1
|
Fernández-Mazuecos M, Blanco-Pastor JL, Juan A, Carnicero P, Forrest A, Alarcón M, Vargas P, Glover BJ. Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. THE NEW PHYTOLOGIST 2019; 222:1123-1138. [PMID: 30570752 DOI: 10.1111/nph.15654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/11/2018] [Indexed: 05/27/2023]
Abstract
Floral nectar spurs are widely considered a key innovation promoting diversification in angiosperms by means of pollinator shifts. We investigated the macroevolutionary dynamics of nectar spurs in the tribe Antirrhineae (Plantaginaceae), which contains 29 genera and 300-400 species (70-80% spurred). The effect of nectar spurs on diversification was tested, with special focus on Linaria, the genus with the highest number of species. We generated the most comprehensive phylogeny of Antirrhineae to date and reconstructed the evolution of nectar spurs. Diversification rate heterogeneity was investigated using trait-dependent and trait-independent methods, and accounting for taxonomic uncertainty. The association between changes in spur length and speciation was examined within Linaria using model testing and ancestral state reconstructions. We inferred four independent acquisitions of nectar spurs. Diversification analyses revealed that nectar spurs are loosely associated with increased diversification rates. Detected rate shifts were delayed by 5-15 Myr with respect to the acquisition of the trait. Active evolution of spur length, fitting a speciational model, was inferred in Linaria, which is consistent with a scenario of pollinator shifts driving diversification. Nectar spurs played a role in diversification of the Antirrhineae, but diversification dynamics can only be fully explained by the complex interaction of multiple biotic and abiotic factors.
Collapse
Affiliation(s)
- Mario Fernández-Mazuecos
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - José Luis Blanco-Pastor
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), 86600, Lusignan, France
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales (dCARN) & Instituto de la Biodiversidad (CIBIO), Universidad de Alicante, PO Box 99, 03080, Alicante, Spain
| | - Pau Carnicero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Marisa Alarcón
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
2
|
Cullen E, Fernández-Mazuecos M, Glover BJ. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion. ANNALS OF BOTANY 2018; 122:801-809. [PMID: 29370374 PMCID: PMC6215036 DOI: 10.1093/aob/mcx213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Nectar spurs (tubular outgrowths of a floral organ which contain, or give the appearance of containing, nectar) are hypothesized to be a 'key innovation' which can lead to rapid speciation within a lineage, because they are involved in pollinator specificity. Despite the ecological importance of nectar spurs, relatively little is known about their development. We used a comparative approach to investigate variation in nectar spur length in a clade of eight Iberian toadflaxes. METHODS Spur growth was measured at the macroscopic level over time in all eight species, and growth rate and growth duration compared. Evolution of growth rate was reconstructed across the phylogeny. Within the clade we then focused on Linaria becerrae and Linaria clementei, a pair of sister species which have extremely long and short spurs, respectively. Characterization at a micromorphological level was performed across a range of key developmental stages to determine whether the difference in spur length is due to differential cell expansion or cell division. KEY RESULTS We detected a significant difference in the evolved growth rates, while developmental timing of both the initiation and the end of spur growth remained similar. Cell number is three times higher in the long spurred L. becerrae compared with L. clementei, whereas cell length is only 1.3 times greater. In addition, overall anisotropy of mature cells is not significantly different between the two species. CONCLUSIONS We found that changes in cell number and therefore in cell division largely explain evolution of spur length. This contrasts with previous studies in Aquilegia which have found that variation in nectar spur length is due to directed cell expansion (anisotropy) over variable time frames. Our study adds to knowledge about nectar spur development in a comparative context and indicates that different systems may have evolved nectar spurs using disparate mechanisms.
Collapse
Affiliation(s)
- E Cullen
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - M Fernández-Mazuecos
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| | - B J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Baldwin BG. Origins of Plant Diversity in the California Floristic Province. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-110512-135847] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent biogeographic and evolutionary studies have led to improved understanding of the origins of exceptionally high plant diversity in the California Floristic Province (CA-FP). Spatial analyses of Californian plant diversity and endemism reinforce the importance of geographically isolated areas of high topographic and edaphic complexity as floristic hot spots, in which the relative influence of factors promoting evolutionary divergence and buffering of lineages against extinction has gained increased attention. Molecular phylogenetic studies spanning the flora indicate that immediate sources of CA-FP lineages bearing endemic species diversity have been mostly within North America—especially within the west and southwest—even for groups of north temperate affinity, and that most diversification of extant lineages in the CA-FP has occurred since the mid-Miocene, with the transition toward summer-drying. Process-focused studies continue to implicate environmental heterogeneity at local or broad geographic scales in evolutionary divergence within the CA-FP, often associated with reproductive or life-history shifts or sometimes hybridization.
