1
|
Kędzierska M, Bańkosz M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy-A Narrative Review. J Clin Med 2024; 13:7131. [PMID: 39685591 DOI: 10.3390/jcm13237131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Modern oncology increasingly relies on the role of proteins as key components in cancer diagnosis, prognosis, and targeted therapy. This review examines advancements in protein biomarkers across several cancer types, including breast cancer, lung cancer, ovarian cancer, and hepatocellular carcinoma. These biomarkers have proven critical for early detection, treatment response monitoring, and tailoring personalized therapeutic strategies. The article highlights the utility of targeted therapies, such as tyrosine kinase inhibitors and monoclonal antibodies, in improving treatment efficacy while minimizing systemic toxicity. Despite these advancements, challenges like tumor resistance, variability in protein expression, and diagnostic heterogeneity persist, complicating universal application. The review underscores future directions, including the integration of artificial intelligence, advanced protein analysis technologies, and the development of combination therapies to overcome these barriers and refine personalized cancer treatment.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland
| | - Magdalena Bańkosz
- CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Material Engineering, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland
| |
Collapse
|
2
|
Nikitiuk BE, Rydzewska-Rosołowska A, Kakareko K, Głowińska I, Hryszko T. On Whether Ca-125 Is the Answer for Diagnosing Overhydration, Particularly in End-Stage Kidney Disease Patients-A Systematic Review. Int J Mol Sci 2024; 25:2192. [PMID: 38396869 PMCID: PMC10889175 DOI: 10.3390/ijms25042192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Overhydration (OH) is a prevalent medical problem that occurs in patients with kidney failure, but a specific marker has still not been found. Patients requiring kidney replacement therapy suffer from a water imbalance, which is correlated with mortality rates in this population. Currently, clinicians employ techniques such as bioimpedance spectroscopy (BIS) and ultrasound (USG) markers of overhydration or markers of heart and kidney function, namely NT-pro-BNP, GFR, or creatinine levels. New serum markers, including but not limited to Ca-125, galectin-3 (Gal-3), adrenomedullin (AMD), and urocortin-2 (UCN-2), are presently under research and have displayed promising results. Ca-125, which is a protein mainly used in ovarian cancer diagnoses, holds great potential to become an OH marker. It is currently being investigated by cardiologists as it corresponds to the volume status in heart failure (HF) and ventricular hypertrophy, which are also associated with OH. The need to ascertain a more precise marker of overhydration is urgent mainly because physical examinations are exceptionally inaccurate. The signs and symptoms of overhydration, such as edema or a gradual increase in body mass, are not always present, notably in patients with chronic kidney disease. Metabolic disruptions and cachexia can give a false picture of the hydration status. This review paper summarizes the existing knowledge on the assessment of a patient's hydration status, focusing specifically on kidney diseases and the role of Ca-125.
Collapse
Affiliation(s)
| | - Alicja Rydzewska-Rosołowska
- 2nd Department of Nephrology, Hypertension, and Internal Medicine with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (B.E.N.); (K.K.); (I.G.); (T.H.)
