1
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
2
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|
3
|
Papasavva M, Vikelis M, Katsarou MS, Siokas V, Dermitzakis E, Papademetriou C, Karakostis K, Lazopoulos G, Dardiotis E, Drakoulis N. Evidence That HFE H63D Variant Is a Potential Disease Modifier in Cluster Headache. J Mol Neurosci 2021; 72:393-400. [PMID: 34570359 PMCID: PMC8840935 DOI: 10.1007/s12031-021-01913-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Cluster headache (CH) is a primary headache disorder with a complex genetic background. Several studies indicate a potential link between iron homeostasis and the pathophysiology of primary headaches. The HFE gene encodes for a protein involved in iron metabolism, while genetic variants in HFE have been associated with hereditary hemochromatosis (HH), an iron overload disorder. The objective of the current study was to examine the association of the more common HFE H63D variant, with the susceptibility to develop CH and diverse clinical phenotypes in a population of Southeastern European Caucasian (SEC) origin. Genomic DNA samples from 128 CH patients and 294 neurologically healthy controls were genotyped for the HFE rs1799945 (H63D) variant. H63D genotypic and allelic frequency distribution did not differ significantly between patients and controls (p > 0.05). Subgroup analysis revealed a significantly more frequent occurrence of the variant G allele in chronic compared to episodic CH patients, indicative for a possible correlation of the HFE gene with the susceptibility for disease chronification. Although homozygosity for the less prevalent H63D variant G allele was minimal in the CH cohort, the results of the present study are in accordance with previous studies in CH and migraine patients, suggesting that HFE H63D variant modifies the disease clinical characteristics. Hence, despite the absence of a per se association with CH susceptibility in the current SEC cohort, variability in HFE gene may be potentially regarded as a disease modifier genetic factor in CH.
Collapse
Affiliation(s)
- Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | | | - Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Christoforos Papademetriou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | | | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003, Heraklion, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
4
|
HFE variants in colorectal cancer and their clinicopathological correlations. Hum Pathol 2021; 117:9-30. [PMID: 34371060 DOI: 10.1016/j.humpath.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/29/2023]
Abstract
The study aimed to screen mutation of human homeostatic iron regulator (HFE) in colorectal carcinoma (CRC) and detect their associations with clinicopathological parameters. Expression of HFE was determined by quantitative polymerase chain reaction in matched CRC and non neoplastic colorectal mucosal tissue of 76 patients. Genomic DNA extracted were subjected to high high-resolution melt curve analysis and Sanger sequencing to detect mutations in HFE. The associations of the identified mutations with a variety of clinical features were determined. Approximately 60% of CRC showed low HFE expression. Of the ten 10 mutations identified in exons 2 and 4, c.187C>G (H63D), c845G>A (C282Y), c.193A>T (S65C), g.3828T>C, g.5795T>C, and g.5728G>A were known mutations. Four novel mutations were discovered; : c.184G>A, c.220T>G, c.322A>C, and c.324T>C. Heterozygous H63D and C282Y mutations were seen in 71% and 49% of cancer tissue, respectively. Tumour site (p = 0.048) and gender (p = 0.039) were significantly associated with H63D and C282Y mutation status, respectively. Local spread of cancer was significantly associated with C282Y mutations in CRC cancer and adjacent non-neoplastic tissue (p = 0.029 & and p = 0.004, respectively). There was a statistically significant association between H63D and C282Y negativity in matched non-neoplastic colorectal mucosa tissue and pathological staging of cancer (p = 0.047 & and p = 0.001, respectively). Patients with H63D and C282Y mutations in cancer tissue tend to have higher survival rates. Hence HFE mutations are common in CRC and are associated with clinicopathological parameters, implying the potential clinical significance of HFE mutations in colorectal carcinogenesis.
Collapse
|
5
|
Kontoghiorghes GJ, Kolnagou A, Demetriou T, Neocleous M, Kontoghiorghe CN. New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. Int J Mol Sci 2021; 22:ijms22115546. [PMID: 34074010 PMCID: PMC8197347 DOI: 10.3390/ijms22115546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The trimaltol iron complex (International Non-proprietary Name: ferric maltol) was originally designed, synthesised, and screened in vitro and in vivo in 1980–1981 by Kontoghiorghes G.J. following his discovery of the novel alpha-ketohydroxyheteroaromatic (KHP) class of iron chelators (1978–1981), which were intended for clinical use, including the treatment of iron deficiency anaemia (IDA). Iron deficiency anaemia is a global health problem affecting about one-third of the world’s population. Many (and different) ferrous and ferric iron complex formulations are widely available and sold worldwide over the counter for the treatment of IDA. Almost all such complexes suffer from instability in the acidic environment of the stomach and competition from other dietary molecules or drugs. Natural and synthetic lipophilic KHP chelators, including maltol, have been shown in in vitro and in vivo studies to form stable iron complexes, to transfer iron across cell membranes, and to increase iron absorption in animals. Trimaltol iron, sold as Feraccru or Accrufer, was recently approved for clinical use in IDA patients in many countries, including the USA and in EU countries, and was shown to be effective and safe, with a better therapeutic index in comparison to other iron formulations. Similar properties of increased iron absorption were also shown by lipophilic iron complexes of 8-hydroxyquinoline, tropolone, 2-hydroxy-4-methoxypyridine-1-oxide, and related analogues. The interactions of the KHP iron complexes with natural chelators, drugs, metal ions, proteins, and other molecules appear to affect the pharmacological and metabolic effects of both iron and the KHP chelators. A new era in the treatment of IDA and other possible clinical applications, such as theranostic and anticancer formulations and metal radiotracers in diagnostic medicine, are envisaged from the introduction of maltol, KHP, and similar lipophilic chelators.
