1
|
Tan L, Tu Y, Miao Z, Zhao Y, Liang Y, Zhong J, Zhong R, Xu N, Chen X, He C. Glycyrol alleviates osteoporosis through dual modulation on osteoclastogenesis and osteogenesis by targeting Syk signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156429. [PMID: 39939034 DOI: 10.1016/j.phymed.2025.156429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation, has become a serious public health challenge worldwide. Glycyrol (GC) is a representative natural coumestan isolated from licorice that shows multiple pharmacological activities, but its anti-osteoporotic effect and underlying mechanisms remain unclear. RESULTS GC significantly suppressed lipopolysaccharide-induced mouse bone loss and dexamethasone-induced zebrafish bone formation deficiency. Meanwhile, GC exhibited dual effects of inhibiting osteoclast formation and bone resorption, and stimulating osteoblast differentiation and mineralization. By combining kinomic screening assay, bioinformatics analysis and cellular target engagement validation, spleen tyrosine kinase (Syk) was identified as a key kinase target of GC. Subsequently, Syk was determined to play important roles in promoting osteoclast formation and impeding osteoblast differentiation. Interestingly, GC directly bound to the active cavity of Syk through hydrogen bonds and significantly inhibited its activity. Moreover, GC remarkably inhibited RANKL-induced activation of Syk/PLCγ2/Ca2+/NFATc1 and MAPK pathways in macrophages undergoing differentiation into osteoclasts. CONCLUSION These results demonstrated that GC exerted a dual regulation on osteoclastogenesis and osteogenesis and consequently alleviated osteoporosis through targeting Syk and its downstream signaling pathways. In addition, the current study emphasizes the key roles of Syk in bone resorption and formation, suggesting the application potential of Syk inhibitors for the management of bone diseases. Meanwhile, this study provides evidence supporting the development of GC or its derivatives as effective anti-resorptive and bone anabolic agents for the prevention or treatment of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Ruting Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
2
|
Moraru R, Valle-Argos B, Minton A, Buermann L, Pan S, Wales TE, Joseph RE, Andreotti AH, Strefford JC, Packham G, Baud MGJ. Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: A BTK Story. J Med Chem 2024; 67:13572-13593. [PMID: 39119945 PMCID: PMC11345841 DOI: 10.1021/acs.jmedchem.3c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Targeted covalent inhibitors (TCIs) directing cysteine have historically relied on a narrow set of electrophilic "warheads". While Michael acceptors remain at the forefront of TCI design strategies, they show variable stability and selectivity under physiological conditions. Here, we show that the 2-sulfonylpyrimidine motif is an effective replacement for the acrylamide warhead of Ibrutinib, for the inhibition of Bruton's tyrosine kinase. In a few iterations, we discovered new derivatives, which inhibit BTK both in vitro and in cellulo at low nanomolar concentrations, on par with Ibrutinib. Several derivatives also displayed good plasma stability and reduced off-target binding in vitro across 135 tyrosine kinases. This proof-of-concept study on a well-studied kinase/TCI system highlights the 2-sulfonylpyrimidine group as a useful acrylamide replacement. In the future, it will be interesting to investigate its wider potential for developing TCIs with improved pharmacologies and selectivity profiles across structurally related protein families.