| | | | | | | |
Collapse
|
3
|
Yang J, Cai M, Wan J, Wang L, Luo J, Li X, Gong W, He Y, Chen J. Effluent decoy receptor 2 as a novel biomarker of peritoneal fibrosis in peritoneal dialysis patients. ARCH ESP UROL 2022; 42:631-639. [PMID: 35176936 DOI: 10.1177/08968608211067866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a common complication of peritoneal dialysis (PD), but a specific and sensitive biomarker for PF is lacking. The present study aimed to determine the use of effluent decoy receptor 2 (eDcR2) as a biomarker for PF in PD patients. METHODS PD patients (n = 248) were recruited, and peritoneal specimens were collected at PD initiation (n = 30) and cessation (n = 33). Enzyme-linked immunoassay was used to measure eDcR2 and the eDcR2 appearance rate (eDcR2-AR) was calculated. The levels of DcR2 mRNA and protein were determined. The correlation of eDcR2 level with peritoneal function, histological parameters and DcR2 expression were analysed. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic performance of eDcR2 for PF, which was defined as a submesothelial thickness 150 µm or more. Co-localisation of DcR2 with a mesothelial marker, fibroblast markers and fibrotic markers were determined. RESULTS The eDcR2-AR level correlated with PD duration, D/P Cr values, peritoneal Kt/V and peritoneal injury scores, especially submesothelial thickness (r = 0.638, p < 0.001). DcR2 was primarily expressed in peritoneal fibroblasts, and co-localised with α-SMA, vimentin, collagen I and fibronectin, but not with E-cadherin. Peritoneal DcR2 expression had a positive correlation with eDcR2-AR. ROC analysis indicated eDcR2 had an area under the curve of 0.907 for detection of PF (sensitivity: 78.6%, specificity: 100%) and the best cut-off value was 392.5 pg/min. CONCLUSION The eDcR2-AR level is a potential biomarker for assessing PF in PD patients. Effluent DcR2 was mainly derived from peritoneal fibroblasts and DcR2-positive cells may accelerate PF, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Jie Yang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingyu Cai
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinfang Wan
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liming Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Luo
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenjiang Gong
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Shi Y, Ni J, Tao M, Ma X, Wang Y, Zang X, Hu Y, Qiu A, Zhuang S, Liu N. Elevated expression of HDAC6 in clinical peritoneal dialysis patients and its pathogenic role on peritoneal angiogenesis. Ren Fail 2021; 42:890-901. [PMID: 32862739 PMCID: PMC7472510 DOI: 10.1080/0886022x.2020.1811119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for end-stage renal disease (ESRD) patients. However, its complications, such as peritoneal fibrosis (PF) and angiogenesis can cause ultrafiltration failure and PD termination. Histone deacetylase 6 (HDAC6) has been demonstrated to be involved in PF. However, its underlying role in peritoneal angiogenesis is still unknown and clinical value needs to be explored. In this study, we analyzed the expression of HDAC6 in the peritoneum from patients with non-PD and PD-related peritonitis and dialysis effluent from stable PD patients. Our study revealed that HDAC6 expressed highly in the peritoneum with peritonitis and co-stained with α-smooth muscle actin (α-SMA), a biomarker of the myofibroblast. And the level of HDAC6 in the dialysate increased with time and positively correlated with transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF), and negatively with cancer antigen 125 (CA125). In vitro, blockading HDAC6 with a selective inhibitor tubastatin A (TA) or silencing HDAC6 with a small interfering RNA (siRNA) prominently decreased IL-6-stimulated VEGF expression in cultured human peritoneal mesothelial cells (HPMCs), and inhibited proliferation and vasoformation of human umbilical vein endothelial cells (HUVECs). TA or HDAC6 siRNA also suppressed the expression of Wnt1, β-catenin, and the phosphorylation of STAT3 in IL-6-treated HPMCs. In summary, HDAC6 inhibition protects against PD-induced angiogenesis through suppression of IL-6/STAT3 and Wnt1/β-catenin signaling pathway, subsequently reducing the VEGF production and angiogenesis. It could become a new therapeutic target or forecast biomarker for PF, inflammation, and angiogenesis in the future.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Nephrology, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Matte I, Garde-Granger P, Bessette P, Piché A. Ascites from ovarian cancer patients stimulates MUC16 mucin expression and secretion in human peritoneal mesothelial cells through an Akt-dependent pathway. BMC Cancer 2019; 19:406. [PMID: 31039761 PMCID: PMC6492407 DOI: 10.1186/s12885-019-5611-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background CA125 is a well-established ovarian cancer (OC) serum biomarker. The CA125 heavily glycosylated epitope is carried by the MUC16 mucin, a high molecular weight transmembrane mucin. Upon proteolytic cleavage, the extracellular domain of MUC16 is released from the cell surface into malignant ascites and blood vessels. Previous studies have shown that both tumor and surrounding