Collapse
|
6
|
Leukocyte telomere length is associated with iron overload in male adults with hereditary hemochromatosis. Biosci Rep 2020; 40:226596. [PMID: 33026063 PMCID: PMC7584811 DOI: 10.1042/bsr20201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Hereditary hemochromatosis (HH) is a primary iron overload (IO) condition. Absolute telomere length (ATL) is a marker of cellular aging and DNA damage associated with chronic diseases and mortality. Aim: To evaluate the relationship between ATL and IO in patients with HH. Methods: Cross-sectional study including 25 patients with HH: 8 with IO and 17 without IO (ferritin < 300 ng/ml) and 25 healthy controls. Inclusion criteria were: age > 18 years, male sex and HH diagnosis. Patients with diabetes or other endocrine and autoimmune diseases were excluded. ATL was measured by real-time PCR. Results: HH patients with IO were older (P<0.001) and showed higher ferritin concentration (P<0.001). Patients with HH, disregarding the iron status, showed higher glucose and body mass index (BMI) than controls (both P<0.01). ATL was shorter in patients with IO than controls [with IO: 8 (6–14), without IO: 13 (9–20), and controls: 19 (15–25) kilobase pairs, P<0.01]; with a linear trend within groups (P for trend <0.01). Differences in ATL remained statistically significant after adjusting by age, BMI and glucose (P<0.05). Discussion: Patients with IO featured shorter ATL while patients without IO showed only mild alterations vs. controls. Screening for IO is encouraged to prevent iron-associated cellular damage and early telomere attrition.
Collapse
|
7
|
Kallianpur AR, Wen W, Erwin AL, Clifford DB, Hulgan T, Robbins GK. Higher iron stores and the HFE 187C>G variant delay onset of peripheral neuropathy during combination antiretroviral therapy. PLoS One 2020; 15:e0239758. [PMID: 33057367 PMCID: PMC7561201 DOI: 10.1371/journal.pone.0239758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE People with HIV (PWH) continue to experience sensory neuropathy and neuropathic pain in the combination antiretroviral therapy (cART) era for unclear reasons. This study evaluated the role of iron in a previously reported association of iron-loading hemochromatosis (HFE) gene variants with reduced risk of neuropathy in PWH who received more neurotoxic cART, since an iron-related mechanism also might be relevant to neuropathic symptoms in PWH living in low-resource settings today. DESIGN This time-to-event analysis addressed the impact of systemic iron levels on the rapidity of neuropathy onset in PWH who initiated cART. METHODS Soluble transferrin receptor (sTFR), the sTFR-ferritin index of iron stores, and high-sensitivity C-reactive protein (hsCRP) levels were determined in stored baseline sera from participants of known HFE genotype from AIDS Clinical Trials Group (ACTG) Study 384, a multicenter randomized clinical trial that evaluated cART strategies. Associations with incident neuropathy were evaluated in proportional-hazards, time-to-event regression models, adjusting for potential confounders. RESULTS Of 151 eligible participants with stored serum who were included in the original genetic study, 43 had cART-associated neuropathy; 108 had sufficient serum for analysis, including 30 neuropathy cases. Carriers of HFE variants had higher systemic iron (lower sTFR and sTFR-ferritin index) and lower hsCRP levels than non-carriers (all p<0.05). Higher sTFR or iron stores, the HFE 187C>G variant, and lower baseline hsCRP were associated with significantly delayed neuropathy in self-reported whites (n = 28; all p-values<0.05), independent of age, CD4+ T-cell count, plasma HIV RNA, and cART regimen. CONCLUSIONS Higher iron stores, the HFE 187C>G variant, and lower hsCRP predicted delayed onset of neuropathy among self-reported white individuals initating cART. These findings require confirmation but may have implications for cART in HIV+ populations in areas with high endemic iron deficiency, especially those PWH in whom older, more neurotoxic antiretroviral drugs are occasionally still used.
