1
|
Wang FL, Chang X, Shi Y, Yang T, Li J, Dong H, Wang Q, Zhang S, Liu J. β-Ionone enhances the inhibitory effects of 5-fluorouracil on the proliferation of gastric adenocarcinoma cells by the GSK-3β signaling pathway. PLoS One 2024; 19:e0309014. [PMID: 39241034 PMCID: PMC11379261 DOI: 10.1371/journal.pone.0309014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/03/2024] [Indexed: 09/08/2024] Open
Abstract
5-Fluorouracil (5-FU) is widely used in the treatment of gastric cancer, and the emergence of drug resistance and toxic effects has limited its application. Therefore, there is an urgent need for safe and effective novel drugs or new therapies. β-Ionone (BI) is found in vegetables and fruits and possesses an inhibitory proliferation of tumor cells in vitro and in vivo. In this study, we investigated whether BI could enhance the inhibitory effects of 5-FU on the proliferation of gastric adenocarcinoma cells and the growth of gastric cancer cell xenografts in a mouse model. The effects of BI and 5-FU alone or their combination on the cell viability, apoptosis, and mitochondrial membrane potential, the cell cycle, and its related proteins-Cyclin D1, and CDK4 as well as PCNA and GSK-3β were evaluated in SGC-7901 cells and MKN45 cells by MTT, MB, flow cytometry and Western blot. In addition, the effects of BI and 5-FU alone or their combination on the growth of SGC-7901 cell xenografts in nude mice were investigated. The results showed that BI significantly enhanced the sensitivity of gastric adenocarcinoma cells to 5-FU in vitro and in vivo, i.e. proliferation inhibited, apoptosis induced and GSK-3β protein activated. Therefore, our results suggest that BI increases the antitumor effect of 5-FU on gastric adenocarcinoma cells, at least partly from an activated GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Fa-Lin Wang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Xiaoxia Chang
- Department of Clinical Laboratory, Xi'an No. 9 Hospital, Beilin District, Xi'an City, China
| | - Yuanyang Shi
- Department of Laboratory, Shaoyang Central Hospital, Daxiang District, Shaoyang City, China
| | - Tingting Yang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Juan Li
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Hongwei Dong
- Public Health College, Harbin Medical University, Nangang District, Harbin, China
| | - Qi Wang
- Public Health College, Harbin Medical University, Nangang District, Harbin, China
| | - Shujun Zhang
- Department of Pathology, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Jiaren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| |
Collapse
|
2
|
Yoon YE, Jung YJ, Lee SJ. A Food Odorant, α-Ionone, Inhibits Skin Cancer Tumorigenesis by Activation of OR10A6. Mol Nutr Food Res 2024; 68:e2400085. [PMID: 39021302 DOI: 10.1002/mnfr.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
SCOPE This study aims to investigate the anticancer properties of α-ionone in squamous cell carcinoma (SCC). METHODS AND RESULTS The expression of OR10A6 together with olfactory receptor signaling components is demonstrated in A431 human SCC cells via RT-PCR and qRT-PCR analysis. OR10A6 activation in A431 cells using the ligand α-ionone inhibits proliferation and migration but induces apoptosis which is confirmed by proliferation assay, colony formation, and western blotting. The mechanism involves the core proteins of the Hippo pathway, where the phosphorylation of large tumor suppressor kinase (LATS), yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ) is confirmed by western blotting. However, the anticancer effects of α-ionone are abrogated in A431 cells with OR10A6 gene knockdown. In A431 xenograft mouse model, the injection of α-ionone suppresses tumor growth, induces apoptosis, and increases phosphorylation of the LATS-YAP-TAZ signaling axis in the Hippo pathway. None of these effects are observed in xenografted tumors with OR10A6 gene knockdown. CONCLUSION These findings collectively demonstrate that activation of ectopic OR OR10A6 by α-ionone in SCC cells stimulates the Hippo pathway and suppresses tumorigenesis both in vitro and in vivo, suggesting a novel therapeutic candidate for the treatment of SCC.