mesothelial cells may express MUC16. Although little is known about the regulation of MUC16 expression in these cells, recent evidence suggest that inflammatory cytokines may stimulate MUC16 expression. Because malignant ascites is a pro-inflammatory environment, we investigated whether OC ascites stimulate the expression and release of MUC16 by human peritoneal mesothelial cells (HPMCs). Methods HPMCs were isolated from peritoneal lavages of women operated for conditions other than cancer. MUC16 protein expression was determined by immunoblot, immunofluorescence or immunohistochemistry depending on the experiments. The release of MUC16 from the cell surface was measured using EIA and MUC16 mRNA expression by ddPCR. Results We show that high-grade serous ascites from patients with OC (n = 5) enhance MUC16 expression in HPMCs. Malignant ascites, but not benign peritoneal fluids, stimulate the release of MUC16 in HPMCs in a dose-dependent manner, which is abrogated by heat inactivation. Moreover, we establish that ascites-induced MUC16 expression occurs at the post-transcriptional level and demonstrate that ascites-induced MUC16 expression is mediated, at least partially, through an Akt-dependent pathway. A cytokine array identified upregulation of several cytokines and chemokines in ascites that mediate MUC16 upregulation versus those that do not, including CCL7, CCL8, CCL16, CCL20, CXCL1, IL-6, IL-10, HGF and IL-1 R4. However, when individually tested, none of these factors affected MUC16 expression or secretion. Concentrations of CA125 in the serum of a given patient did not correlate with the ability of its corresponding ascites to stimulate MUC16 release in HPMCs. Conclusions Collectively, these data indicate that mesothelial cells are an important source of MUC16 in the context of ovarian cancer and malignant ascites is a strong modulator of MUC16 expression in HPMCs and uncover the Akt pathway as a driving factor for upregulation of MUC16. Factors in ascites associated with enhanced MUC16 expression and release remains to be identified.
Collapse
Affiliation(s)
- Isabelle Matte
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Paul Bessette
- Département de Chirurgie, service de gynécologie-obstétrique, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
6
|
Pearson LJ, Klaharn IY, Thongsawang B, Manuprasert W, Saejew T, Somparn P, Chuengsaman P, Kanjanabuch T, Pisitkun T. Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. PLoS One 2017; 12:e0178601. [PMID: 28594924 PMCID: PMC5464591 DOI: 10.1371/journal.pone.0178601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dialysis inevitability results in activation of inflammatory processes and its efficiency is highly variable between patients. An improved method to isolate biomarkers and study pathophysiological mechanisms in peritoneal dialysis effluent (PDE) is expected to be of much benefit for the development of this treatment approach and help with patient management. Extracellular vesicles (EVs) are released as part of normal cellular processes. Their proteome is expected to reflect both type and health of their cell of origin. Although there is a significant interest in using EVs for "liquid biopsies", little is reported of their presence or composition in plentiful dialysis waste fluids, including peritoneal dialysis effluent (PDE). Here we determined the presence of EVs in PDE and subsequently characterized their proteome. EVs were first isolated from PDE using differential centrifugation, then a further enrichment using size exclusion chromatography (SEC) was performed. The presence of EVs was demonstrated using transmission electron microscopy, and their particle counts were investigated using nanoparticle tracking analysis and dynamic light scattering. Using tandem mass spectrometry, marker proteins from three types of EVs i.e. apoptotic bodies, ectosomes, and exosomes were identified. The proteomic results demonstrated that the isolation of EVs by differential centrifugation helped enrich for over 2,000 proteins normally masked by abundant proteins in PDE such as albumin and SEC markedly further improved the isolation of low abundant proteins. Gene ontology analysis of all identified proteins showed the marked enrichment of exosome and membrane-associated proteins. Over 3,700 proteins were identified in total, including many proteins with known roles in peritoneal pathophysiology. This study demonstrated the prominence of EVs in PDE and their potential value as a source of biomarkers for peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lachlan James Pearson
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - I-yanut Klaharn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bussakorn Thongsawang
- Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wasin Manuprasert
- Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thunvarat Saejew
- Peritoneal Dialysis Excellence Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Talerngsak Kanjanabuch
- Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- * E-mail: (TP); (TK)
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (TP); (TK)
| |
Collapse
|
7
|
