1
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Miga MI. Fat Quantification Imaging and Biophysical Modeling for Patient-Specific Forecasting of Microwave Ablation Therapy. Front Physiol 2022; 12:820251. [PMID: 35185606 PMCID: PMC8850958 DOI: 10.3389/fphys.2021.820251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Computational tools are beginning to enable patient-specific surgical planning to localize and prescribe thermal dosing for liver cancer ablation therapy. Tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) have been found to affect ablative therapies, but current thermal dosing guidance practices do not account for these differences. Computational modeling of ablation procedures can integrate these sources of patient specificity to guide therapy planning and delivery. This paper establishes an imaging-data-driven framework for patient-specific biophysical modeling to predict ablation extents in livers with varying fat content in the context of microwave ablation (MWA) therapy. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models and mDIXON fat-quantification images were acquired and analyzed to establish fat content and determine biophysical properties. Simulated patient-specific microwave ablations of tumor and healthy tissue were performed at four levels of fatty liver disease. Ablation models with greater fat content demonstrated significantly larger treatment volumes compared to livers with less severe disease states. More specifically, the results indicated an eightfold larger difference in necrotic volumes with fatty livers vs. the effects from the presence of more conductive tumor tissue. Additionally, the evolution of necrotic volume formation as a function of the thermal dose was influenced by the presence of a tumor. Fat quantification imaging showed multi-valued spatially heterogeneous distributions of fat deposition, even within their respective disease classifications (e.g., low, mild, moderate, high-fat). Altogether, the results suggest that clinical fatty liver disease levels can affect MWA, and that fat-quantitative imaging data may improve patient specificity for this treatment modality.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jarrod A. Collins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jon S. Heiselman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Katherine C. Frederick-Dyer
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Virginia B. Planz
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sunil K. Geevarghese
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel B. Brown
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Michael I. Miga,
| |
Collapse
|
2
|
Shao GL, Zheng JP, Guo LW, Chen YT, Zeng H, Yao Z. Evaluation of efficacy of transcatheter arterial chemoembolization combined with computed tomography-guided radiofrequency ablation for hepatocellular carcinoma using magnetic resonance diffusion weighted imaging and computed tomography perfusion imaging: A prospective study. Medicine (Baltimore) 2017; 96:e5518. [PMID: 28099329 PMCID: PMC5279074 DOI: 10.1097/md.0000000000005518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The purpose of this study is to evaluate the efficacy of transcatheter arterial chemoembolization (TACE) combined with computed tomography-guided radiofrequency ablation (CT-RFA) in the treatment of hepatocellular carcinoma (HCC) using magnetic resonance diffusion weighted imaging (MR-DWI) and CT perfusion imaging (CT-PI). METHODS From January 2008 to January 2014, a total of 522 HCC patients receiving TACE combined with CT-RFA were included in this study. All patients underwent TACE followed by CT-RFA, and 1 day before treatment and 1 month after treatment they received MR-DWI and CT-PI. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the concentration of alpha-fetoprotein (AFP). Tumor response was evaluated using the revised RECIST criteria. One-year follow-up was conducted on all patients. Receiver-operating characteristic (ROC) curve was drawn to evaluate the efficacy of TACE combined with CT-RFA for HCC using MR-DWI and CT-PI. RESULTS Total effective rate (complete remission [CR] + partial remission [PR]) of TACE combined with CT-RFA for HCC was 82.95%. HCC patients of CR + PR had lower hepatic blood flow (HBF), hepatic blood volume (HBV), permeability surface (PS), hepatic arterial perfusion (HAP), and hepatic perfusion index (HPI) levels than those of SD + PD, but HCC patients of CR + PR had higher mean transit time (MTT) level than those of SD + PD. The patients of PR + CR had higher apparent diffusion coefficient (ADC) values than those of SD + PD. The patients of PR + CR showed lower AFP concentration than those of SD + PD. ROC curve analysis indicated that the area under the curve (AUC) of AFP, HBV, PS, HAP, HPI, and ADC was more than 0.7, but the AUC of HBF, MTT, and PVP were less than 0.7. After treatment, the AFP, HBF, HBV, PS, HAP, and HPI in the HCC patients with recurrence were higher than those in the HCC patients without, but MTT and ADC in the HCC patients with recurrence were lower than those in the HCC patients without. CONCLUSION These findings indicate that MR-DWI and CT-PI can effectively evaluate the efficacy of TACE combined with CT-RFA and postoperative recurrence of HCC.
