1
|
Dhiman S, Dhankhar S, Garg A, Rohilla M, Saini M, Singh TG, Chauhan S, Selim S, Al Jaouni SK, Yasmin S, Begum N, Alshahrani A, Ansari MY. Mechanistic insights and therapeutic potential of astilbin and apigenin in diabetic cardiomyopathy. Heliyon 2024; 10:e39996. [PMID: 39583813 PMCID: PMC11582444 DOI: 10.1016/j.heliyon.2024.e39996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a critical complication of Diabetes mellitus (DM), characterized by structural and functional changes in the myocardium independent of coronary artery disease or hypertension. Emerging evidence highlights the significant roles of phytochemicals, particularly astilbin and apigenin, in modulating key molecular pathways implicated in DCM. This review synthesizes current mechanistic insights and therapeutic potential of these compounds, focusing on their interactions with AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), O-linked N-acetylglucosamine (O-GlcNAc), sodium-glucose co-transporter 2 (SGLT2), protein kinase C (PKC), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways. Astilbin and apigenin have demonstrated the ability to improve cardiac function, mitigate oxidative stress, and reduce inflammatory responses in diabetic conditions. By activating AMPK and PPARs, these flavonoids enhance glucose uptake and fatty acid oxidation, contributing to improved metabolic homeostasis. Their inhibition of O-GlcNAcylation, SGLT2 activity, and PKC signaling further attenuates hyperglycemia-induced cellular damage. Additionally, suppression of NF-κB, MAPK, and JNK pathways by astilbin and apigenin results in reduced pro-inflammatory cytokine production and apoptotic cell death. Collectively, these interactions position astilbin and apigenin as promising therapeutic agents for ameliorating DCM, offering novel avenues for treatment strategies aimed at modulating multiple pathogenic pathways.
Collapse
Affiliation(s)
- Sachin Dhiman
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sanchit Dhankhar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Anjali Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Devi Dyal College of Pharmacy, GolpuraBarwala, Panchkula, Haryana, 134118, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
2
|
Shen Y, Wang J, Sheng X, Yu H, Shaw RK, Song M, Cai S, Qiao S, Lin F, Gu H. Fine mapping of a major co-localized QTL associated with self-incompatibility identified in two F 2 populations (broccoli × cauliflower and cauliflower × Chinese kale). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:264. [PMID: 39527153 DOI: 10.1007/s00122-024-04770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE A major QTL responsible for self-incompatibility was stably identified in two F2 populations. Through fine mapping and qRT-PCR analysis, ARK3 emerged as the most promising candidate gene, playing a pivotal role in regulating self-incompatibility in Brassica oleracea. Self-incompatibility (SI) is a common phenomenon in Brassica oleracea species, which can maintain genetic diversity but will also limit seed production. Although the S locus has been extensively studied in Arabidopsis and some Brassicaceae crops, map-based cloning of self-incompatibility genes has not been conducted in Brassica oleracea, such as cauliflower and broccoli. In the present study, we identified a major co-localized QTL on chromosome C6 that control SI in two F2 populations derived from intervarietal crosses: broccoli × cauliflower (CL_F2) and cauliflower × Chinese kale (CJ_F2). Subsequently, this QTL was narrowed down to 168.5 Kb through fine mapping using 3,429 F2:3 progenies and 12 available KASP markers. Within this 168.5 Kb region, BolC6t39084H, a homologue of Arabidopsis ARK3, could be a candidate gene that plays a key role in regulating SI in B. oleracea species. This finding can pave the way for an in-depth understanding of the molecular mechanisms underlying SI, and will contribute to the seed production of B. oleracea vegetables.
Collapse
Affiliation(s)
- Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ranjan K Shaw
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shiyi Cai
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Shuting Qiao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Sanya Institute, China Agricultural University, Yazhou Bay, Sanya, 572025, China
| | - Fan Lin
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
4
|
Chawla I, Dhanawat M, Sharma M, Gupta S. Exploring the Potential Benefits of Bovine Colostrum Supplementation in the Management of Diabetes and its Complications: A Comprehensive Review. Curr Diabetes Rev 2024; 21:e200224227161. [PMID: 38415443 DOI: 10.2174/0115733998275676240202065952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024]
Abstract
Diabetes is a metabolic illness marked by elevated levels of glucose in the bloodstream due to the inadequate production or use of insulin in the body. Diabetes can result in a range of consequences, with the most prevalent being cardiovascular disease, renal failure, vision loss, and limb removal. Natural compounds isolated from different sources, like colostrum, are the most important compounds for the treatment of diabetes. Colostrum is a form of lactation produced by mammals in the first days after giving birth to their offspring, having a rich source of constituents and showing multipharmacological properties. This review was prepared on the basis of a variety of authoritative search databases, including Google Scholar, Scopus, and PubMed. In addition, the publications and other online sources were also included. In the literature search, the terms "colostrum," "diabetes," "uses," "management," "constituent," "composition," "alternative sources," "mechanism of action," "preclinical," "clinical," "marketed formulations," and "patents" were utilized as keywords and collected from last two decades. Colostrum has been utilized as a treatment for a wide variety of illnesses due to its active constituents. A variety of colostrums are available in the market, like goat colostrum, porcine colostrum, sheep colostrum, human colostrum and many more. They have the full potential of nutrients like minerals, vitamins, lactose, essential enzymes, proteins and high concentrations of immunoproteins. Mostly, the colostrums are used for treating diabetes and its complications. Preclinical and clinical studies of metabolic syndrome, especially on diabetes and its complications, were also reported at the National and International levels, which evidently prove that the use of colostrums in the long term can be beneficial for various ailments associated with diabetes. In general, the findings of this review indicate that supplementation with colostrum may hold promise as a novel therapeutic intervention for people who have diabetes and its complications; however, additional research is required to fully understand its mechanisms of action and determine the best possible dosage as well as the time period of supplementation.