Collapse
Affiliation(s)
- Bruce G. Baldwin
- Jepson Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720-2465
| |
Collapse
|
4
|
Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (). THE NEW PHYTOLOGIST 2014; 202:1105-1117. [PMID: 24754325 DOI: 10.1111/nph.12756] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - María Claudia Segovia-Salcedo
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Grupo de Investigacíon Conservación de Bosques de Polylepis, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de la Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Ingrid Jordon-Thaden
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- University and Jepson Herbaria, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Lucas Majure
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicolas M Miles
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Evgeny V Mavrodiev
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Wenbin Mei
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | | | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
5
|
Ishiguro K, Taniguchi M, Tanaka Y. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. JOURNAL OF PLANT RESEARCH 2012; 125:451-6. [PMID: 21959781 DOI: 10.1007/s10265-011-0455-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/05/2011] [Indexed: 05/04/2023]
Abstract
The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.
Collapse
Affiliation(s)
- Kanako Ishiguro
- Institute for Plant Science, Suntory Business Expert Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, Japan
| | | | | |
Collapse
|
6
|
Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ. Characterization of Linaria KNOX genes suggests a role in petal-spur development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:703-14. [PMID: 21790812 DOI: 10.1111/j.1365-313x.2011.04721.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spurs are tubular outgrowths of perianth organs that have evolved iteratively among angiosperms. They typically contain nectar and often strongly influence pollinator specificity, potentially mediating reproductive isolation. The identification of Antirrhinum majus mutants with ectopic petal spurs suggested that petal-spur development is dependent on the expression of KNOTTED 1-like homeobox (KNOX) genes, which are better known for their role in maintaining the shoot apical meristem. Here, we tested the role of KNOX genes in petal-spur development by isolating orthologs of the A. majus KNOX genes Hirzina (AmHirz) and Invaginata (AmIna) from Linaria vulgaris, a related species that differs from A. majus in possessing long, narrow petal spurs. We name these genes LvHirz and LvIna, respectively. Using quantitative reverse-transcription PCR, we show that LvHirz is expressed at high levels in the developing petals and demonstrate that the expression of petal-associated KNOX genes is sufficient to induce sac-like outgrowths on petals in a heterologous host. We propose a model in which KNOX gene expression during early petal-spur development promotes and maintains further morphogenetic potential of the petal, as previously described for KNOX gene function in compound leaf development. These data indicate that petal spurs could have evolved by changes in regulatory gene expression that cause rapid and potentially saltational phenotypic modifications. Given the morphological similarity of spur ontogeny in distantly related taxa, changes in KNOX gene expression patterns could be a shared feature of spur development in angiosperms.
Collapse
Affiliation(s)
- Mathew S Box
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | | | | | | |
Collapse
|
7
|
Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP. Recently formed polyploid plants diversify at lower rates. Science 2011; 333:1257. [PMID: 21852456 DOI: 10.1126/science.1207205] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyploidy, the doubling of genomic content, is a widespread feature, especially among plants, yet its macroevolutionary impacts are contentious. Traditionally, polyploidy has been considered an evolutionary dead end, whereas recent genomic studies suggest that polyploidy has been a key driver of macroevolutionary success. We examined the consequences of polyploidy on the time scale of genera across a diverse set of vascular plants, encompassing hundreds of inferred polyploidization events. Likelihood-based analyses indicate that polyploids generally exhibit lower speciation rates and higher extinction rates than diploids, providing the first quantitative corroboration of the dead-end hypothesis. The increased speciation rates of diploids can, in part, be ascribed to their capacity to speciate via polyploidy. Only particularly fit lineages of polyploids may persist to enjoy longer-term evolutionary success.