Collapse
|
3
|
Stereological quantification of microvessels using semiautomated evaluation of X-ray microtomography of hepatic vascular corrosion casts. Int J Comput Assist Radiol Surg 2016; 11:1803-19. [DOI: 10.1007/s11548-016-1378-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
|
4
|
Deshazer G, Merck D, Hagmann M, Dupuy DE, Prakash P. Physical modeling of microwave ablation zone clinical margin variance. Med Phys 2016; 43:1764. [DOI: 10.1118/1.4942980] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
Oğul H, Kantarcı M, Genç B, Pirimoğlu B, Cullu N, Kızrak Y, Yılmaz O, Karabulut N. Perfusion CT imaging of the liver: review of clinical applications. Diagn Interv Radiol 2015; 20:379-89. [PMID: 24834487 DOI: 10.5152/dir.2014.13396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perfusion computed tomography (CT) has a great potential for determining hepatic and portal blood flow; it offers the advantages of quantitative determination of lesion hemodynamics, distinguishing malignant and benign processes, as well as providing morphological data. Many studies have reported the use of this method in the assessment of hepatic tumors, hepatic fibrosis associated with chronic liver disease, treatment response following radiotherapy and chemotherapy, and hepatic perfusion changes after radiological or surgical interventions. The main goal of liver perfusion imaging is to improve the accuracy in the characterization of liver disorders. In this study, we reviewed the clinical application of perfusion CT in various hepatic diseases.
Collapse
Affiliation(s)
- Hayri Oğul
- Department of Radiology, Atatürk University, School of Medicine, Erzurum, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang L, Fan J, Ding X, Sun J, Zhang M. Assessment of liver fibrosis in the early stages with perfusion CT. Int J Clin Exp Med 2015; 8:15276-15282. [PMID: 26629014 PMCID: PMC4658903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/03/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES This work aims to assess the feasibility of perfusion CT in diagnosis of liver fibrosis in the early stage. MATERIALS AND METHODS Solutions of carbon tetrachloride (CCL4) were injected into the peritoneum of 45 rabbits to establish rabbit models of liver fibrosis. Perfusion CT were performed at 4-, 8-, 12- and 16- week after injection. The parametric perfusion indices of blood flow (BF), blood volume (BV), arterial liver perfusion (ALP), portal venous perfusion (PVP), and hepatic perfusion index (HPI) on perfusion maps were measured. Liver samples were scored as F0, F1, F2, F3, F4 for fibrosis. RESULTS In 50 rabbits, 23 rabbits survived. Of these survival rabbits, 5 rabbits were histopathologically scored as F0, 7 rabbits were F1, 8 rabbits were F2, and 3 rabbits were F3. For relatively small number of F3, multiple comparisons were made for F0 vs. F1, F1 vs. F2 and F0 vs. F2. A statistically significant difference was observed in PVP, BV, BF, ALP and HPI between F1 vs. F2 and F0 vs. F2, whereas a significant statistical difference was only achieved in PVP between F0 vs. F1. In the early stage of liver fibrosis PVP decreased with the progression of liver fibrosis, whereas HPI, ALP and BF increased with the progression of liver fibrosis. BV had no marked change. CONCLUSIONS Perfusion CT is feasible in diagnosis of early stage of liver fibrosis. PVP appears to be the most promising parametric perfusion index.