Collapse
Affiliation(s)
- Isha Chawla
- Department of Pharmacology, M. M. College of Pharmacy, M. M. Deemed to be University, Mullana, Ambala, 133207, India
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Chemistry, Amity University, Gurugram, Haryana, India
| | - Manu Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, National Forensic Science University, New Delhi, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. Deemed to be University, Mullana, Ambala, 133207, India
| |
Collapse
|
5
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park-III, Greater Noida 201308, India
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park-I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | | | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| |
Collapse
|
6
|
Alkholifi FK, Aodah AH, Foudah AI, Alam A. Exploring the Therapeutic Potential of Berberine and Tocopherol in Managing Diabetic Neuropathy: A Comprehensive Approach towards Alleviating Chronic Neuropathic Pain. Biomedicines 2023; 11:1726. [PMID: 37371821 DOI: 10.3390/biomedicines11061726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic neuropathy (DN) causes sensory dysfunction, such as numbness, tingling, or burning sensations. Traditional medication may not ease pain and discomfort, but natural remedies such as Berberine (BR) and vitamin E or Tocopherol (TOC) have therapeutic potential to reduce inflammation while improving nerve function. Novel substances offer a more potent alternative method for managing severe chronic neuropathic pain that does not react to standard drug therapy by targeting various pathways that regulate it. Rats with diabetic control received oral doses of BR + TOC that showed significant changes in serum insulin levels compared to DN controls after 90 days, suggesting a decrease in sensitivity to painful stimuli partly by modulating the oxidative stress of the inflammatory pathway such as TNF-α suppression or stimulation of TNF-α depending on the amount of dose consumed by them. NF-kB also played its role here. Administering doses of BR and TOC reduced heightened levels of NF-kB and AGEs, effectively counteracting inflammation-targeted key factors in diabetes, promising possibilities for the benefits of these molecules revealed through in vivo investigation. In summary, treating neuropathy pain with a more comprehensive and organic approach can involve harnessing the powerful capabilities of BR and TOC. These compounds have been found to not only considerably decrease inflammation but also provide effective nerve protection while enhancing overall nerve function. With their multifunctional impacts on various neuropathic pain pathways in the body, these naturally occurring substances offer an exciting possibility for those who encounter high levels of neuropathic distress that do not respond well to conventional medication-centred therapies.
Collapse
Affiliation(s)
- Faisal K Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
8
|
Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023; 15:nu15061424. [PMID: 36986155 PMCID: PMC10058295 DOI: 10.3390/nu15061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Mariem Achour
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Claudine Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Cristina García-Viguera
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| |
Collapse
|
9
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
10
|
Chemical Composition and Valorization of Broccoli Leaf By-Products (Brassica oleracea L. Variety: Italica) to Ameliorate Reno-Hepatic Toxicity Induced by Gentamicin in Rats. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Broccoli (Brassica oleracea) is reported to possess antioxidant activity that could potentially prevent oxidative damage to tissues caused by many diseases. In the present study, we investigated the preventive effect of broccoli leaf by-product extract (BL) on gentamicin-induced renal and hepatic injury by measuring tissue antioxidant activities and morphological apoptotic changes. Broccoli leaf was thoroughly extracted with 70% methanol to yield the total methanol extract (TME). The total phenolic content (TPC) was determined. Thirty male rats were divided into five groups (six animals/group). Group I received phosphate-buffered saline orally, while group II was treated with gentamicin (100 mg/kg i.p. intraperitoneal) for ten days. Group III and group IV animals were given BL (200 mg/kg and 400 mg/kg, respectively) plus gentamicin treatment. Group V received L-cysteine (1 mmole/kg) plus gentamicin. Antioxidant and biochemical parameters, such as transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), creatinine, and urea, and mRNA expression levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and nuclear factor kappa B (NFkB) were determined in various groups, along with the quantification of inflammatory and apoptotic cells in hepatic and renal tissues. Malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels were determined in liver and renal samples. Histopathological studies of the liver and kidneys were also carried out. The TME was subjected to various and repeated techniques of chromatography to yield caffeic acid, gallic acid, and methyl gallate. The TPC was 6.47 mg Gallic Acid Equivalent/g of dry extract. Gentamicin increased the levels of serum AST, ALT, ALP, creatinine, and urea. The MDA and GSH contents and theactivity levels of the antioxidant enzyme SOD decreased in liver and kidney samples with gentamicin administration. BL administration dose-dependently prevented the alteration in biochemical parameters and was supported by low levels of tubular and glomerular injuries induced by gentamicin. This study valorizes the potential of BL as a preventive candidate in cases of gentamicin-induced liver and kidney toxicity and recommends further clinical studies using BL to validate its utilization for human consumption and as a source of phenolics for nutraceutical and pharmaceutical purposes.
Collapse
|