1
|
Ikushima A, Ishimura T, Mori KP, Yamada H, Sugioka S, Ishii A, Toda N, Ohno S, Kato Y, Handa T, Yanagita M, Yokoi H. Deletion of p38 MAPK in macrophages ameliorates peritoneal fibrosis and inflammation in peritoneal dialysis. Sci Rep 2024; 14:21220. [PMID: 39261560 PMCID: PMC11391064 DOI: 10.1038/s41598-024-71859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
One of the most common causes of peritoneal dialysis withdrawal is ultrafiltration failure which is characterized by peritoneal membrane thickening and fibrosis. Although previous studies have demonstrated the inhibitory effect of p38 MAPK inhibitors on peritoneal fibrosis in mice, it was unclear which specific cells contribute to peritoneal fibrosis. To investigate the role of p38 MAPK in peritoneal fibrosis more precisely, we examined the expression of p38 MAPK in human peritoneum and generated systemic inducible p38 MAPK knockout mice and macrophage-specific p38 MAPK knockout mice. Furthermore, the response to lipopolysaccharide (LPS) was assessed in p38 MAPK-knocked down RAW 264.7 cells to further explore the role of p38 MAPK in macrophages. We found that phosphorylated p38 MAPK levels were increased in the thickened peritoneum of both human and mice. Both chlorhexidine gluconate (CG)-treated systemic inducible and macrophage-specific p38 MAPK knockout mice ameliorated peritoneal thickening, mRNA expression related to inflammation and fibrosis, and the number of αSMA- and MAC-2-positive cells in the peritoneum compared to CG control mice. Reduction of p38 MAPK in RAW 264.7 cells suppressed inflammatory mRNA expression induced by LPS. These findings suggest that p38 MAPK in macrophages plays a critical role in peritoneal inflammation and thickening.
Collapse
Affiliation(s)
- Akie Ikushima
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Takuya Ishimura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Primary Care & Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Shoko Ohno
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Yukiko Kato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Takaya Handa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan.
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.
| |
Collapse
|
2
|
Koyuncu S, Sipahioğlu H, Karakukcu C, Zararsız G, İçaçan G, Biçer NS, Kocyigit I. The relationship between changes in peritoneal permeability with CA-125 and HIF-1α. Ther Apher Dial 2024. [PMID: 39233434 DOI: 10.1111/1744-9987.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a major, persistent complication of prolonged peritoneal dialysis that eventually leads to peritoneal ultrafiltration failure and termination of peritoneal dialysis. Prolonged exposure to high glucose concentrations, degradation products, uremic toxins, and episodes of peritonitis can cause some changes in the peritoneal membrane, resulting in intraperitoneal inflammation and PF, leading to failure of ultrafiltration and dialysis. CA-125 can be used as a biomarker of peritoneal mesothelial cell count in the peritoneal dialysate and for monitoring cell count in PD patients. Hypoxia-inducible factor 1-alpha (HIF-1α) has been reported to cause PF, but has not been reported to be associated with changes in peritoneal structure. We hypothesized that peritoneal adequacy can be followed using HIF-1α and CA-125 values. In the present study, therefore, we investigated the relationship between HIF-1α and CA-125 levels and parietal membrane permeability changes in PD patients. METHODS Forty-five patients were included in the study. Peritoneal permeability was constant in 20 of these, while peritoneal permeability increased in 11 and decreased in 14. The HIF-1α value from the blood samples of the patients and the CA-125 measurement from the peritoneal fluids were measured. The relationship between peritoneal variability and CA-125 and HIF levels after follow-up was investigated. RESULTS We compared serum HIF-1α and peritoneal fluid CA-125 levels in the three groups receiving peritoneal dialysis treatment. HIF-1α levels increased with peritoneal permeability changes, while CA-125 levels decreased. In patients with high to low permeability changes, HIF-1α levels were higher compared to those with stable or low to high changes, which was statistically significant. Conversely, CA-125 levels significantly decreased in patients whose peritoneal permeability changed from high to low, compared to the other two groups. CONCLUSION Changes in peritoneal structure can be followed with biomarkers. It has been shown that CA-125 and HIF-1α levels can guide the changes in the peritoneal membrane. This can be useful in the monitoring of peritoneal dialysis.