Collapse
Affiliation(s)
- Liuhong Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 310009, China
| | - Jingjing Fan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 310009, China
| | - Xinfa Ding
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 310009, China
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 310009, China
| |
Collapse
|
7
|
Ogul H, Bayraktutan U, Kizrak Y, Pirimoglu B, Yuceler Z, Sagsoz ME, Yilmaz O, Aydinli B, Ozturk G, Kantarci M. Abdominal perfusion computed tomography. Eurasian J Med 2015; 45:50-7. [PMID: 25610249 DOI: 10.5152/eajm.2013.09] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/16/2012] [Indexed: 01/03/2023] Open
Abstract
The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.
Collapse
Affiliation(s)
- Hayri Ogul
- Department of Radiology, School of Medicine, Atatürk University, Erzurum, Turkey
| | | | - Yesim Kizrak
- Department of Radiology, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Berhan Pirimoglu
- Department of Radiology, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Zeynep Yuceler
- Department of Radiology, School of Medicine, Atatürk University, Erzurum, Turkey
| | - M Erdem Sagsoz
- Department of Biophysics, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Omer Yilmaz
- Department of General Surgery, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Bulent Aydinli
- Department of General Surgery, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Gurkan Ozturk
- Department of General Surgery, School of Medicine, Atatürk University, Erzurum, Turkey
| | - Mecit Kantarci
- Department of Radiology, School of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
8
|
Re: Quantitative hepatic CT perfusion measurement: Comparison of Couinaud's hepatic segments with dual-source 128-slice CT. Eur J Radiol 2014; 83:865. [DOI: 10.1016/j.ejrad.2014.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022]
|
9
|
Singh J, Sharma S, Aggarwal N, Sood RG, Sood S, Sidhu R. Role of Perfusion CT Differentiating Hemangiomas from Malignant Hepatic Lesions. J Clin Imaging Sci 2014; 4:10. [PMID: 24744967 PMCID: PMC3988591 DOI: 10.4103/2156-7514.127959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 02/05/2014] [Indexed: 01/02/2023] Open
Abstract
Objective: The purpose of the study was to determine the role of computed tomography (CT) perfusion in differentiating hemangiomas from malignant hepatic lesions. Materials and Methods: This study was approved by the institutional review board. All the patients provided informed consent. CT perfusion was performed with 64 multidetector CT (MDCT) scanner on 45 patients including 27 cases of metastasis, 9 cases of hepatocellular carcinoma (HCC), and 9 cases of hemangiomas. A 14 cm span of the liver was covered during the perfusion study. Data was analyzed to calculate blood flow (BF), blood volume (BV), permeability surface area product (PS), mean transit time (MTT), hepatic arterial fraction (HAF), and induced residue fraction time of onset (IRFTO). CT perfusion parameters at the periphery of lesions and background liver parenchyma were compared. Results: Significant changes were observed in the perfusion parameters at the periphery of different lesions. Of all the perfusion parameters BF, HAF, and IRFTO showed most significant changes. In our study we found: BF of more than 400 ml/100 g/min at the periphery of the hemangiomas showed sensitivity of 88.9%, specificity of 83.3%, positive predictive value (PPV) of 57.1%, and negative predictive value (NPV) of 96.7% in differentiating hemangiomas from hepatic malignancy; HAF of more than 60% at the periphery of hemangiomas showed sensitivity of 77.8%, specificity of 86.1%, PPV of 58.3% and NPV of 93.9% in differentiating hemangiomas from hepatic malignancy; IRFTO of more than 3 s at the periphery of hemangiomas showed sensitivity of 77.8%, specificity of 86.1%, PPV of 58.3%, and NPV of 93.9% in differentiating hemangiomas from hepatic malignancy. Conclusion: Perfusion CT is a helpful tool in differentiating hemangiomas from hepatic malignancy by its ability to determine changes in perfusion parameters of the lesions.
