1
|
Hahnvajanawong C, Sahakulboonyarak T, Boonmars T, Reutrakul V, Kerdsin A, Boueroy P. Inhibitory effect of isomorellin on cholangiocarcinoma cells via suppression of NF-κB translocation, the phosphorylated p38 MAPK pathway and MMP-2 and uPA expression. Exp Ther Med 2020; 21:151. [PMID: 33456518 PMCID: PMC7792505 DOI: 10.3892/etm.2020.9583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence indicates that most cancer deaths are caused by tumor invasion and metastasis. Cholangiocarcinoma (CCA) is a tumor of the bile duct epithelium characterized by slow growth, rapid metastasis and poor prognosis. Caged xanthones are extracted from gamboge, a dry resin exuded by Garcinia hanbury. These compounds have been reported to be cytotoxic to several types of cancer cells, without affecting normal cells. The aim of the present study was to determine the effect of isomorellin on the inhibition of CCA cell (KKU-100) viability, migration, invasion and the expression of invasion-regulated proteins. Cytotoxicity of isomorellin was evaluated using a sulforhodamine B assay. The anti-migratory and anti-invasive effects of isomorellin on KKU-100 cells were assessed using wound healing and chamber invasion assays, respectively. Furthermore, the activities of matrix metalloproteinases (MMPs)-2 and -9, and urokinase-type plasminogen activator (uPA) were also investigated. The expression levels of proteins regulating invasion were determined via western blot analysis. The cell viability of KKU-100 cells was decreased following treatment with isomorellin in a dose-dependent manner, with IC50 values at 24, 48 and 72 h of 3.46±0.19, 3.78±0.02 and 4.01±0.01 µM, respectively. Wound healing and chamber invasion assays indicated that isomorellin significantly inhibited KKU-100 cell migration and invasion in a dose-dependent manner. In addition, isomorellin significantly inhibited cancer cell migration and invasion abilities via focal adhesion kinase (FAK), protein kinase C (PKC), the phosphorylated (p)-p38 mitogen-activated protein kinase (MAPK) pathway, and nuclear factor (NF)-κB expression and translocation to the nucleus, thus resulting in downregulation of MMP-2, uPA and cyclooxygenase-2 (COX-2) expression. Therefore, inhibition of MMP-2, uPA and COX-2 expression may result in decreased CCA cell invasion ability. These data demonstrated for the first time that the suppression of KKU-100 cell viability, invasion and migration, and downregulation of NF-κB, MMP-2, uPA and the p-p38 MAPK pathway, may result in isomorellin-mediated anti-invasiveness.
Collapse
Affiliation(s)
- Chariya Hahnvajanawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thitiporn Sahakulboonyarak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400, Thailand.,Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| |
Collapse
|
2
|
Kiesslich T, Mayr C, Wachter J, Bach D, Fuereder J, Wagner A, Alinger B, Pichler M, Di Fazio P, Ocker M, Berr F, Neureiter D. Activated hedgehog pathway is a potential target for pharmacological intervention in biliary tract cancer. Mol Cell Biochem 2014; 396:257-68. [PMID: 25064451 DOI: 10.1007/s11010-014-2161-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
Hedgehog (Hh) signalling contributes to carcinogenesis and represents a valid druggable target in human cancers, possibly also in biliary tract cancer (BTC). We analysed the expression of Hh components in BTC using eight heterogeneously differentiated cell lines, xenograft tumours and a human tissue microarray. The dose-, time- and cell line-dependent effects of two Hh inhibitors (cyclopamine and Gant-61) were analysed in vitro for survival, apoptosis, cell cycle distribution and possible synergism with conventional chemotherapeutic agents. In human BTC samples, the sonic Hh ligand and the Gli1 transcription factor showed increased expression in tumours compared to normal adjacent tissue and were significantly associated with high tumour grade and positive lymph node status. In BTC cell lines, we could confirm the Hh component expression at varying extent within the employed cell lines in vitro and in vivo indicating non-canonical signalling. Both Hh inhibitors showed dose-dependent cytotoxicity above 5 µM with a stronger effect for Gant-61 inducing apoptosis whereas cyclopamine rather inhibited proliferation. Cytotoxicity was associated with low cytokeratin expression and higher mesenchymal marker expression such as vimentin. Additionally, drug combinations of Gant-61 with conventional chemotherapy (cisplatin) exerted synergistic effects. In conclusion, Hh pathway is significantly activated in human BTC tissue compared to normal adjacent tissue. The current data demonstrate for the first time an effective anticancer activity of especially Gant-61 in BTC and suggest second generation Hh pathway inhibitors as a potential novel treatment strategy in BTC.