Collapse
Affiliation(s)
- Sumeyra Koyuncu
- Department of Nephrology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioğlu
- Department of İntensive Care Unit, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Erciyes Medical Faculty, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes Medical Faculty, Kayseri, Turkey
| | - Gamze İçaçan
- Department of Nephrology, Izmir City Hospital, Izmir, Turkey
| | | | - Ismail Kocyigit
- Department of Nephrology, Erciyes Medical Faculty, Kayseri, Turkey
| |
Collapse
|
3
|
Stepanova N, Snisar L, Burdeyna O. Peritoneal dialysis and peritoneal fibrosis: molecular mechanisms, risk factors and prospects for prevention. UKRAINIAN JOURNAL OF NEPHROLOGY AND DIALYSIS 2022:81-90. [DOI: 10.31450/ukrjnd.4(76).2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Peritoneal dialysis (PD) leads to structural and functional changes in the peritoneal membrane, the endpoint of which is peritoneal fibrosis. Peritoneal fibrosis is diagnosed in 50% and 80% of PD patients within 1 and 2 years of treatment initiation, respectively. A key role in the development of peritoneal fibrosis is played by mesothelial-mesenchymal transformation, a complex biological process of transition from mesothelium to mesenchyme. This review summarizes the current knowledge on the changes in peritoneal function and morphology, the molecular mechanisms of peritoneal fibrosis development, and its clinical consequences during PD. Special attention is given to established and potential risk factors for peritoneal fibrosis, and existing prevention strategies are considered.
Collapse
|
4
|
Albakr RB, Bargman JM. A Comparison of Hemodialysis and Peritoneal Dialysis in Patients with Cardiovascular Disease. Cardiol Clin 2021; 39:447-453. [PMID: 34247757 DOI: 10.1016/j.ccl.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high prevalence of cardiovascular disease is caused by the traditional cardiovascular risk factors common among end-stage renal disease patients, and nontraditional risk factors attributed to underlying kidney disease, including chronic inflammation, anemia, bone mineral disease, and the dialysis procedure itself. Individualization of the treatment of cardiovascular disease in end-stage renal disease that could impact the underlying mechanisms of the cardiovascular diseases is important to improve outcomes. This article reviews and compares hemodialysis and peritoneal dialysis in association with different cardiovascular diseases affecting dialysis patients, including hypertension, coronary artery disease, myocardial stunning, cardiac arrhythmias, heart failure, and the cardiorenal syndrome.
Collapse
Affiliation(s)
- Rehab B Albakr
- Division of Nephrology, University of Toronto, University Health Network, 200 Elizabeth Street 8N-840, Toronto, ON M5G 2C4, Canada; Division of Nephrology, College of Medicine, King Saud University, King Khalid Street, Riyadh-Al-Diriyah 12372, Saudi Arabia
| | - Joanne M Bargman
- Division of Nephrology, University of Toronto, University Health Network/Toronto General Hospital, 200 Elizabeth Street, 8N-840, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
5
|
Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med 2021; 19:283. [PMID: 34193173 PMCID: PMC8246671 DOI: 10.1186/s12967-021-02946-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of mesothelial cells is a key step in the peritoneal fibrosis (PF). Recent evidence indicates that signal transducer and activator of transcription 3 (STAT3) might mediate the process of renal fibrosis, which could induce the expression of hypoxia-inducible factor-1α (HIF-1α). Here, we investigated the effect of STAT3 activation on HIF-1α expression and the EMT of mesothelial cells, furthermore the role of pharmacological blockade of STAT3 in the process of PF during peritoneal dialysis (PD) treatment. METHODS Firstly, we investigated the STAT3 signaling in human peritoneal mesothelial cells (HPMCs) from drained PD effluent. Secondly, we explored the effect of STAT3 signaling activation on the EMT and the expression of HIF-1α in human mesothelial cells (Met-5A) induced by high glucose. Finally, peritoneal fibrosis was induced by daily intraperitoneal injection with peritoneal dialysis fluid (PDF) so as to explore the role of pharmacological blockade of STAT3 in this process. RESULTS Compared with the new PD patient, the level of