Collapse
Affiliation(s)
- Asha R. Kallianpur
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Angelika L. Erwin
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, Ohio, United States of America
| | - David B. Clifford
- Division of Infectious Diseases, Departments of Medicine and Neurology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Todd Hulgan
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gregory K. Robbins
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Chiou B, Neely EB, Mcdevitt DS, Simpson IA, Connor JR. Transferrin and H-ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. J Neurochem 2020; 152:381-396. [PMID: 31339576 PMCID: PMC6980902 DOI: 10.1111/jnc.14834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/06/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
Iron delivery to the developing brain is essential for energy and metabolic support needed for processes such as myelination and neuronal development. Iron deficiency, especially in the developing brain, can result in a number of long-term neurological deficits that persist into adulthood. There is considerable debate that excess access to iron during development may result in iron overload in the brain and subsequently predispose individuals to age-related neurodegenerative diseases. There is a significant gap in knowledge regarding how the brain acquires iron during development and how biological variables such as development, genetics, and sex impact brain iron status. In this study, we used a mouse model expressing a mutant form of the iron homeostatic regulator protein HFE, (Hfe H63D), the most common gene variant in Caucasians, to determine impact of the mutation on brain iron uptake. Iron uptake was assessed using 59 Fe bound to either transferrin or H-ferritin as the iron carrier proteins. We demonstrate that at postnatal day 22, mutant mice brains take up greater amounts of iron compared with wildtype. Moreover, we introduce H-ferritin as a key protein in brain iron transport during development and identify a sex and genotype effect demonstrating female mutant mice take up more iron by transferrin, whereas male mutant mice take up more iron from H-ferritin at PND22. Furthermore, we begin to elucidate the mechanism for uptake using immunohistochemistry to profile the regional distribution and temporal expression of transferrin receptor and T-cell immunoglobulin and mucin domain 2, the latter is the receptor for H-ferritin. These data demonstrate that sex and genotype have significant effects on iron uptake and that regional receptor expression may play a large role in the uptake patterns during development. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14731.
Collapse
Affiliation(s)
- Brian Chiou
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth B. Neely
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Dillon S. Mcdevitt
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ian A. Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Katsarou MS, Papasavva M, Latsi R, Drakoulis N. Hemochromatosis: Hereditary hemochromatosis and HFE gene. VITAMINS AND HORMONES 2019; 110:201-222. [PMID: 30798813 DOI: 10.1016/bs.vh.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hereditary Hemochromatosis (HH) is an autosomal recessive genetic disease, characterized by an excessively increased absorption of dietary iron. Excess iron can be accumulated because of the lack of an effective excretory mechanism leading to toxic effects. HH is one of the most common genetic disorders in individuals of European descent. Genetic polymorphisms of the HFE gene (rs1800562, rs1799945 and rs1800730) also affect the normal activity of another protein, hepcidin, a negative regulator of iron homeostasis. If left untreated, hereditary hemochromatosis can lead to morbidity and eventually death. Clinical onset hereditary hemochromatosis symptoms occur more frequently in adult men than women, as the monthly loss of iron due to menstruation in women slows down accumulation and the symptoms usually start appearing after menopause. Therapeutic phlebotomy is the primary form of treatment for this disease so far, combined with the use of chelating agents. Orthotopic liver transplantation (OTL) is performed in patients with advanced cirrhosis. In order to prevent the progression of iron accumulation, an early detection may be achieved by genotypic check of the frequent mutations of the HFE. Consequently, initiation of treatment may take place before the development of clinical symptoms, particularly cirrhosis, contributing significantly in achieving normal life expectancy. Therefore, genotypic check is vital in order to prevent the development of this type of hemochromatosis.
Collapse
Affiliation(s)
- Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Rozana Latsi
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Fourie R, Kuloyo OO, Mochochoko BM, Albertyn J, Pohl CH. Iron at the Centre of Candida albicans Interactions. Front Cell Infect Microbiol 2018; 8:185. [PMID: 29922600 PMCID: PMC5996042 DOI: 10.3389/fcimb.2018.00185] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Iron is an absolute requirement for both the host and most pathogens alike and is needed for normal cellular growth. The acquisition of iron by biological systems is regulated to circumvent toxicity of iron overload, as well as the growth deficits imposed by iron deficiency. In addition, hosts, such as humans, need to limit the availability of iron to pathogens. However, opportunistic pathogens such as Candida albicans are able to adapt to extremes of iron availability, such as the iron replete environment of the gastrointestinal tract and iron deficiency during systemic infection. C. albicans has developed a complex and effective regulatory circuit for iron acquisition and storage to circumvent iron limitation within the human host. As C. albicans can form complex interactions with both commensal and pathogenic co-inhabitants, it can be speculated that iron may play an important role in these interactions. In this review, we highlight host iron regulation as well as regulation of iron homeostasis in C. albicans. In addition, the review argues for the need for further research into the role of iron in polymicrobial interactions. Lastly, the role of iron in treatment of C. albicans infection is discussed.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Oluwasegun O Kuloyo
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Bonang M Mochochoko
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
11
|