Collapse
Affiliation(s)
- Ruxandra Moraru
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Beatriz Valle-Argos
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Annabel Minton
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Lara Buermann
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Suyin Pan
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas E. Wales
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Raji E. Joseph
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Amy H. Andreotti
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C. Strefford
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Graham Packham
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Matthias G. J. Baud
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
3
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
4
|
Sciaccotta R, Gangemi S, Penna G, Giordano L, Pioggia G, Allegra A. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis. Antioxidants (Basel) 2024; 13:475. [PMID: 38671922 PMCID: PMC11047475 DOI: 10.3390/antiox13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic lymphocytic leukemia, in spite of recent advancements, is still an incurable disease; the majority of patients eventually acquire resistance to treatment through relapses. In all subtypes of chronic lymphocytic leukemia, the disruption of normal B-cell homeostasis is thought to be mostly caused by the absence of apoptosis. Consequently, apoptosis induction is crucial to the management of this illness. Damaged biological components can accumulate as a result of the oxidation of intracellular lipids, proteins, and DNA by reactive oxygen species. It is possible that cancer cells are more susceptible to apoptosis because of their increased production of reactive oxygen species. An excess of reactive oxygen species can lead to oxidative stress, which can harm biological elements like DNA and trigger apoptotic pathways that cause planned cell death. In order to upset the balance of oxidative stress in cells, recent therapeutic treatments in chronic lymphocytic leukemia have focused on either producing reactive oxygen species or inhibiting it. Examples include targets created in the field of nanomedicine, natural extracts and nutraceuticals, tailored therapy using biomarkers, and metabolic targets. Current developments in the complex connection between apoptosis, particularly ferroptosis and its involvement in epigenomics and alterations, have created a new paradigm.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Giuseppa Penna
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| |
Collapse
|
5
|
Li YQ, Lannigan WG, Davoodi S, Daryaee F, Corrionero A, Alfonso P, Rodriguez-Santamaria JA, Wang N, Haley JD, Tonge PJ. Discovery of Novel Bruton's Tyrosine Kinase PROTACs with Enhanced Selectivity and Cellular Efficacy. J Med Chem 2023; 66:7454-7474. [PMID: 37195170 PMCID: PMC10332445 DOI: 10.1021/acs.jmedchem.3c00176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases, and several BTK inhibitors are already approved for use in humans. Heterobivalent BTK protein degraders are also in development, based on the premise that proteolysis targeting chimeras (PROTACs) may provide additional therapeutic benefits. However, most BTK PROTACs are based on the BTK inhibitor ibrutinib raising concerns about their selectivity profiles, given the known off-target effects of ibrutinib. Here, we disclose the discovery and in vitro characterization of BTK PROTACs based on the selective BTK inhibitor GDC-0853 and the cereblon recruitment ligand pomalidomide. PTD10 is a highly potent BTK degrader (DC50 0.5 nM) that inhibited cell growth and induced apoptosis at lower concentrations than the two parent molecules, as well as three previously reported BTK PROTACs, and had improved selectivity compared to ibrutinib-based BTK PROTACs.
Collapse
Affiliation(s)
- Yi-Qian Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - William G. Lannigan
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shabnam Davoodi
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Ana Corrionero
- Enzymlogic S.L., QUBE Technology Park, C/ Santiago Grisolía, 2, 28760, Madrid, Spain
| | - Patricia Alfonso
- Enzymlogic S.L., QUBE Technology Park, C/ Santiago Grisolía, 2, 28760, Madrid, Spain
| | | | - Nan Wang
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - John D. Haley
- Department of Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
6
|
|
7
|
Zhang D, Harris HM, Chen J, Judy J, James G, Kelly A, McIntosh J, Tenn-McClellan A, Ambing E, Tan YS, Lu H, Gajewski S, Clifton MC, Yung S, Robbins DW, Pirooznia M, Skånland SS, Gaglione E, Mhibik M, Underbayev C, Ahn IE, Sun C, Herman SEM, Noviski M, Wiestner A. NRX-0492 degrades wild-type and C481 mutant BTK and demonstrates in vivo activity in CLL patient-derived xenografts. Blood 2023; 141:1584-1596. [PMID: 36375120 PMCID: PMC10163313 DOI: 10.1182/blood.2022016934] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bruton tyrosine kinase (BTK) is essential for B-cell receptor (BCR) signaling, a driver of chronic lymphocytic leukemia (CLL). Covalent inhibitors bind C481 in the active site of BTK and have become a preferred CLL therapy. Disease progression on covalent BTK inhibitors is commonly associated with C481 mutations. Here, we investigated a targeted protein degrader, NRX-0492, that links a noncovalent BTK-binding domain to cereblon, an adaptor protein of the E3 ubiquitin ligase complex. NRX-0492 selectively catalyzes ubiquitylation and proteasomal degradation of BTK. In primary CLL cells, NRX-0492 induced rapid and sustained degradation of both wild-type and C481 mutant BTK at half maximal degradation concentration (DC50) of ≤0.2 nM and DC90 of ≤0.5 nM, respectively. Sustained degrader activity was maintained for at least 24 hours after washout and was equally observed in high-risk (deletion 17p) and standard-risk (deletion 13q only) CLL subtypes. In in vitro testing against treatment-naïve CLL samples, NRX-0492 was as effective as ibrutinib at inhibiting BCR-mediated signaling, transcriptional programs, and chemokine secretion. In patient-derived xenografts, orally administered NRX-0492 induced BTK degradation and inhibited activation and proliferation of CLL cells in blood and spleen and remained efficacious against primary C481S mutant CLL cells collected from a patient progressing on ibrutinib. Oral bioavailability, >90% degradation of BTK at subnanomolar concentrations, and sustained pharmacodynamic effects after drug clearance make this class of targeted protein degraders uniquely suitable for clinical translation, in particular as a strategy to overcome BTK inhibitor resistance. Clinical studies testing this approach have been initiated (NCT04830137, NCT05131022).