Collapse
Affiliation(s)
- Jagjeet Singh
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Sanjiv Sharma
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Neeti Aggarwal
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - R G Sood
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Shikha Sood
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Ravinder Sidhu
- Department of Imaging Sciences, University of Rochester Medical Center, New York, USA
| |
Collapse
|
10
|
Zhao LQ, He W, Yan B, Wang HY, Wang J. The evaluation of haemodynamics in cirrhotic patients with spectral CT. Br J Radiol 2013; 86:20130228. [PMID: 23881800 DOI: 10.1259/bjr.20130228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate haemodynamics in cirrhotic patients with portal hypertension using spectral CT imaging. METHODS 118 cirrhotic patients with portal hypertension were included in the study group (further divided into Child-Pugh A, B and C subgroups). The control group consisted of 21 subjects with normal liver functionality. All subjects underwent three-phase spectral CT scans. Material decomposition images with water and iodine as basis material pairs were reconstructed. The iodine concentrations for the hepatic parenchyma in both arterial and portal venous phases were measured. The arterial iodine fraction (AIF) was obtained by dividing the iodine concentration in the hepatic arterial phase by that in the portal venous phase. AIF values from the study and control groups were compared using analysis of variance and between subgroups using a post-hoc test with Bonferroni correction, with a statistical significance of p<0.05. RESULTS The AIF was 0.25±0.05 in the control group, and 0.29±0.10, 0.37±0.12 and 0.43±0.14 in the study group with Child-Pugh Grades A, B and C, respectively. The difference in AIF between the control and study groups was statistically significant. The differences were statistically significant between the subgroups with multiple comparisons except between the control group and the Child-Pugh A group (p=0.685). CONCLUSION AIF measured in spectral CT could be used to evaluate the liver haemodynamics of cirrhotic patients. ADVANCES IN KNOWLEDGE The AIF, provided by spectral CT, could be used as a new parameter to observe liver haemodynamics.
Collapse
Affiliation(s)
- L-Q Zhao
- Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
11
|
CT Dynamics: The Shift from Morphology to Function. CURRENT RADIOLOGY REPORTS 2013. [DOI: 10.1007/s40134-012-0004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Abstract
Drug-drug interactions are a serious clinical issue. An important mechanism underlying drug-drug interactions is induction or inhibition of drug transporters that mediate the cellular uptake and efflux of xenobiotics. Especially drug transporters of the small intestine, liver and kidney are major determinants of the pharmacokinetic profile of drugs. Transporter-mediated drug-drug interactions in these three organs can considerably influence the pharmacokinetics and clinical effects of drugs. In this article, we focus on probe drugs lacking significant metabolism to highlight mechanisms of interactions of selected intestinal, hepatic and renal drug transporters (e.g., organic anion transporting polypeptide [OATP] 1A2, OATP2B1, OATP1B1, OATP1B3, P-gp, organic anion transporter [OAT] 1, OAT3, breast cancer resistance protein [BCRP], organic cation transporter [OCT] 2 and multidrug and toxin extrusion protein [MATE] 1). Genotype-dependent drug-drug interactions are also discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental & Clinical Pharmacology & Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | |
Collapse
|
13
|
Bowden DJ, Barrett T. Angiogenesis imaging in neoplasia. J Clin Imaging Sci 2011; 1:38. [PMID: 21977389 PMCID: PMC3182525 DOI: 10.4103/2156-7514.83229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/22/2011] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis plays a key role in physiological and pathophysiological processes and is recognized as being essential for tumor growth and metastases. The recent oncological development of anti-angiogenic drugs brings with it a need for angiogenesis quantification and monitoring of response. The nature of these agents means that traditional anatomical methods of assessing morphologic change are outmoded and functional imaging techniques and/or agents are necessary. Herein, we describe the various imaging techniques that can be employed to assess angiogenesis, along with their inherent advantages and disadvantages and discuss the current and future developments in the field.