phosphorylated STAT3 was up-regulated in peritoneal mesothelial cells from long-term PD patients. High glucose (60 mmol/L) induced over-expression of Collagen I, Fibronectin, α-SMA and reduced the expression of E-cadherin in Met-5A cells, which could be abrogated by STAT3 inhibitor S3I-201 pretreatment as well as by siRNA for STAT3. Furthermore, high glucose-mediated STAT3 activation in mesothelial cells induced the expression of HIF-1α and the profibrotic effect of STAT3 signaling was alleviated by siRNA for HIF-1α. Daily intraperitoneal injection of high-glucose based dialysis fluid (HG-PDF) induced peritoneal fibrosis in the mice, accompanied by the phosphorylation of STAT3. Immunostaining showed that phosphorylated STAT3 was expressed mostly in α-SMA positive cells in the peritoneal membrane induced by HG-PDF. Administration of S3I-201 prevented the progression of peritoneal fibrosis, angiogenesis, macrophage infiltration as well as the expression of HIF-1α in the peritoneal membrane induced by high glucose. CONCLUSIONS Taken together, these findings identified a novel mechanism linking STAT3/HIF-1α signaling to peritoneal fibrosis during long-term PD treatment. It provided the first evidence that pharmacological inhibition of STAT3 signaling attenuated high glucose-mediated mesothelial cells EMT as well as peritoneal fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
6
|
Da J, Yang Y, Dong R, Shen Y, Zha Y. Therapeutic effect of 1,25(OH)2-VitaminD3 on fibrosis and angiogenesis of peritoneum induced by chlorhexidine. Biomed Pharmacother 2020; 129:110431. [PMID: 32585450 DOI: 10.1016/j.biopha.2020.110431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/31/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022] Open
Abstract
The biological activity of vitamin D, which mediated by the vitamin D receptor, is widespread throughout the body. The present study aimed to define whether 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3) can protect against the progression of peritoneum fibrosis (PF) through its impact on the expression of connective tissue growth factor (CTGF) and heat shock protein 47 (HSP47) in vivo and in vitro. The male Sprague-Dawley (SD) rats of PF were induced by daily intraperitoneally injection of chlorhexidine gluconate (CG) for 4 wks. PF Rats were also treated with calcitriol (i.p. 6 ng/100g*d) from initiation of the CG. In calcitriol rats, the ultrafiltration and the ratio of dialysate urea nitrogen to blood urea nitrogen were improved (P < 0.05), pathological changes and peritoneal thickness were milder than that of the PF group. Calcitriol ameliorated high glucose-induced HSP47 expression in peritoneal mesothelial cells via CTGF down-regulation both at the mRNA level and protein level. Furthermore, calcitriol prevented angiogenic mediators of fibrosis by reduced the expression of CD34 and vascular endothelial growth factor (VEGF). The present study demonstrated that 1,25-(OH)2D3 intervention had a partially protective effect on peritoneum fibrosis, which might inhibit CTGF/HSP47 and CD34/VEGF in the peritoneum tissues.
Collapse
Affiliation(s)
- Jingjing Da
- Guizhou University School of medicine, Guiyang, China; Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuqi Yang
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rong Dong
- Guizhou University School of medicine, Guiyang, China; Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Shen
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
7
|
Lozier MR, Sanchez AM, Lee JJ, Tamariz LJ, Valle GA. Comparison of Cardiovascular Outcomes by Dialysis Modality: A Systematic Review and Meta-Analysis. Perit Dial Int 2020; 39:306-314. [PMID: 31296776 DOI: 10.3747/pdi.2018.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 12/28/2022] Open
Abstract
Debates exist regarding the merit of starting one dialysis modality over the other for improved cardiovascular outcomes. Five previously published prospective and retrospective cohort studies have reported inconsistent conclusions on this topic. The aim of this systematic review and meta-analysis is to evaluate the influence initiation of hemodialysis (HD) vs peritoneal dialysis (PD) may have on the relative risk (RR) of subsequent development of adverse cardiovascular events (ACVE) in patients with end-stage renal disease (ESRD). Of the 518 records identified, 5 cohort studies, assessing a total of 47,062 patients were included in the meta-analysis. With regard to the subsequent development of ACVE following initiation on the different dialysis modalities, the pooled RR was found to be non-significant. Peritoneal dialysis is a suitable and cost-effective alternative to HD for ESRD patients at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Matthew R Lozier