Collapse
Affiliation(s)
- Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Gallbladder cancer (GBC) is the leading cause of cancer related mortality in certain geographic areas. Most of the patients with GBC have advanced disease at presentation, precluding curative resection resulting in a dismal prognosis. However, recent advances in the understanding of its epidemiology and pathogenesis coupled with development of newer diagnostic tools and therapeutic options, has resulted in enhanced optimism towards the management of the disease. The leading risk factors are gallstones, advancing age, female gender, anomalous pancreaticobiliary ductal junction, certain ethnic groups and geographic populations. Advances in radiological imaging and the advent of endoscopic ultrasound have facilitated early detection and accurate staging of the tumor. A high index of suspicion in high risk groups is necessary to pick up incidental and early GBC, as surgical resection is curative. In patients with suspected GBC, an open surgical resection that is appropriate for that stage is advocated. Adjuvant combination chemotherapy and molecular targeted therapy are emerging as effective therapeutic options in those with advanced GBC. Endoscopic palliation of biliary and gastric outlet obstruction with metallic stents has improved their quality of life. Prevention remains the hitherto less explored option to reduce GBC related mortality. Prophylactic cholecystectomy in high risk groups is a cost-effective option. A multi-disciplinary systematic global approach to initiate collaborative ventures to understand epidemiology, standardize management strategies, conduct multi-centric trials with newer therapeutic agents and initiate preventive measures, would pave way for the future conquest of the disease.
Collapse
Affiliation(s)
- Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
5
|
WACHTER J, NEUREITER D, ALINGER B, PICHLER M, FUEREDER J, OBERDANNER C, Di FAZIO P, OCKER M, BERR F, KIESSLICH T. Influence of five potential anticancer drugs on wnt pathway and cell survival in human biliary tract cancer cells. Int J Biol Sci 2012; 8:15-29. [PMID: 22211101 PMCID: PMC3226029 DOI: 10.7150/ijbs.8.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/21/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of Wnt signalling in carcinogenesis suggests compounds targeting this pathway as potential anti-cancer drugs. Several studies report activation of Wnt signalling in biliary tract cancer (BTC) thus rendering Wnt inhibitory drugs as potential candidates for targeted therapy of this highly chemoresistant disease. METHODS In this study we analysed five compounds with suggested inhibitory effects on Wnt signalling (DMAT, FH535, myricetin, quercetin, and TBB) for their cytotoxic efficiency, mode of cell death, time- and cell line-dependent characteristics as well as their effects on Wnt pathway activity in nine different BTC cell lines. RESULTS Exposure of cancer cells to different concentrations of the compounds results in a clear dose-dependent reduction of viability for all drugs in the order FH535 > DMAT > TBB > myricetin > quercetin. The first three substances show high cytotoxicity in all tested cell lines, cause a direct cytotoxic effect by induction of apoptosis and inhibit pathway-specific signal transduction in a Wnt transcription factor reporter activity assay. Selected target genes such as growth-promoting cyclin D1 and the cell cycle progression inhibitor p27 are down- and up-regulated after treatment, respectively. CONCLUSIONS Taken together, these data demonstrate that the small molecular weight inhibitors DMAT, F535 and TBB have a considerable cytotoxic and possibly Wnt-specific effect on BTC cell lines in vitro. Further in vivo investigation of these drugs as well as of new Wnt inhibitors may provide a promising approach for targeted therapy of this difficult-to-treat tumour.
Collapse
Affiliation(s)
- Julia WACHTER
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Daniel NEUREITER
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Beate ALINGER
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Martin PICHLER
- 3. Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Julia FUEREDER
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | | | - Pietro Di FAZIO
- 5. Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, 35033 Marburg, Germany
| | - Matthias OCKER
- 5. Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, 35033 Marburg, Germany
| | - Frieder BERR
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Tobias KIESSLICH
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
- ✉ Corresponding author: Tobias KIESSLICH, Department of Internal Medicine I, Paracelsus Medical University / SALK, Muellner Hauptstrasse 48, 5020 Salzburg, Austria. Tel: ++43 662 448258346, Fax: ++43 662 44824837,
| |
Collapse
|