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Heterografts
- Drug Resistance, Neoplasm
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Deyi Zhang
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Hailey M. Harris
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jonathan Chen
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jen Judy
- Bioinformatics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gabriella James
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | - Hao Lu
- Nurix Therapeutics, Inc, San Francisco, CA
| | | | | | | | | | - Mehdi Pirooznia
- Bioinformatics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sigrid S. Skånland
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erika Gaglione
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Maissa Mhibik
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chingiz Underbayev
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Inhye E. Ahn
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sarah E. M. Herman
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Du G, Jiang J, Henning NJ, Safaee N, Koide E, Nowak RP, Donovan KA, Yoon H, You I, Yue H, Eleuteri NA, He Z, Li Z, Huang HT, Che J, Nabet B, Zhang T, Fischer ES, Gray NS. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem Biol 2022; 29:1470-1481.e31. [PMID: 36070758 PMCID: PMC9588736 DOI: 10.1016/j.chembiol.2022.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Targeted protein degradation (TPD) uses small molecules to recruit E3 ubiquitin ligases into the proximity of proteins of interest, inducing ubiquitination-dependent degradation. A major bottleneck in the TPD field is the lack of accessible E3 ligase ligands for developing degraders. To expand the E3 ligase toolbox, we sought to convert the Kelch-like ECH-associated protein 1 (KEAP1) inhibitor KI696 into a recruitment handle for several targets. While we were able to generate KEAP1-recruiting degraders of BET family and murine focal adhesion kinase (FAK), we discovered that the target scope of KEAP1 was narrow, as targets easily degraded using a cereblon (CRBN)-recruiting degrader were refractory to KEAP1-mediated degradation. Linking the KEAP1-binding ligand to a CRBN-binding ligand resulted in a molecule that induced degradation of KEAP1 but not CRBN. In sum, we characterize tool compounds to explore KEAP1-mediated ubiquitination and delineate the challenges of exploiting new E3 ligases for generating bivalent degraders.
Collapse
Affiliation(s)
- Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathaniel J Henning
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nozhat Safaee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Inchul You
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas A Eleuteri
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Hubert T Huang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Arthur R, Wathen A, Lemm EA, Stevenson FK, Forconi F, Linley AJ, Steele AJ, Packham G, Valle-Argos B. BTK-independent regulation of calcium signalling downstream of the B-cell receptor in malignant B-cells. Cell Signal 2022; 96:110358. [PMID: 35597428 DOI: 10.1016/j.cellsig.2022.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
BTK inhibitors (BTKi) have dramatically improved outcomes for patients with chronic lymphocytic leukaemia (CLL) and some forms of B-cell lymphoma. However, new strategies are needed to enhance responses. Here we have performed a detailed analysis of the effects of BTKi on B-cell receptor (BCR)-induced signalling using primary malignant cells from CLL patients and B-lymphoma cell lines. Although BTK is considered as a key activator of PLCγ2, BTKi (ibrutinib and acalabrutinib) failed to fully inhibit calcium responses in CLL samples with strong BCR signalling capacity. This BTKi-resistant calcium signalling was sufficient to engage downstream calcium-dependent transcription and suppress CLL cell apoptosis and was entirely independent of BTK and not just its kinase activity as similar results were obtained using a BTK-degrading PROTAC. BTK-independent calcium signalling was also observed in two B-lymphoma cell lines where BTKi had little effect on the initial phase of the calcium response but did accelerate the subsequent decline in intracellular calcium. In contrast to BTKi, calcium responses were completely blocked by inhibition of SYK in CLL and lymphoma cells. Engagement of BTK-independent calcium responses was associated with BTK-independent phosphorylation of PLCγ2 on Y753 and Y759 in both CLL and lymphoma cells. Moreover, in CLL samples, inhibition of RAC, which can mediate BTK-independent activation of PLCγ2, cooperated with ibrutinib to suppress calcium responses. BTK-independent calcium signalling may limit the effectiveness of BTKi to suppress BCR signalling responses and our results suggest inhibition of SYK or dual inhibition of BTK and RAC as alternative strategies to strengthen pathway blockade.