Collapse
Affiliation(s)
- David J Bowden
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Bernstine H, Braun M, Yefremov N, Lamash Y, Carmi R, Stern D, Steinmetz A, Sosna J, Groshar D. FDG PET/CT early dynamic blood flow and late standardized uptake value determination in hepatocellular carcinoma. Radiology 2011; 260:503-10. [PMID: 21555347 DOI: 10.1148/radiol.11102350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To prospectively determine whether fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) early dynamic blood flow estimates could be used to discriminate hepatocellular carcinoma (HCC) from background liver and to characterize HCC in patients with and those without angioinvasion; and to evaluate the association between blood flow measures at FDG PET/CT with metabolism in HCCs. MATERIALS AND METHODS Institutional review board approval and written informed consent were obtained for this prospective study. Twenty-one consecutive patients (mean age, 65 years) with 30 established HCCs (mean size, 5.5 cm; seven lesions in five patients with angioinvasion) underwent a blood flow study with an FDG dynamic scan divided into 18 sequences of 5 seconds each and a standard PET/CT scan. On the dynamic study, three independent operators obtained volumes of interest (VOIs) for which three blood flow estimates were calculated (hepatic perfusion index [HPI], time to peak [TTP], and peak intensity [PI]). On the late study, a VOI was placed on the fused scan for each HCC, and maximum standardized uptake value (SUV(max)) was obtained. By using a mixed-effects model analysis, comparison of blood flow estimates between HCC with and that without angioinvasion and background liver was performed. The association between blood flow estimates and SUV(max) was also assessed. RESULTS HPI and TTP showed better performance than did SUV(max) for discriminating HCC and background liver (areas under receiver operating characteristic curve: 0.96, 0.95, and 0.83, respectively; P < .05). HPI was higher in HCC in patients with angioinvasion (0.91 ± 0.15 [standard deviation]) than in those without angioinvasion (0.80 ± 0.18; P = .03). There was no difference in SUV(max) between HCC in patients with and those without angioinvasion (7.8 ± 2.9 vs 6.3 ± 3.4; P = .85). No clear association was found between HPI, PI, or TTP and SUV(max) (P = .49, .77, and .91, respectively). CONCLUSION Early dynamic blood flow FDG PET/CT may be used to help discriminate and characterize HCC tumors.
Collapse
Affiliation(s)
- Hanna Bernstine
- Department of Nuclear Medicine, Rabin Medical Center, Petah Tikva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ketelsen D, Horger M, Buchgeister M, Fenchel M, Thomas C, Boehringer N, Schulze M, Tsiflikas I, Claussen CD, Heuschmid M. Estimation of radiation exposure of 128-slice 4D-perfusion CT for the assessment of tumor vascularity. Korean J Radiol 2010; 11:547-52. [PMID: 20808699 PMCID: PMC2930164 DOI: 10.3348/kjr.2010.11.5.547] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023] Open
Abstract
Objective We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. Materials and Methods An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D-Perfusion-CT. Phantom measurements were performed on a 128-slice single-source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Results Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Conclusion Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans.
Collapse
Affiliation(s)
- Dominik Ketelsen
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quantitative Computed Tomography Liver Perfusion Imaging Using Dynamic Spiral Scanning With Variable Pitch. Invest Radiol 2010; 45:419-26. [DOI: 10.1097/rli.0b013e3181e1937b] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Stutchfield BM, Rashid S, Forbes SJ, Wigmore SJ. Practical Barriers to Delivering Autologous Bone Marrow Stem Cell Therapy as an Adjunct to Liver Resection. Stem Cells Dev 2010; 19:155-62. [PMID: 19954303 DOI: 10.1089/scd.2009.0412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Benjamin M. Stutchfield
- Medical Research Council Centre for Inflammation Research and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sameena Rashid
- Medical Research Council Centre for Inflammation Research and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J. Forbes
- Medical Research Council Centre for Inflammation Research and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Wigmore
- Medical Research Council Centre for Inflammation Research and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|