Collapse
Affiliation(s)
- Itay Mayrose
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wilson Y, Hudson A. The evolutionary history of Antirrhinum suggests that ancestral phenotype combinations survived repeated hybridizations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:1032-1043. [PMID: 21435047 DOI: 10.1111/j.1365-313x.2011.04563.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The model species Antirrhinum majus (the garden snapdragon) has over 20 close wild relatives that are morphologically diverse and adapted to different Mediterranean environments. Hybrids between Antirrhinum species have been used successfully to identify genes underlying their phenotypic differences, and to infer how selection acts on them. To better understand the genetic basis for this diversity, we have examined the evolutionary relationships between Antirrhinum species and how these relate to geography and patterns of phenotypic variation in the genus as a whole. Large population samples and both plastid and multilocus nuclear genotypes resolved the relationships between many species and provided some support for the traditional taxonomic division of the genus into morphological subsections. Morphometric analysis of plants grown in controlled conditions supported the phenotypic distinction of the two largest subsections, and the involvement of multiple underlying genes. Incongruence between nuclear and plastid genotypes further suggested that several species have arisen after hybridization between subsections, and that some species continue to hybridize. However, all potential hybrids appear to have retained a phenotype similar to one of their ancestors, suggesting that ancestral combinations of characters are maintained by selection at many different loci.
Collapse
Affiliation(s)
- Yvette Wilson
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
9
|
Howarth DG, Martins T, Chimney E, Donoghue MJ. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). ANNALS OF BOTANY 2011; 107:1521-32. [PMID: 21478175 PMCID: PMC3108805 DOI: 10.1093/aob/mcr049] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/07/2010] [Accepted: 01/24/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The expression of floral symmetry genes is examined in the CYCLOIDEA lineage following duplication, and these are linked to changes in flower morphology. The study focuses on Dipsacales, comparing DipsCYC2 gene expression in Viburnum (radially symmetrical Adoxaceae) to members of early-diverging lineages of the bilaterally symmetrical Caprifoliaceae (Diervilla and Lonicera). METHODS Floral tissue from six species, which included dorsal, lateral and ventral regions of the corolla, was dissected. RNA was extracted from these tissues and each copy of DipsCYC2 was amplified with reverse transcriptase PCR. KEY RESULTS Members of DipsCYC2 were expressed across the corolla in the radially symmetrical Viburnum plicatum. A shift to bilaterally symmetrical flowers at the base of the Caprifoliaceae was accompanied by a duplication of the DipsCYC2 gene, resulting in DipsCYC2A and DipsCYC2B, and by loss of expression of both of these copies in the ventral petal. In Lonicera (Caprifolieae), there is a shift from flowers with two dorsally and three ventrally oriented corolla lobes to a clear differentiation of dorsal, lateral and ventral lobes. This shift entailed a decoupling of expression of DipsCYC2A and DipsCYC2B; DipsCYC2B continues to be expressed in the dorsal and lateral lobes, while DipsCYC2A expression is restricted to just the two dorsal lobes. A reversion to more radially symmetrical flowers within Lonicera was accompanied by a re-expansion of expression of both DipsCYC2A and DipsCYC2B. CONCLUSIONS The transition to bilateral symmetry in Caprifoliaceae involved: (a) duplication of an ancestral DipsCYC2 gene; (b) the loss of expression of both of these copies in the ventral petal; and (c) changes in the zone of expression, with one copy continuing to be expressed across the dorsal and lateral petals, and the other copy becoming restricted in expression to the dorsal corolla lobes.
Collapse
Affiliation(s)
- Dianella G Howarth
- Department of Biological Sciences, St John's University, Jamaica, NY 11439, USA.
| | | | | | | |
Collapse
|
10
|
Sympatric Sister Species of Californian Antirrhinum and Their Transiently Specialized Pollinators. AMERICAN MIDLAND NATURALIST 2010. [DOI: 10.1674/0003-0031-164.2.337] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Abstract
The number of genetically tractable plant model systems is rapidly increasing, thanks to the decreasing cost of sequencing and the wide amenability of plants to stable transformation and other functional approaches. In this chapter, I discuss emerging model systems from throughout the land plant phylogeny and consider how their unique attributes are contributing to our understanding of development, evolution, and ecology. These new models are being developed using two distinct strategies: in some cases, they are selected because of their close relationship to the established models, while in others, they are chosen with the explicit intention of exploring distantly related plant lineages. Such complementary approaches are yielding exciting new results that shed light on both micro- and macroevolutionary processes in the context of developmental evolution.
Collapse
|
12
|
Hudson A, Critchley J, Erasmus Y. The genus antirrhinum (snapdragon): a flowering plant model for evolution and development. Cold Spring Harb Protoc 2008; 2008:pdb.emo100. [PMID: 21356683 DOI: 10.1101/pdb.emo100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTIONThe Antirrhinum species group comprises approximately 20 morphologically diverse members that are able to form fertile hybrids. It includes the cultivated snapdragon Antirrhinum majus, which has been used as a model for biochemical and developmental genetics for more than 75 yr. The research infrastructure for A. majus, together with the interfertility of the species group, allows Antirrhinum to be used to examine the genetic basis for plant diversity.