Asimakopoulou A, Weiskirchen S, Weiskirchen R. Pathogenesis, Diagnostics, and Treatment of Hereditary Haemochromatosis: A 150 Year-Long Understanding of an Iron Overload Disorder. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10310080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Haemochromatosis is an iron overload disorder that can be inherited or acquired and when diagnosis is delayed, disease progression and death can occur. Iron overload was first described by the French internist Armand Trousseau in 1865 in an article on diabetes in which alterations in skin pigmentations were reported. Some years later, the German pathologist Friedrich Daniel von Recklinghausen coined the term ‘haemochromatosis’ for a metabolic disorder characterised by excess deposition of iron in the tissue. This disorder affects 1 in 200 subjects of Caucasians of Northern European descent. The systemic excess iron build-up condition quickly gained an intense clinical interest. Haemochromatosis can lead to severe pathological symptoms in multiple organs, including the liver, bones, spleen, heart, pancreas, joints, and reproductive organs. With the progress of the disease, hepatic damage predominates. Polymorphisms in several independent genes can lead to haemochromatosis. However, the most widely known haemochromatosis-associated and studied ones are genetic variants in the HFE gene, located on the short arm of human chromosome 6. Early detection and phlebotomy prior to the onset of fibrosis/cirrhosis can reduce morbidity and normalise life expectancy. Consequently, phlebotomy has been accepted for decades as a standard treatment for the reduction of iron load. Nowadays, other methods, such as erythrocytapheresis, therapeutic application of iron chelators and proton pump inhibitors, or hepcidin-targeted therapy, are discussed as alternative personalised treatments of hereditary haemochromatosis. This review focusses on the pathogenesis, diagnosis, and therapy of haemochromatosis.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
12
|
Zhabyeyev P, Oudit GY. Hemochromatosis Protein (HFE) Knockout Mice As a Novel Model of Hemochromatosis: Implications for Study and Management of Iron-Overload Cardiomyopathy. Can J Cardiol 2017; 33:835-837. [DOI: 10.1016/j.cjca.2017.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
|
13
|
Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematol 2017; 137:220-236. [PMID: 28514781 DOI: 10.1159/000471838] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Iron is an essential metal for cell survival that is regulated by the peptide hormone hepcidin. However, its influence on certain diseases is directly related to iron metabolism or secondary to underlying diseases. Genetic alterations influence the serum hepcidin concentration, which can lead to an iron overload in tissues, as observed in haemochromatosis, in which serum hepcidin or defective hepcidin synthesis is observed. Another genetic imbalance of iron is iron-refractory anaemia, in which serum concentrations of hepcidin are increased, precluding the flow and efflux of extra- and intracellular iron. During the pathogenesis of certain diseases, the resulting oxidative stress, as well as the increase in inflammatory cytokines, influences the transcription of the HAMP gene to generate a secondary anaemia due to the increase in the serum concentration of hepcidin. To date, there is no available drug to inhibit or enhance hepcidin transcription, mostly due to the cytotoxicity described in the in vitro models. The proposed therapeutic targets are still in the early stages of clinical trials. Some candidates are promising, such as heparin derivatives and minihepcidins. This review describes the main pathways of systemic and genetic regulation of hepcidin, as well as its influence on the disorders related to iron metabolism.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Contiguous gene deletion in HFE2 region (1q21.1) and pathogenic HFE2 mutations in a Chinese hereditary hemochromatosis patient. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:465-81. [PMID: 26893541 PMCID: PMC4745840 DOI: 10.2147/dddt.s79458] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM). Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI) variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30-40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO), oral deferiprone (L1), and DFO-L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX) increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve the use of the iron-chelating drugs and other drug combinations not only for increasing iron excretion but also for preventing iron absorption.
Collapse
Affiliation(s)
| | - George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol, Cyprus
| |
Collapse
|
16
|
Efficacy and safety of deferasirox in non-thalassemic patients with elevated ferritin levels after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2015; 51:89-95. [DOI: 10.1038/bmt.2015.204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
|
17
|
Padda RS, Gkouvatsos K, Guido M, Mui J, Vali H, Pantopoulos K. A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv⁻/⁻ mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G251-61. [PMID: 25501544 DOI: 10.1152/ajpgi.00137.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hemojuvelin (Hjv) is a membrane protein that controls body iron metabolism by enhancing signaling to hepcidin. Hjv mutations cause juvenile hemochromatosis, a disease of systemic iron overload. Excessive iron accumulation in the liver progressively leads to inflammation and disease, such as fibrosis, cirrhosis, or hepatocellular cancer. Fatty liver (steatosis) may also progress to inflammation (steatohepatitis) and liver disease, and iron is considered as pathogenic cofactor. The aim of this study was to investigate the pathological implications of parenchymal iron overload due to Hjv ablation in the fatty liver. Wild-type (WT) and Hjv(-/-) mice on C57BL/6 background were fed a standard chow, a high-fat diet (HFD), or a HFD supplemented with 2% carbonyl iron (HFD+Fe) for 12 wk. The animals were analyzed for iron and lipid metabolism. As expected, all Hjv(-/-) mice manifested higher serum and hepatic iron and diminished hepcidin levels compared with WT controls. The HFD reduced iron indexes and promoted liver steatosis in both WT and Hjv(-/-) mice. Notably, steatosis was attenuated in Hjv(-/-) mice on the HFD+Fe regimen. Hjv(-/-) animals gained less body weight and exhibited reduced serum glucose and cholesterol levels. Histological and ultrastructural analysis revealed absence of iron-induced inflammation or liver fibrosis despite early signs of liver injury (expression of α-smooth muscle actin). We conclude that parenchymal hepatic iron overload does not suffice to trigger progression of liver steatosis to steatohepatitis or fibrosis in C57BL/6 mice.