Collapse
Affiliation(s)
- Rachael Arthur
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Alexander Wathen
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Elizabeth A Lemm
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Freda K Stevenson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Francesco Forconi
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Adam J Linley
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Institute of Systems, Molecular and Integrative Biology, 5(th) Floor Nuffield Building, Crown Street, Liverpool L69 3BX, United Kingdom
| | - Andrew J Steele
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Graham Packham
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
| | - Beatriz Valle-Argos
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
10
|
Zhang J, Che J, Luo X, Wu M, Kan W, Jin Y, Wang H, Pang A, Li C, Huang W, Zeng S, Zhuang W, Wu Y, Xu Y, Zhou Y, Li J, Dong X. Structural Feature Analyzation Strategies toward Discovery of Orally Bioavailable PROTACs of Bruton's Tyrosine Kinase for the Treatment of Lymphoma. J Med Chem 2022; 65:9096-9125. [PMID: 35671249 DOI: 10.1021/acs.jmedchem.2c00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bruton's tyrosine kinase proteolysis-targeting chimeras (BTK-PROTACs) have emerged as a promising approach to address the limitations of BTK inhibitors. However, conducting the rational discovery of orally bioavailable BTK-PROTACs presents significant challenges. In this study, dimensionality reduction analysis and model molecule validation were utilized to identify some key structural features for improving the oral absorption of BTK-PROTACs. The results were applied to optimize the newly discovered BTK-PROTACs B1 and B2. Compound C13 was discovered with improved oral bioavailability, high BTK degradation activity, and selectivity. It exhibited inhibitory effects against different hematologic cancer cells and attenuated the BTK-related signaling pathway. The oral administration of C13 effectively reduced BTK protein levels and suppressed tumor growth. This study led to the discovery of a new orally bioavailable BTK-PROTAC for the treatment of lymphoma, and we hope that the strategy will find wide utility.
Collapse
Affiliation(s)
- Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaomin Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weijuan Kan
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hanlin Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Ao Pang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Cong Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhe Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310005, P. R. China
| | - Yubo Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Tsuihang New District, Guangdong 528400, P. R. China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Tsuihang New District, Guangdong 528400, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, P. R. China.,Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
11
|
Burke MR, Smith AR, Zheng G. Overcoming Cancer Drug Resistance Utilizing PROTAC Technology. Front Cell Dev Biol 2022; 10:872729. [PMID: 35547806 PMCID: PMC9083012 DOI: 10.3389/fcell.2022.872729] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer drug resistance presents a major barrier to continued successful treatment of malignancies. Current therapies inhibiting proteins indicated in cancer progression are consistently found to lose efficacy as a result of acquired drug resistance, often caused by mutated or overexpressed protein targets. By hijacking the cellular ubiquitin-proteasome protein degradation machinery, proteolysis-targeting chimeras (PROTACs) offer an alternative therapeutic modality to cancer treatments with various potential advantages. PROTACs specific for a number of known cancer targets have been developed in the last 5 years, which present new options for remission in patients with previously untreatable malignancies and provide a foundation for future-generation compounds. One notable advantage of PROTACs, supported by evidence from a number of recent studies, is that they can overcome some of the resistance mechanisms to traditional targeted therapies. More recently, some groups have begun researching the use of PROTACs to successfully degrade mutated targets conferring cancer resistance against first-line treatments. In this review, we focus on analyzing the developments in PROTACs geared towards cancer resistance and targets that confer it in the search for new and successful therapies.