Collapse
Affiliation(s)
- Andrew Hudson
- University of Edinburgh, Institute of Molecular Plant Sciences, Edinburgh EH9 3JH, United Kingdom
| | | | | |
Collapse
|
13
|
Müller KF, Borsch T, Legendre L, Porembski S, Barthlott W. Recent progress in understanding the evolution of carnivorous lentibulariaceae (lamiales). PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:748-57. [PMID: 17203430 DOI: 10.1055/s-2006-924706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carnivorous plants have emerged as model systems for addressing many ecological and evolutionary questions, and since Lentibulariaceae comprise more than half of all known carnivorous species (325 spp.), they are of particular interest. Studies using various molecular markers have established that Lentibulariaceae and their three genera are monophyletic with Pinguicula being sister to a Genlisea-Utricularia-clade, while the closest relatives of the family remain uncertain. Character states of the carnivorous syndrome in related proto-carnivorous lamialean families apparently emerged independently. In Utricularia, the terrestrial habit has been reconstructed as plesiomorphic, and an extension of subgenus Polypompholyx is warranted. In the protozoan-attracting Genlisea, subgenus Tayloria is revealed as basal lineage. In Pinguicula, the six major lineages found reflect radiations in clearly defined geographic regions, whereas most previously recognized subgeneric taxa are non-monophyletic. Genlisea and Utricularia exhibit substitutional rates that rank among the highest in angiosperms for the molecular markers analyzed. One possible explanation for this lies in selective constraints on a wide range of genomic regions that may have been lowered due to the use of an alternative mode of acquiring nutrients.
Collapse
Affiliation(s)
- K F Müller
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53111 Bonn, Germany.
| | | | | | | | | |
Collapse
|
14
|
Howarth DG, Donoghue MJ. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A 2006; 103:9101-6. [PMID: 16754863 PMCID: PMC1482573 DOI: 10.1073/pnas.0602827103] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid angiosperms suggest that orthologous TCP genes may be important in dorsal identity, but there has been no broad phylogenetic context to determine copy number or orthology. Here, we compare published data from rosids and asterids with newly collected data from ranunculids, caryophyllids, Saxifragales, and Asterales to ascertain the phylogenetic placement of major duplications in the "ECE" (CYC/TB1) clade of TCP transcription factors. Bayesian analyses indicate that there are three major copies of "CYC" in the ECE clade, and that duplications leading to these copies predate the core eudicots. CYC1 contains no subsequent duplications and may not be expressed in floral tissue. CYC3 exhibits similar patterns of duplication to CYC2 in several groups. Using RT-PCR, we show that, in flowers of Lonicera morrowii (Caprifoliaceae), DipsCYC2B is expressed in the four dorsal petals and not in the ventral petal. DipsCYC3B is expressed in flower and petal primordia, possibly most strongly in the ventral petal.
Collapse
Affiliation(s)
- Dianella G. Howarth
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106
| |
Collapse
|
15
|
Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. THE PLANT CELL 2006; 18:831-51. [PMID: 16531495 PMCID: PMC1425845 DOI: 10.1105/tpc.105.039255] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 01/10/2006] [Accepted: 02/07/2006] [Indexed: 05/07/2023]
Abstract
The Rosea1, Rosea2, and Venosa genes encode MYB-related transcription factors active in the flowers of Antirrhinum majus. Analysis of mutant phenotypes shows that these genes control the intensity and pattern of magenta anthocyanin pigmentation in flowers. Despite the structural similarity of these regulatory proteins, they influence the expression of target genes encoding the enzymes of anthocyanin biosynthesis with different specificities. Consequently, they are not equivalent biochemically in their activities. Different species of the genus Antirrhinum, native to Spain and Portugal, show striking differences in their patterns and intensities of floral pigmentation. Differences in anthocyanin pigmentation between at least six species are attributable to variations in the activity of the Rosea and Venosa loci. Set in the context of our understanding of the regulation of anthocyanin production in other genera, the activity of MYB-related genes is probably a primary cause of natural variation in anthocyanin pigmentation in plants.
Collapse
Affiliation(s)
- Kathy Schwinn
- New Zealand Institute for Crop and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|