Collapse
Affiliation(s)
- Ranjit Singh Padda
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Konstantinos Gkouvatsos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maria Guido
- Department of Diagnostic Sciences and Special Therapies, University of Padova, Padova, Italy; and
| | - Jeannie Mui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada;
| |
Collapse
|
18
|
Brissot P, Bardou-Jacquet E, Troadec MB, Mosser A, Island ML, Detivaud L, Loréal O, Jouanolle AM. Molecular diagnosis of genetic iron-overload disorders. Expert Rev Mol Diagn 2014; 10:755-63. [DOI: 10.1586/erm.10.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Lawen A, Lane DJR. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013. [PMID: 23199217 DOI: 10.1089/ars.2011.4271] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a crucial factor for life. However, it also has the potential to cause the formation of noxious free radicals. These double-edged sword characteristics demand a tight regulation of cellular iron metabolism. In this review, we discuss the various pathways of cellular iron uptake, cellular iron storage, and transport. Recent advances in understanding the reduction and uptake of non-transferrin-bound iron are discussed. We also discuss the recent progress in the understanding of transcriptional and translational regulation by iron. Furthermore, we discuss recent advances in the understanding of the regulation of cellular and systemic iron homeostasis and several key diseases resulting from iron deficiency and overload. We also discuss the knockout mice available for studying iron metabolism and the related human conditions.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | |
Collapse
|
20
|
Isokpehi RD, Udensi UK, Anyanwu MN, Mbah AN, Johnson MO, Edusei K, Bauer MA, Hall RA, Awofolu OR. Knowledge building insights on biomarkers of arsenic toxicity to keratinocytes and melanocytes. Biomark Insights 2012; 7:127-41. [PMID: 23115478 PMCID: PMC3480875 DOI: 10.4137/bmi.s7799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to inorganic arsenic induces skin cancer and abnormal pigmentation in susceptible humans. High-throughput gene transcription assays such as DNA microarrays allow for the identification of biological pathways affected by arsenic that lead to initiation and progression of skin cancer and abnormal pigmentation. The overall purpose of the reported research was to determine knowledge building insights on biomarker genes for arsenic toxicity to human epidermal cells by integrating a collection of gene lists annotated with biological information. The information sets included toxicogenomics gene-chemical interaction; enzymes encoded in the human genome; enriched biological information associated with genes; environmentally relevant gene sequence variation; and effects of non-synonymous single nucleotide polymorphisms (SNPs) on protein function. Molecular network construction for arsenic upregulated genes TNFSF18 (tumor necrosis factor [ligand] superfamily member 18) and IL1R2 (interleukin 1 Receptor, type 2) revealed subnetwork interconnections to E2F4, an oncogenic transcription factor, predominantly expressed at the onset of keratinocyte differentiation. Visual analytics integration of gene information sources helped identify RAC1, a GTP binding protein, and TFRC, an iron uptake protein as prioritized arsenic-perturbed protein targets for biological processes leading to skin hyperpigmentation. RAC1 regulates the formation of dendrites that transfer melanin from melanocytes to neighboring keratinocytes. Increased melanocyte dendricity is correlated with hyperpigmentation. TFRC is a key determinant of the amount and location of iron in the epidermis. Aberrant TFRC expression could impair cutaneous iron metabolism leading to abnormal pigmentation seen in some humans exposed to arsenicals. The reported findings contribute to insights on how arsenic could impair the function of genes and biological pathways in epidermal cells. Finally, we developed visual analytics resources to facilitate further exploration of the information and knowledge building insights on arsenic toxicity to human epidermal keratinocytes and melanocytes.
Collapse
Affiliation(s)
- Raphael D Isokpehi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA. ; Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Delima RD, Chua ACG, Tirnitz-Parker JEE, Gan EK, Croft KD, Graham RM, Olynyk JK, Trinder D. Disruption of hemochromatosis protein and transferrin receptor 2 causes iron-induced liver injury in mice. Hepatology 2012; 56:585-93. [PMID: 22383097 DOI: 10.1002/hep.25689] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/19/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Mutations in hemochromatosis protein (HFE) or transferrin receptor 2 (TFR2) cause hereditary hemochromatosis (HH) by impeding production of the liver iron-regulatory hormone, hepcidin (HAMP). This study examined the effects of disruption of Hfe or Tfr2, either alone or together, on liver iron loading and injury in mouse models of HH. Iron status was determined in Hfe knockout (Hfe(-/-)), Tfr2 Y245X mutant (Tfr2(mut)), and double-mutant (Hfe(-/-) ×Tfr2(mut) ) mice by measuring plasma and liver iron levels. Plasma alanine transaminase (ALT) activity, liver histology, and collagen deposition were evaluated to assess liver injury. Hepatic oxidative stress was assessed by measuring superoxide dismutase (SOD) activity and F(2)-isoprostane levels. Gene expression was measured by real-time polymerase chain reaction. Hfe(-/-) ×Tfr2(mut) mice had elevated hepatic iron with a periportal distribution and increased plasma iron, transferrin saturation, and non-transferrin-bound iron, compared with Hfe(-/-), Tfr2(mut), and wild-type (WT) mice. Hamp1 expression was reduced to 40% (Hfe(-/-) and Tfr2(mut) ) and 1% (Hfe(-/-) ×Tfr2(mut)) of WT values. Hfe(-/-) ×Tfr2(mut) mice had elevated plasma ALT activity and mild hepatic inflammation with scattered aggregates of infiltrating inflammatory cluster of differentiation 45 (CD45)-positive cells. Increased hepatic hydoxyproline levels as well as Sirius red and Masson's Trichrome staining demonstrated advanced portal collagen deposition. Hfe(-/-) and Tfr2(mut) mice had less hepatic inflammation and collagen deposition. Liver F(2) -isoprostane levels were elevated, and copper/zinc and manganese SOD activities decreased in Hfe(-/-) ×Tfr2(mut), Tfr2(mut), and Hfe(-/-) mice, compared with WT mice. CONCLUSION Disruption of both Hfe and Tfr2 caused more severe hepatic iron overload with more advanced lipid peroxidation, inflammation, and portal fibrosis than was observed with the disruption of either gene alone. The Hfe(-/-) ×Tfr2(mut) mouse model of iron-induced liver injury reflects the liver injury phenotype observed in human HH.