Farhat K, Douma CE, Ferrantelli E, Ter Wee PM, Beelen RHJ, van Ittersum FJ. Effects of Conversion to a Bicarbonate/Lactate-Buffered, Neutral-pH, Low-GDP PD Regimen in Prevalent PD: A 2-Year Randomized Clinical Trial. Perit Dial Int 2017; 37:273-282. [PMID: 28348100 DOI: 10.3747/pdi.2015.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
♦ BACKGROUND: The use of pH-neutral peritoneal dialysis (PD) fluids low in glucose degradation products (GDP) may better preserve the peritoneal membrane and have fewer systemic effects. The effects of conversion from conventional to neutral-pH, low-GDP PD fluids in prevalent patients are unclear. Few studies on the role of neutral-pH, low-GDP PD have studied residual renal function, ultrafiltration, peritonitis incidence and technique failure, transport characteristics, and local and systemic markers of inflammation in prevalent PD patients. ♦ METHODS: In a multi-center open-label randomized clinical trial (RCT), we randomly assigned 40 of 78 stable continuous ambulatory PD (CAPD) and automated PD (APD) patients to treatment with bicarbonate/lactate, neutral-pH, low-GDP PD fluid (Physioneal; Baxter Healthcare Corporation, Deerfield, IL, USA) and compared them with 38 patients continuing their current standard lactate-buffered PD fluid (PDF) (Dianeal; Baxter Healthcare Corporation, Deerfield, IL, USA) during 2 years. Primary outcome was residual renal function (RRF) and ultrafiltration (UF) during peritoneal equilibration test (PET); peritonitis incidence was a secondary outcome. Furthermore, clinical parameters as well as several biomarkers in effluents and serum were measured. ♦ RESULTS: During follow-up, RRF did not differ between the groups. In the Physioneal group ultrafiltration (UF) during PET remained more or less stable (-20 mL [confidence interval (CI): -163.5 - 123.5 mL]; p = 0.7 over 24 months), whereas it declined in the Dianeal group (-243 mL [CI: -376.6 to -109.4 mL]; p < 0.0001 over 24 months), resulting in a difference of 233.7 mL [95% CI 41.0 - 425.5 mL]; p = 0.017 between the groups at 24 months. The peritonitis rate was lower in the Physioneal group: adjusted odds ratio (OR) 0.38 (0.15 - 0.97) p = 0.043. No differences were observed between the 2 groups in peritoneal adequacy or transport characteristics nor effluent markers of local inflammation (cancer antigen [CA]125, hyaluronan [HA], vascular endothelial growth factor [VEGF], macrophage chemo-attractant protein [MCP]-1, HA and transforming growth factor [TGF]β-1). ♦ CONCLUSION: In prevalent PD patients, our study did not find a difference in RRF after conversion from conventional to neutral-pH, low-GDP PD fluids, although there is a possibility that the study was underpowered to detect a difference. Decline in UF during standardized PET was lower after 2 years in the Physioneal group.
Collapse
Affiliation(s)
- Karima Farhat
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands .,Spaarnegasthuis, Department of Internal Medicine, Hoofddorp, The Netherlands
| | - Caroline E Douma
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands.,Spaarnegasthuis, Department of Internal Medicine, Hoofddorp, The Netherlands
| | - E Ferrantelli
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Pieter M Ter Wee
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands
| | - Robert H J Beelen
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Frans J van Ittersum
- VU University Medical Center, Department of Nephrology, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Akbari S, Abou-Arkoub R, Sun S, Hiremath S, Reunov A, McCormick BB, Ruzicka M, Burger D. Microparticle Formation in Peritoneal Dialysis: A Proof of Concept Study. Can J Kidney Health Dis 2017; 4:2054358117699829. [PMID: 28540060 PMCID: PMC5433663 DOI: 10.1177/2054358117699829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Injury to the mesothelial layer of the peritoneal membrane during peritoneal dialysis (PD) is implicated in loss of ultrafiltration capacity, but there are no validated biomarkers for mesothelial cell injury. Microparticles (MPs) are 0.1 to 1.0 µm membrane vesicles shed from the cell surface following injury and are sensitive markers of tissue damage. Formation of MPs in the peritoneal cavity during PD has not been reported to date. METHODS We designed a single-center, proof of concept study to assess whether peritoneal solution exposure induces formation of mesothelial MPs suggestive of PD membrane injury. We examined MP levels in PD effluents by electron microscopy, nanoparticle tracking analysis (NTA), flow cytometry, procoagulant activity, and Western blot. RESULTS NTA identified particles in the size range of 30 to 900 nm, with a mean of 240 (SE: 10 nm). MP levels increased in a progressive manner during a 4-hour PD dwell. Electron microscopy confirmed size and morphology of vesicles consistent with characteristics of MPs as well as the presence of mesothelin on the surface. Western blot analysis of the MP fraction also identified the presence of mesothelin after 4 hours, suggesting that MPs found in PD effluents may arise from mesothelial cells. CONCLUSIONS Our results suggest that MPs are formed and accumulate in the peritoneal cavity during PD, possibly as a stress response. Assessing levels of MPs in PD effluents may be useful as a biomarker for peritoneal membrane damage.