- Internal Medicine Residency Program, University of Miami at Holy Cross Hospital, Ft Lauderdale, FL, USA
| | - Alexandra M Sanchez
- Internal Medicine Residency Program, University of Miami at Holy Cross Hospital, Ft Lauderdale, FL, USA
| | - John J Lee
- Division of Cardiology, Columbia University at Mount Sinai Medical Center, Miami, FL, USA
| | - Leonardo J Tamariz
- Department of Internal Medicine, University of Miami at Holy Cross Hospital, Ft Lauderdale, FL, USA
| | - Gabriel A Valle
- Department of Internal Medicine, University of Miami at Holy Cross Hospital, Ft Lauderdale, FL, USA.,The Kidney and Hypertension Group of South Florida, Ft Lauderdale, FL, USA
| |
Collapse
|
8
|
Yang X, Yan H, Jiang N, Yu Z, Yuan J, Ni Z, Fang W. IL-6 trans-signaling drives a STAT3-dependent pathway that leads to structural alterations of the peritoneal membrane. Am J Physiol Renal Physiol 2019; 318:F338-F353. [PMID: 31841386 DOI: 10.1152/ajprenal.00319.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IL-6 is a vital inflammatory factor in the peritoneal cavity of patients undergoing peritoneal dialysis (PD). The present study examined the effect of IL-6 trans-signaling on structural alterations of the peritoneal membrane. We investigated whether the epithelial-to-mesenchymal transition (EMT) process of human peritoneal mesothelial cells (HPMCs) and the production of proangiogenic factors were controlled by IL-6 trans-signaling. Its role in the peritoneal alterations was detected in a mouse model. The morphology of HPMCs and levels of cytokines in PD effluent were also explored. Stimulation of HPMCs with the IL-6 and soluble IL-6 receptor complex (IL-6/S) promoted the EMT process of HPMCs depending on the STAT3 pathway. In a coculture system of HPMCs and human umbilical vein endothelial cells, IL-6/S mediated the production of VEGF and angiopoietins so as to downregulate the expression of endothelial junction molecules and finally affect vascular permeability. Daily intraperitoneal injection of high glucose-based dialysis fluid induced peritoneal fibrosis, angiogenesis, and macrophage infiltration in a mouse model, accompanied by phosphorylation of STAT3. Blockade of IL-6 trans-signaling prevented these peritoneum alterations. The fibroblast-like appearance of HPMCs ex vivo was upregulated in patients undergoing prevalent PD accompanied by increasing levels of IL-6, VEGF, and angiopoietin-2 in the PD effluent. Taken together, these findings identified a critical link between IL-6 trans-signaling and structural alterations of the peritoneal membrane, and it might be a potential target for the treatment of patients undergoing PD who have developed peritoneal alterations.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Hao Yan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiangzi Yuan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| |
Collapse
|
9
|
Abstract
Peritoneal dialysis (PD) is a successfully used method for renal replacement therapy. However, long-term PD may be associated with peritoneal fibrosis and ultrafiltration failure. The key factors linked to their appearance are repeated episodes of inflammation associated with peritonitis and long-term exposure to bioincompatible PD fluids. Different strategies have been proposed to preserve the peritoneal membrane. This article reviews the functional and structural alterations related to PD and strategies whereby we may prevent them to preserve the peritoneal membrane. The use of new, more biocompatible, PD solutions is promising, although further morphologic studies in patients using these solutions are needed. Blockade of the renin-angiotensin-aldosterone system appears to be efficacious and strongly should be considered. Other agents have been proven in experimental studies, but most of them have not yet been tested appropriately in human beings.
Collapse
Affiliation(s)
- M Auxiliadora Bajo
- Home Dialysis Unit, Nephrology Department, La Paz University Hospital, Madrid, Spain.