Collapse
Affiliation(s)
- Roheeth D Delima
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ravasi G, Pelucchi S, Trombini P, Mariani R, Tomosugi N, Modignani GL, Pozzi M, Nemeth E, Ganz T, Hayashi H, Barisani D, Piperno A. Hepcidin expression in iron overload diseases is variably modulated by circulating factors. PLoS One 2012; 7:e36425. [PMID: 22586470 PMCID: PMC3346721 DOI: 10.1371/journal.pone.0036425] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/01/2012] [Indexed: 12/12/2022] Open
Abstract
Hepcidin is a regulatory hormone that plays a major role in controlling body iron homeostasis. Circulating factors (holotransferrin, cytokines, erythroid regulators) might variably contribute to hepcidin modulation in different pathological conditions. There are few studies analysing the relationship between hepcidin transcript and related protein expression profiles in humans. Our aims were: a. to measure hepcidin expression at either hepatic, serum and urinary level in three paradigmatic iron overload conditions (hemochromatosis, thalassemia and dysmetabolic iron overload syndrome) and in controls; b. to measure mRNA hepcidin expression in two different hepatic cell lines (HepG2 and Huh-7) exposed to patients and controls sera to assess whether circulating factors could influence hepcidin transcription in different pathological conditions. Our findings suggest that hepcidin assays reflect hepatic hepcidin production, but also indicate that correlation is not ideal, likely due to methodological limits and to several post-trascriptional events. In vitro study showed that THAL sera down-regulated, HFE-HH and C-NAFLD sera up-regulated hepcidin synthesis. HAMP mRNA expression in Huh-7 cells exposed to sera form C-Donors, HFE-HH and THAL reproduced, at lower level, the results observed in HepG2, suggesting the important but not critical role of HFE in hepcidin regulation.
Collapse
Affiliation(s)
- Giulia Ravasi
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Italy
| | - Sara Pelucchi
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Italy
| | - Paola Trombini
- Centre for Diagnosis and Treatment of Hemochromatosis, S. Gerardo Hospital, Monza, Italy
| | - Raffaella Mariani
- Centre for Diagnosis and Treatment of Hemochromatosis, S. Gerardo Hospital, Monza, Italy
| | - Naohisa Tomosugi
- Division of Nephrology, Department of Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Giulia Litta Modignani
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Italy
| | - Matteo Pozzi
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Italy
| | - Elizabeth Nemeth
- Department of Medicine and Pathology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Tomas Ganz
- Department of Medicine and Pathology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Hisao Hayashi
- Division of Nephrology, Department of Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Donatella Barisani
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Alberto Piperno
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Italy
- Centre for Diagnosis and Treatment of Hemochromatosis, S. Gerardo Hospital, Monza, Italy
- Consortium of Human Molecular Genetics, Monza, Italy
- * E-mail:
| |
Collapse
|
23
|
Gkouvatsos K, Wagner J, Papanikolaou G, Sebastiani G, Pantopoulos K. Conditional disruption of mouse HFE2 gene: maintenance of systemic iron homeostasis requires hepatic but not skeletal muscle hemojuvelin. Hepatology 2011; 54:1800-7. [PMID: 21748766 DOI: 10.1002/hep.24547] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/29/2011] [Indexed: 01/25/2023]
Abstract
UNLABELLED Mutations of the HFE2 gene are linked to juvenile hemochromatosis, a severe hereditary iron overload disease caused by chronic hyperabsorption of dietary iron. HFE2 encodes hemojuvelin (Hjv), a membrane-associated bone morphogenetic protein (BMP) coreceptor that enhances expression of the liver-derived iron regulatory hormone hepcidin. Hjv is primarily expressed in skeletal muscles and at lower levels in the heart and the liver. Moreover, a soluble Hjv form circulates in plasma and is thought to act as a decoy receptor, attenuating BMP signaling to hepcidin. To better understand the regulatory function of Hjv, we generated mice with tissue-specific disruption of this protein in hepatocytes or in muscle cells. The hepatic ablation of Hjv resulted in iron overload, quantitatively comparable to that observed in ubiquitous Hjv-/- mice. Serum iron and ferritin levels, transferrin saturation, and liver iron content were significantly (P < 0.001) elevated in liver-specific Hjv-/- mice. Hepatic Hjv mRNA was undetectable, whereas hepcidin expression was markedly suppressed (12.6-fold; P < 0.001) and hepatic BMP6 mRNA up-regulated (2.4-fold; P < 0.01), as in ubiquitous Hjv-/- counterparts. By contrast, the muscle-specific disruption of Hjv was not associated with iron overload or altered hepcidin expression, suggesting that muscle Hjv mRNA is dispensable for iron metabolism. Our data do not support any significant iron-regulatory function of putative muscle-derived soluble Hjv in mice, at least under physiological conditions. CONCLUSION The hemochromatotic phenotype of liver-specific Hjv-/- mice suggests that hepatic Hjv is necessary and sufficient to regulate hepcidin expression and control systemic iron homeostasis.