Collapse
Affiliation(s)
- Shareef Akbari
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | | | - Suzy Sun
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Swapnil Hiremath
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.,Division of Nephrology, The Ottawa Hospital, Ontario, Canada
| | | | - Brendan B McCormick
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.,Division of Nephrology, The Ottawa Hospital, Ontario, Canada
| | - Marcel Ruzicka
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.,Division of Nephrology, The Ottawa Hospital, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Kälble F, Damaske J, Heide D, Arnold I, Richter F, Maier O, Eisel U, Scheurich P, Pfizenmaier K, Zeier M, Schwenger V, Ranzinger J. Selective Blocking of TNF Receptor 1 Attenuates Peritoneal Dialysis Fluid Induced Inflammation of the Peritoneum in Mice. PLoS One 2016; 11:e0163314. [PMID: 27755542 PMCID: PMC5068746 DOI: 10.1371/journal.pone.0163314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammatory conditions during peritoneal dialysis (PD)-treatment lead to the impairment of peritoneal tissue integrity. The resulting structural and functional reorganization of the peritoneal membrane diminishes ultrafiltration rate and thereby enhances mortality by limiting dialysis effectiveness over time. Tumour necrosis factor (TNF) and its receptors TNFR1 and TNFR2 are key players during inflammatory processes. To date, the role of TNFR1 in peritoneal tissue damage during PD-treatment is completely undefined. In this study, we used an acute PD-mouse model to investigate the role of TNFR1 on structural and morphological changes of the peritoneal membrane. TNFR1-mediated TNF signalling in transgenic mice expressing human TNFR1 was specifically blocked by applying a monoclonal antibody (H398) highly selective for human TNFR1 prior to PD-treatment. Cancer antigen-125 (CA125) plasma concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analyses were applied to determine TNFR2 protein concentrations. Histological staining of peritoneal tissue sections was performed to assess granulocytes within the peritoneal membrane as well as the content of hyaluronic acid and collagen. We show for the first time that the number of granulocytes within the peritoneal membrane is significantly reduced in mice pre-treated with H398. Moreover, we demonstrate that blocking of TNFR1 not only influences CA125 values but also hyaluronic acid and collagen contents of the peritoneal tissue in these mice. These results strongly suggest that TNFR1 inhibition attenuates peritoneal damage caused by peritoneal dialysis fluid (PDF) and therefore may represent a new therapeutic approach in the treatment of PD-related side effects.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- CA-125 Antigen/blood
- Collagen/metabolism
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Granulocytes/cytology
- Granulocytes/metabolism
- Hyaluronic Acid/metabolism
- Inflammation/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peritoneal Dialysis
- Peritoneum/metabolism
- Peritoneum/pathology
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Florian Kälble
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Janine Damaske
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Danijela Heide
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Iris Arnold
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Fabian Richter
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Olaf Maier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ulrich Eisel
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Peter Scheurich
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Klinikum Stuttgart, Stuttgart, Germany
| | - Julia Ranzinger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
10
|
Opatrná S, Pöpperlová A, Lysák D, Fuchsová R, Trefil L, Racek J, Topolčan O. Effects of Icodextrin and Glucose Bicarbonate/Lactate-Buffered Peritoneal Dialysis Fluids on Effluent Cell Population and Biocompatibility Markers IL-6 and CA125 in Incident Peritoneal Dialysis Patients. Ther Apher Dial 2016; 20:149-57. [PMID: 26929256 DOI: 10.1111/1744-9987.12391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 11/26/2022]
Abstract