| | - Gloria Del Peso
- University Autónoma of Madrid, Hospital La Paz Institute for Health Research, Spanish Renal Research Network, Reina Sofia Institute for Nephrology Research, Madrid, Spain
| | - Isaac Teitelbaum
- Home Dialysis Program, University of Colorado Hospital, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
10
|
Is there such a thing as biocompatible peritoneal dialysis fluid? Pediatr Nephrol 2017; 32:1835-1843. [PMID: 27722783 PMCID: PMC5579143 DOI: 10.1007/s00467-016-3461-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 10/31/2022]
Abstract
Introduction of the so-called biocompatible peritoneal dialysis (PD) fluids was based on a large body of experimental evidence and various clinical trials suggesting important clinical benefits. Of these, until now, only preservation of residual renal function-likely due to lower glucose degradation product load and, in case of icodextrin, improved fluid and blood pressure control-have consistently been proven, whereas the impact on important clinical endpoints such as infectious complications, preservation of PD membrane transport function, and patient outcome, are still debated. In view of the high morbidity and mortality rates of PD patients, novel approaches are warranted and comprise the search for alternative osmotic agents and enrichment of PD fluids with specific pharmacologic agents, such as alanyl-glutamine, potentially counteracting local but also systemic sequelae of uremia and PD.
Collapse
|
11
|
Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 2016; 90:515-24. [PMID: 27282936 DOI: 10.1016/j.kint.2016.03.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Long-term peritoneal dialysis causes morphologic and functional changes in the peritoneal membrane. Although mesothelial-mesenchymal transition of peritoneal mesothelial cells is a key process leading to peritoneal fibrosis, and bioincompatible peritoneal dialysis solutions (glucose, glucose degradation products, and advanced glycation end products or a combination) are responsible for altering mesothelial cell function and proliferation, mechanisms underlying these processes remain largely unclear. Peritoneal fibrosis has 2 cooperative parts, the fibrosis process itself and the inflammation. The link between these 2 processes is frequently bidirectional, with each one inducing the other. This review outlines our current understanding about the definition and pathophysiology of peritoneal fibrosis, recent studies on key fibrogenic molecular machinery in peritoneal fibrosis, such as the role of transforming growth factor-β/Smads, transforming growth factor-β β/Smad independent pathways, and noncoding RNAs. The diagnosis of peritoneal fibrosis, including effluent biomarkers and the histopathology of a peritoneal biopsy, which is the gold standard for demonstrating peritoneal fibrosis, is introduced in detail. Several interventions for peritoneal fibrosis based on biomarkers, cytology, histology, functional studies, and antagonists are presented in this review. Recent experimental trials in animal models, including pharmacology and gene therapy, which could offer novel insights into the treatment of peritoneal fibrosis in the near future, are also discussed in depth.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - M-Auxiliadora Bajo
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Gloria Del Peso
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rafael Selgas
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| |
Collapse
|
12
|
Wang L, Liu N, Xiong C, Xu L, Shi Y, Qiu A, Zang X, Mao H, Zhuang S. Inhibition of EGF Receptor Blocks the Development and Progression of Peritoneal Fibrosis. J Am Soc Nephrol 2015; 27:2631-44. [PMID: 26677863 DOI: 10.1681/asn.2015030299] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of EGF receptor (EGFR) have antifibrotic effects in several organs, but the effect of these inhibitors on the development of peritoneal fibrosis is unknown. Here, we explored the therapeutic effect of gefitinib, a specific inhibitor of EGFR, on the development and progression of peritoneal fibrosis in a rat model. Daily intraperitoneal injections of chlorhexidine gluconate induced peritoneal fibrosis, indicated by thickening of the submesothelial area with an accumulation of collagen fibrils and activation of myofibroblasts, accompanied by time-dependent phosphorylation of EGFR. Administration of gefitinib immediately after injury prevented the onset of peritoneal fibrosis and delayed administration after the onset of peritoneal fibrosis halted fibrosis progression. Gefitinib treatment abrogated the increased phosphorylation of EGFR, Smad3, signal transducer and activator of transcription 3, and NF-κB during peritoneal fibrosis; it also inhibited the accompanying overproduction of TGF-β1 and proinflammatory cytokines and the infiltration of macrophages to the injured peritoneum. Moreover, gefitinib significantly reduced the peritoneal increase of CD31-positive blood vessels and vascular EGF-positive cells after injury. Finally, gefitinib also attenuated high glucose-induced peritoneal fibrosis in rats and abrogated TGF-β1-induced phosphorylation of Smad3 and the epithelial-to-mesenchymal transition of cultured human peritoneal mesothelial cells. These results demonstrate that EGFR contributes to peritoneal fibrosis, inflammation, and angiogenesis, suggesting that EGFR inhibitors may have therapeutic potential in attenuating peritoneal fibrosis.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chongxiang Xiong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Providence, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert School of Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|