Collapse
Affiliation(s)
- Konstantinos Gkouvatsos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
24
|
Moon SN, Han JW, Hwang HS, Kim MJ, Lee SJ, Lee JY, Oh CK, Jeong DC. Establishment of secondary iron overloaded mouse model: evaluation of cardiac function and analysis according to iron concentration. Pediatr Cardiol 2011; 32:947-52. [PMID: 21656238 DOI: 10.1007/s00246-011-0019-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/19/2011] [Indexed: 12/26/2022]
Abstract
Periodic blood transfusion can lead to secondary iron overload in patients with hematologic and oncologic diseases. Iron overload can result in iron deposition in heart tissue, which decreases cardiac function and can ultimately lead to death due to dilated cardiomyopathy and cardiac failure. In this study, we established murine model of secondary iron overload, studied the changes in cardiac function with echocardiography, and examined the histopathologic changes. Three experimental groups of the six week-old C57/BL mice (H-2(b)) were injected intraperitoneally with 10 mg of iron dextran daily 5 days a week for 2, 4, and 6 weeks. Cumulative doses of iron for the three experimental groups were 100, 200, and 300 mg, while the control groups were injected with the same amounts of phosphate-buffered saline. We studied the cardiac function under anesthesia with echocardiography using a GE Vivid7 Dimension system. Plasma iron levels and liver iron contents were measured. The hearts and livers were harvested and stained with H&E and Perls Prussian blue for iron, and the levels of iron deposit were examined. We assessed the cardiac measurements after adjustment for weight. On echocardiography, thicknesses of the interventricular septum and posterior ventricular wall (PS) during diastole showed correlation with the amount of iron deposit (P < 0.01). End-diastolic volume showed dilatation of the left ventricle in the 300 mg group (P < 0.01). Changes in the fractional shortening were not statistically significant (P = 0.07). Plasma iron levels and liver iron contents were increased proportionally according to the amount of iron loaded. The histopathologic findings of PS and liver showed higher grade of iron deposit proportional to the cumulated iron dose. In this study, we present an animal model which helps understand the cardiac function changes in patients with secondary iron overload due to repeated blood transfusions. Our results may help characterize the pathophysiologic features of cardiomyopathy in patients with secondary iron overload, and our model may be applied to in vivo iron-chelating therapy studies.
Collapse
Affiliation(s)
- Se Na Moon
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Highly Elevated Serum Hepcidin in Patients with Acute Myeloid Leukemia prior to and after Allogeneic Hematopoietic Cell Transplantation: Does This Protect from Excessive Parenchymal Iron Loading? Adv Hematol 2011; 2011:491058. [PMID: 21687645 PMCID: PMC3112503 DOI: 10.1155/2011/491058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/07/2011] [Indexed: 02/01/2023] Open
Abstract
Hepcidin is upregulated by inflammation and iron. Inherited (HFE genotype) and treatment-related factors (blood units (BU), Iron overload) affecting hepcidin (measured by C-ELISA) were studied in 42 consecutive patients with AML prior to and after allogeneic hematopoietic cell transplantation (HCT). Results. Elevated serum ferritin pre- and post-HCT was present in all patients. Median hepcidin pre- and post-HCT of 358 and 398 ng/mL, respectively, were elevated compared to controls (median 52 ng/mL) (P < .0001). Liver and renal function, prior chemotherapies, and conditioning had no impact on hepcidin. Despite higher total BU after HCT compared to pretransplantation (P < .0005), pre- and posttransplant ferritin and hepcidin were similar. BU influenced ferritin (P = .001) and hepcidin (P = .001). No correlation of pre- or posttransplant hepcidin with pretransplant ferritin was found. HFE genotype did not influence hepcidin. Conclusions. Hepcidin is elevated in AML patients pre- and post-HCT due to transfusional iron-loading suggesting that hepcidin synthesis remains intact despite chemotherapy and HCT.