Icodextrin peritoneal dialysis (PD) solution has been shown to increase interleukin-6 (IL-6) levels in PD effluent as well as leukocyte and mesothelial cell count. Mesothelial cells release cancer antigen 125 (CA125), which is used as a marker of mesothelial cell mass. This 1-year prospective study was designed to compare peritoneal effluent cell population, its inflammatory phenotype and biocompatibility biomarkers IL-6 and CA125 between icodextrin (E) and glucose bicarbonate/lactate (P) based PD solutions. Using baseline peritoneal ultrafiltration capacity, 19 stable incident PD patients were allocated either to P only (N = 8) or to P plus E for the overnight dwell (N = 11). Flow cytometry was used to measure white blood cell count and differential and the expression of inflammatory molecules on peritoneal cells isolated from timed overnight peritoneal effluents. Compared to P, E effluent showed higher leukocyte (10.9 vs. 7.9), macrophages (6.1 vs. 2.5) and mesothelial cells (0.3 vs. 0.1)×10(6) /L count, as well as expression of HLA DR on mesothelial cells and IL-6 (320.5 vs. 141.2 pg/min) on mesothelial cells and CA125 appearance rate (159.6 vs. 84.3 IU/min), all P < 0.05. In the E group, correlation between IL-6 and CA125 effluent levels (r = 0.503, P < 0.05) as well as appearance rates (r = 0.774, P < 0.001) was demonstrated. No effect on systemic inflammatory markers or peritoneal permeability was found. Icodextrin PD solution activates local inflammation without systemic consequences so the clinical relevance of this observation remains obscure. Correlation between effluent IL-6 and CA125 suggests that CA125 might be upregulated due to inflammation and thus is not a reliable marker of mesothelial cell mass and/or biocompatibility.
Collapse
Affiliation(s)
- Sylvie Opatrná
- Departments of Medicine I, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic.,Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Anna Pöpperlová
- Departments of Medicine I, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic.,Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Daniel Lysák
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.,Hematooncology, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Radka Fuchsová
- Nuclear Medicine, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Ladislav Trefil
- Biochemistry, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Jaroslav Racek
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.,Biochemistry, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| | - Ondrej Topolčan
- Nuclear Medicine, Charles University Medical School and Teaching Hospital Plzen, Plzen, Czech Republic
| |
Collapse
|
11
|
Bartosova M, Rudolf A, Pichl S, Schmidt K, Okun JG, Straub BK, Rutkowski R, Witowski J, Schmitt CP. Increased storage and secretion of phosphatidylcholines by senescent human peritoneal mesothelial cells. Clin Exp Nephrol 2015; 20:544-551. [PMID: 26527208 DOI: 10.1007/s10157-015-1192-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND/AIMS Human peritoneal mesothelial cells (HPMC) secrete phosphatidylcholines (PC) which form a lipid bilayer lining the peritoneum. They prevent frictions and adhesions and act as a barrier to the transport of water-soluble solutes while permitting water flux. PC may play an essential role in peritoneal integrity and function, the role of PD induced HPMC senescence on PC homeostasis, however, is unknown. METHODS HPMC cell lines were isolated from four non-uremic patients. Expression of the three PC synthesis genes (rt-PCR), and cellular storage and secretion of PC (ESI-mass-spectrometry) were analyzed in young and senescent HPMC (>Hayflick-limit). RESULTS Senescent cells displayed significantly altered morphology; flow cytometry demonstrated extensive staining for senescence-associated beta galactosidase. Nine different PC were detected in HPMC with palmitoyl-myristoyl phosphatidylcholine (PMPC) being most abundant. In senescent HPMC mRNA expression of the three key PC synthesis genes was 1.5-, 2.4- and 6-fold increased as compared to young HPMC, with the latter, phosphatidylcholine cytidylyltransferase, being rate limiting. Intracellular storage of the nine PC was 75-450 % higher in senescent vs. young HPMC, PC secretion rates were 100-300 % higher. Intracellular PC concentrations were not correlated with the PC secretion rates. Electron microscopy demonstrated lamellar bodies, the primary storage site of PC, in senescent but not in young cells. CONCLUSION Senescent HPMC store and secrete substantially more PC than young cells. Our findings indicate a novel protective mechanism, which should counteract peritoneal damage induced by chronic exposure to PD fluids.