Collapse
|
12
|
Cresser-Brown JO, Marsh GP, Maple HJ. Reviewing the toolbox for degrader development in oncology. Curr Opin Pharmacol 2021; 59:43-51. [PMID: 34058637 DOI: 10.1016/j.coph.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
The field of targeted protein degradation encompasses a growing number of modalities that achieve potent and selective knockdown of target proteins at the post-translational level. Among the most clinically advanced are bifunctional small-molecule degraders, also referred to as PROteolysis Targeting Chimeras, Degronimids, SNIPERs, or uSMITEs. Although applicable to many disease indications, oncology stands to be the first to benefit from this promising therapeutic approach, with the first investigational new drugs (INDs) filed in 2019 and a proliferation of research specifically focused on harnessing degraders for cancer treatment. In this review, we consider the toolbox of guidelines, reagents, and technologies that has evolved alongside the field to support degrader research and development.
Collapse
Affiliation(s)
- Joel O Cresser-Brown
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Graham P Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK.
| |
Collapse
|
13
|
Fürstenau M, Eichhorst B. Novel Agents in Chronic Lymphocytic Leukemia: New Combination Therapies and Strategies to Overcome Resistance. Cancers (Basel) 2021; 13:1336. [PMID: 33809580 PMCID: PMC8002361 DOI: 10.3390/cancers13061336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
The approval of Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib and acalabrutinib and the Bcl-2 inhibitor venetoclax have revolutionized the treatment of chronic lymphocytic leukemia (CLL). While these novel agents alone or in combination induce long lasting and deep remissions in most patients with CLL, their use may be associated with the development of clinical resistance. In this review, we elucidate the genetic basis of acquired resistance to BTK and Bcl-2 inhibition and present evidence on resistance mechanisms that are not linked to single genomic alterations affecting these target proteins. Strategies to prevent resistance to novel agents are discussed in this review with a special focus on new combination therapies.
Collapse
Affiliation(s)
- Moritz Fürstenau
- German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Department I of Internal Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cancer Center Cologne Essen (CCCE)—Partner Site Cologne, University of Cologne, 50937 Cologne, Germany
| | - Barbara Eichhorst
- German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Department I of Internal Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cancer Center Cologne Essen (CCCE)—Partner Site Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
14
|
Fuchs O, Bokorova R. Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovasc Hematol Disord Drug Targets 2021; 21:7-22. [PMID: 33687890 DOI: 10.2174/1871529x21666210308111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
Collapse
Affiliation(s)
- Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
15
|
Troup RI, Fallan C, Baud MGJ. Current strategies for the design of PROTAC linkers: a critical review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:273-312. [PMID: 36046485 PMCID: PMC9400730 DOI: 10.37349/etat.2020.00018] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands; an “anchor” to bind to an E3 ubiquitin ligase and a “warhead” to bind to a protein of interest, connected by a chemical linker. Targeted protein degradation by PROTACs has emerged as a new modality for the knock down of a range of proteins, with the first agents now reaching clinical evaluation. It has become increasingly clear that the length and composition of the linker play critical roles on the physicochemical properties and bioactivity of PROTACs. While linker design has historically received limited attention, the PROTAC field is evolving rapidly and currently undergoing an important shift from synthetically tractable alkyl and polyethylene glycol to more sophisticated functional linkers. This promises to unlock a wealth of novel PROTAC agents with enhanced bioactivity for therapeutic intervention. Here, the authors provide a timely overview of the diverse linker classes in the published literature, along with their underlying design principles and overall influence on the properties and bioactivity of the associated PROTACs. Finally, the authors provide a critical analysis of current strategies for PROTAC assembly. The authors highlight important limitations associated with the traditional “trial and error” approach around linker design and selection, and suggest potential future avenues to further inform rational linker design and accelerate the identification of optimised PROTACs. In particular, the authors believe that advances in computational and structural methods will play an essential role to gain a better understanding of the structure and dynamics of PROTAC ternary complexes, and will be essential to address the current gaps in knowledge associated with PROTAC design.
Collapse
Affiliation(s)
- Robert I. Troup
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, UK
| | - Charlene Fallan
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Milton Road, CB4 0WG Cambridge, UK
| | - Matthias G. J. Baud
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, UK
| |
Collapse
|