Collapse
|
26
|
Kontoghiorghes GJ, Spyrou A, Kolnagou A. Iron chelation therapy in hereditary hemochromatosis and thalassemia intermedia: regulatory and non regulatory mechanisms of increased iron absorption. Hemoglobin 2011; 34:251-64. [PMID: 20524815 DOI: 10.3109/03630269.2010.486335] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Millions of people are affected by hereditary hemochromatosis (HH) and thalassemia intermedia (TI), the iron overloading disorders caused by chronic increases in iron absorption. Genetic factors, regulatory pathways involving proteins of iron metabolism, non regulatory molecules, dietary constituents and iron binding drugs could affect iron absorption and could lead to iron overload or iron deficiency. Chelators and chelating drugs can affect both iron absorption and excretion. Deferoxamine (DFO), deferiprone (L1) and the DFO/L1 combination therapies have been used effectively for reversing the toxic side effects of iron overload including cardiac and liver damage in TI and HH patients where venesection is contraindicated. Selected protocols using DFO, L1 and their combination could be designed for optimizing chelation therapy in TI and HH. The use of deferasirox (DFRA) in HH and TI could cause an increase in iron and other toxic metal absorption. Future treatments of HH and TI could involve the use of iron chelating and other drugs not only for increasing iron excretion but also for preventing iron absorption.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol, Cyprus.
| | | | | |
Collapse
|
27
|
Sebastiani G, Pantopoulos K. Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics 2011; 3:971-86. [DOI: 10.1039/c1mt00082a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
29
|
Abstract
Primary osteoarthritis (OA) of peripheral joints is a common disease mainly occurring after the age of 50. It is important to distinguish primary from secondary OA. Younger age at disease onset, rapid progression, unusual disease manifestations and co-morbidities are signs of secondary OA. This review outlines an important group of secondary OA. Hereditary metabolic diseases can exhibit joint involvement. For some of these diseases, correct diagnosis is critical, since appropriate therapy influences not only joint function and quality of life, but can also prevent relevant end-organ damage.
Collapse
Affiliation(s)
- J Zwerina
- Medizinische Klinik 3 mit Rheumatologie und Klinischer Immunologie, Universität Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Deutschland.
| | | |
Collapse
|
30
|
|
31
|
Iron metabolism in thalassemia and sickle cell disease. Mediterr J Hematol Infect Dis 2009; 1:e2009006. [PMID: 21415988 PMCID: PMC3033158 DOI: 10.4084/mjhid.2009.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/25/2009] [Indexed: 01/19/2023] Open
Abstract
THERE ARE TWO MAIN MECHANISMS BY WHICH IRON OVERLOAD DEVELOPS IN THALASSEMIAS: increased iron absorption due to ineffective erythropoiesis and blood transfusions. In nontransfused patients with severe thalassemia, abnormal dietary iron absorption increases body iron burden between 2 and 5 g per year. If regular transfusions are required, this doubles the rate of iron accumulation leading to earlier massive iron overload and iron-related damage. Iron metabolism largely differs between thalassemias and sickle cell disease, but chronic transfusion therapy partially normalize many of the disparities between the diseases, making iron overload an important issue to be considered in the management of patients with sickle cell disease too. The present review summarizes the actual knowledge on the regulatory pathways of iron homeostasis. In particular, the data presented indicate the inextricably link between erythropoiesis and iron metabolism and the key role of hepcidin in coordinating iron procurement according to erythropoietic requirement. The role of erythropoietin, hypoxia, erythroid-dependent soluble factors and iron in regulating hepcidin transcription are discussed as well as differences and similarities in iron homeostasis between thalassemia syndromes and sickle cell disease.
Collapse
|
32
|
Abstract
There have been major developments in the field of iron metabolism in the past decade following the identification of the HFE gene and the mutation responsible for the C282Y substitution in the HFE protein. While HFE-associated hemochromatosis occurs predominantly in people of northern European extraction, other less-common mutations can lead to the same clinical syndrome and these may occur in other populations in the Asian-Pacific region. The most common of these is the mutation that leads to changes in the ferroportin molecule, the protein responsible for the transport of iron across the basolateral membrane of the enterocyte and from macrophages. Recent research has unraveled the molecular processes of iron transport and regulation of how these are disturbed in hemochromatosis and other iron-loading disorders. At the same time, at least one new oral iron chelating agent has been developed that shows promise in the therapy of hemochromatosis as well as thalassemia and other secondary causes of iron overload. It is pertinent therefore to examine the developments in the global field of iron overload that have provided insights into the pathogenesis, disease penetrance, comorbid factors, and management.
Collapse
|
33
|
BMP/Smad signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood 2009; 114:2515-20. [PMID: 19622835 DOI: 10.1182/blood-2009-02-206771] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impaired regulation of hepcidin expression in response to iron loading appears to be the pathogenic mechanism for hereditary hemochromatosis. Iron normally induces expression of the BMP6 ligand, which, in turn, activates the BMP/Smad signaling cascade directing hepcidin expression. The molecular function of the HFE protein, involved in the most common form of hereditary hemochromatosis, is still unknown. We have used Hfe-deficient mice of different genetic backgrounds to test whether HFE has a role in the signaling cascade induced by BMP6. At 7 weeks of age, these mice have accumulated iron in their liver and have increased Bmp6 mRNA and protein. However, in contrast to mice with secondary iron overload, levels of phosphorylated Smads 1/5/8 and of Id1 mRNA, both indicators of BMP signaling, are not significantly higher in the liver of these mice than in wild-type livers. As a consequence, hepcidin mRNA levels in Hfe-deficient mice are similar or marginally reduced, compared with 7-week-old wild-type mice. The inappropriately low levels of Id1 and hepcidin mRNA observed at weaning further suggest that Hfe deficiency triggers iron overload by impairing hepatic Bmp/Smad signaling. HFE therefore appears to facilitate signal transduction induced by the BMP6 ligand.
Collapse
|