Collapse
Affiliation(s)
- Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Sebastian Pichl
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Kathrin Schmidt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Beate K Straub
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Claus P Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Krediet RT. Cancer antigen 125 as a biomarker in peritoneal dialysis: mesothelial cell health or death? Perit Dial Int 2014; 33:715-8. [PMID: 24335135 DOI: 10.3747/pdi.2013.00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- R T Krediet
- Division of Nephrology Academic Medical Center University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
13
|
Panorchan K, Davenport A. Diagnostic and prognostic role of peritoneal CA 125 in peritoneal dialysis patients presenting with acute peritonitis. BMC Nephrol 2014; 15:149. [PMID: 25217152 PMCID: PMC4169835 DOI: 10.1186/1471-2369-15-149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer antigen 125 (CA125) is made by peritoneal mesothelial cells and can be measured in spent dialysate effluent from peritoneal dialysis (PD) patients. It has been suggested that CA125 is a marker of peritoneal mesothelial cell mass and turnover. As PD CA125 increases during peritoneal inflammation, we wished to determine whether measuring PD CA125 during peritonitis provided additional information in determining outcome of peritonitis. METHODS We prospectively measured peritoneal CA125 in 127 adult PD patients presenting with 187 acute episodes of PD peritonitis, measuring peritoneal CA125 from a sample of dialysate effluent obtained from a 4 hour 2 litre 13.6 g/l dextrose peritoneal dwell. RESULTS Mean patient age 60.8 ± 17.1 years, 62.6% male, 33.7% diabetic and the median PD vintage was 22 (11-48) months. 127 patients (66.8%) presented with their first episode of peritonitis, 20% their second episode, 13.2% third or greater. Gram positive bacteria accounted for 64.7% of all peritonitis episodes and Gram negative bacteria 21.1%. Treatment was successful for 151 episodes of PD peritonitis (81.1%). The median PD effluent total WBC was 1240 (430-3660)/ml and serum CRP 67 (20-144) mg/l, with a PD CA125 of 38 (20.3-72.3) IU/l on presentation. There were positive correlations between PD effluent CA125 concentrations and total WBC on presentation (r = 0.41, p = <0.001) and dialysis vintage (r = -0.43, p < 0.001) but not with patient age, diabetic status, or serum CRP.There was no difference in PD effluent CA125 concentrations between Gram positive, and Gram negative peritonitis or between those episodes which responded to treatment, median 38 IU/ml (21-69) vs those with treatment failures 38 IU/ml (15-94). CONCLUSION We did not find any additional diagnostic or prognostic benefit for measuring effluent CA125 in PD patients presenting with acute peritonitis compared to standard investigations, including peritoneal WBC and serum CRP. As such our study would not support the routine measurement of peritoneal CA125 during episodes of peritonitis.
Collapse
Affiliation(s)
| | - Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, Rowland Hill Street, NW3 2PF London, UK.
| |
Collapse
|
14
|
Bargman JM. Re: Cancer antigen 125 as a biomarker in peritoneal dialysis: mesothelial cell health or death? Perit Dial Int 2013; 33:718-9. [PMID: 24335136 DOI: 10.3747/pdi.2013.00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- J M Bargman
- Division of Nephrology University Health Network Toronto, Ontario, Canada
| |
Collapse
|
15
|
Lam D, Bargman JM. Peritonitis in the patient on peritoneal dialysis: does the composition of the dialysis fluid make a difference? Clin J Am Soc Nephrol 2013; 8:1471-3. [PMID: 23949231 DOI: 10.2215/cjn.07830713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|