinyallonga S, Susanna A, Ertuğrul K, Uysal T, Tugay O, Guetat A, Garcia-Jacas N. Speciation and genetic diversity in Centaurea subsect. Phalolepis in Anatolia. Sci Rep 2016; 6:37818. [PMID: 27886271 PMCID: PMC5122891 DOI: 10.1038/srep37818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022] Open
Abstract
Mountains of Anatolia are one of the main Mediterranean biodiversity hotspots and their richness in endemic species amounts for 30% of the flora. Two main factors may account for this high diversity: the complex orography and its role as refugia during past glaciations. We have investigated seven narrow endemics of Centaurea subsection Phalolepis from Anatolia by means of microsatellites and ecological niche modelling (ENM), in order to analyse genetic polymorphisms and getting insights into their speciation. Despite being narrow endemics, all the studied species show moderate to high SSR genetic diversity. Populations are genetically isolated, but exchange of genes probably occurred at glacial maxima (likely through the Anatolian mountain arches as suggested by the ENM). The lack of correlation between genetic clusters and (morpho) species is interpreted as a result of allopatric diversification on the basis of a shared gene pool. As suggested in a former study in Greece, post-glacial isolation in mountains would be the main driver of diversification in these plants; mountains of Anatolia would have acted as plant refugia, allowing the maintenance of high genetic diversity. Ancient gene flow between taxa that became sympatric during glaciations may also have contributed to the high levels of genetic diversity.
Collapse
Affiliation(s)
- Jordi López-Pujol
- Botanic Institute of Barcelona (IBB-CSIC-ICUB), Pg. del Migdia, s/n, ES-08038 Barcelona, Spain
| | - Sara López-Vinyallonga
- Botanic Institute of Barcelona (IBB-CSIC-ICUB), Pg. del Migdia, s/n, ES-08038 Barcelona, Spain
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB-CSIC-ICUB), Pg. del Migdia, s/n, ES-08038 Barcelona, Spain
| | - Kuddisi Ertuğrul
- Faculty of Science and Art, Selcuk University, TR-42031 Konya, Turkey
| | - Tuna Uysal
- Faculty of Science and Art, Selcuk University, TR-42031 Konya, Turkey
| | - Osman Tugay
- Faculty of Science and Art, Selcuk University, TR-42031 Konya, Turkey
| | - Arbi Guetat
- Department of Biology, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | - Núria Garcia-Jacas
- Botanic Institute of Barcelona (IBB-CSIC-ICUB), Pg. del Migdia, s/n, ES-08038 Barcelona, Spain
| |
Collapse
|
9
|
Liu R, Zheng XM, Zhou L, Zhou HF, Ge S. Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara. Mol Ecol 2015; 24:5211-28. [PMID: 26340227 DOI: 10.1111/mec.13375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial-interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Atwell BJ, Wang H, Scafaro AP. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:48-58. [PMID: 24388514 DOI: 10.1016/j.plantsci.2013.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/28/2013] [Accepted: 10/11/2013] [Indexed: 05/02/2023]
Abstract
Oryza sativa and Oryza glaberrima have been selected to acquire and partition resources efficiently as part of the process of domestication. However, genetic diversity in cultivated rice is limited compared to wild Oryza species, in spite of 120,000 genotypes being held in gene banks. By contrast, there is untapped diversity in the more than 20 wild species of Oryza, some having been collected from just a few coastal locations (e.g. Oryza schlechteri), while others are widely distributed (e.g. Oryza nivara and Oryza rufipogon). The extent of DNA sequence diversity and phenotypic variation is still being established in wild Oryza, with genetic barriers suggesting a vast range of morphologies and function even within species, such as has been demonstrated for Oryza meridionalis. With increasing climate variability and attempts to make more marginal land arable, abiotic and biotic stresses will be managed over the coming decades by tapping into the genetic diversity of wild relatives of O. sativa. To help create a more targeted approach to sourcing wild rice germplasm for abiotic stress tolerance, we have created a climate distribution map by plotting the natural occurrence of all Oryza species against corresponding temperature and moisture data. We then discuss interspecific variation in phenotype and its significance for rice, followed by a discussion of ways to integrate germplasm from wild relatives into domesticated rice.
Collapse
Affiliation(s)
- Brian J Atwell
- Department of Biological Sciences, Faculty of Science, Macquarie University, New South Wales 2109, Australia.
| | - Han Wang
- Department of Biological Sciences, Faculty of Science, Macquarie University, New South Wales 2109, Australia
| | - Andrew P Scafaro
- Department of Biological Sciences, Faculty of Science, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|