Collapse
Affiliation(s)
- Ye Eun Yoon
- Department of Biotechnology, Graduate school of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02846, Republic of Korea
| | - Young Jae Jung
- Department of Biotechnology, Graduate school of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02846, Republic of Korea
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Hesalth, Korea University, Seoul, 02846, Republic of Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02846, Republic of Korea
| |
Collapse
|
3
|
Ragupathy S, Thirugnanasambandam A, Henry T, Vinayagam V, Sneha R, Newmaster SG. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024; 13:1862. [PMID: 38928803 PMCID: PMC11203286 DOI: 10.3390/foods13121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Thomas Henry
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Varathan Vinayagam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Ragupathy Sneha
- College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua;
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| |
Collapse
|
4
|
Usman MA, Ibrahim FB, Mohammed HO, Awogbamila SO, Idris UA, Suleiman MA. Antiplasmodial Activity of β-Ionone and the Effect of the Compound on Amelioration of Anaemia and Oxidative Organ Damage in Mice Infected with Plasmodium berghei. Acta Parasitol 2024; 69:242-250. [PMID: 37982977 DOI: 10.1007/s11686-023-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Owing to evolution of parasite strains that are resistant to existing antimalarial drugs, research for novel antimalarial medicines is progressing on numerous fronts. PURPOSE Herein, we evaluated the in vivo anti-Plasmodium berghei activity of β-ionone including its ameliorative potential towards P. berghei-associated anaemia and oxidative organ damage. METHODS Mice were infected with chloroquine-sensitive strain of P. berghei and then treated with β-ionone at doses of 10 and 20 mg/kg body weight (BW) for seven days. The parasitemia, packed cell volume and redox sensitive biomarkers in the liver, brain and spleen were estimated. RESULTS Our result showed that β-ionone, in a dose-dependent fashion, significantly (p < 0.05) repressed the multiplication of P. berghei. More so, the compound, at doses of 10 and 20 mg/kg BW, significantly (p < 0.05) mitigated anaemia and organ damage induced by P. berghei. CONCLUSION Overall, the findings demonstrated that β-ionone has antiplasmodial actions and plays a mitigative role against P. berghei-induced anaemia and oxidative organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Umar Adam Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
5
|
Giannetti V, Biancolillo A, Marini F, Boccacci Mariani M, Livi G. Characterization of the aroma profile of edible flowers using HS-SPME/GC-MS and chemometrics. Food Res Int 2024; 178:114001. [PMID: 38309925 DOI: 10.1016/j.foodres.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
In recent years the consumption of edible flowers has gained new popularity, and their use seems destined to grow thanks to their potential as functional elements and their ability to impart aroma to traditional foods. In this study, the volatile profile of several edible flowers was investigated to identify characteristic compounds to be used as product markers. 85 samples belonging to four cultivars were analyzed by HS-SPME/GC-MS. A PLS-DA was used to build a model capable of differentiating the investigated classes. The resulting model correctly predicted over 95% of the validation samples, highlighting a significant difference between the four types of edible flowers. The VIP analysis highlighted 29 compounds relevant for the characterization of different flowers, many of which were biologically active. The study aims to broaden the framework of objectively measurable tools useful for enhancing the qualitative peculiarity of one product compared to another and offering growth opportunities to emerging food chains.
Collapse
Affiliation(s)
- Vanessa Giannetti
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, Rome 00161, Italy.
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio 67100, Coppito, L'Aquila, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Maurizio Boccacci Mariani
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, Rome 00161, Italy
| | - Greta Livi
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, Rome 00161, Italy
| |
Collapse
|
6
|
Custodio JMF, Vaz WF, Bernardes A, Moura AF, Oliver AG, Molnár S, Perjési P, Noda-Perez C. Alternative mechanisms of action for the apoptotic activity of terpenoid-like chalcone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02086b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structural basis of the cytotoxicity of terpenoid-like chalcone derivatives.
Collapse
Affiliation(s)
- Jean M. F. Custodio
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana, USA
| | - Wesley F. Vaz
- Departmento de Química, Instituto Federal de Ensino, Ciência e Tecnologia de Mato Grosso, Mato Grosso, Brazil
| | - Aline Bernardes
- Departmento de Química, Instituto Federal de Ensino, Ciência e Tecnologia de Mato Grosso, Mato Grosso, Brazil
| | - Andrea F. Moura
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, CE, Brazil
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana, USA
| | - Szilárd Molnár
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Caridad Noda-Perez
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
- Instituto de Química, Universidade Federal de Goiás, Goiás, Brazil
| |
Collapse
|
7
|
Aloum L, Alefishat E, Adem A, Petroianu G. Ionone Is More than a Violet's Fragrance: A Review. Molecules 2020; 25:molecules25245822. [PMID: 33321809 PMCID: PMC7764282 DOI: 10.3390/molecules25245822] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and β-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet’s fragrance.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Correspondence: ; Tel.: +971-50-413-4525
| |
Collapse
|
8
|
Havaux M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:35-41. [PMID: 32738580 DOI: 10.1016/j.plaphy.2020.07.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
β-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid β-carotene. β-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, β-cyclocitral and its direct oxidation product, β-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, β-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of β-cyclocitral and of some of its derivatives.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CNRS UMR7265, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
9
|
Zhu G, Zhu G, Xiao Z. Study of formation constant, thermodynamics and β-ionone release characteristic of β-ionone-hydroxypropyl-β-cyclodextrin inclusion complex. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03108-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Dong HW, Wang K, Chang XX, Jin FF, Wang Q, Jiang XF, Liu JR, Wu YH, Yang C. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch Toxicol 2019; 93:2993-3003. [PMID: 31506784 DOI: 10.1007/s00204-019-02550-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Hong-Wei Dong
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Kai Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of GuangZhou Medical University, 151 YanJiang West Road, YueXiu District, Guangzhou, 510120, People's Republic of China
| | - Xiao-Xia Chang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Fei-Fei Jin
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Qi Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Xiao-Feng Jiang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Jia-Ren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China.
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Chun Yang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China.
| |
Collapse
|
11
|
Wang L, Li S, Kai Y, Zhu J, Shi H, Zhou B, Liu J. The Synthesis and Biological Function of a Novel Sandwich-Type Complex Based on {SbW 9 } and Flexible bpp Ligand. Adv Healthc Mater 2019; 8:e1900471. [PMID: 31402606 DOI: 10.1002/adhm.201900471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/21/2019] [Indexed: 01/29/2023]
Abstract
A novel sandwich-type complex [Na(H2 O)4 ][{Na3 (H2 O)5 }{Mn3 (bpp)3 } (SbW9 O33 )2 }]·8H3 O (MnSbW-bpp) (bpp = 1,3-bis(4-pyridyl) propane) is synthesized and characterized by elemental analysis, IR, thermogravimetric analysis, and single-crystal X-ray diffraction. The MnSbW-bpp compound is the first sandwich case bridged by a flexible ligand. Its biological function of MnSbW-bpp in antitumor activity is also determined in vitro and in vivo. The inhibitory proliferation and induction of apoptosis are performed by flow cytometry assay, S180 (sarcoma) tumor xenograft in ICR mice, the color Doppler ultrasound monitor, and TdT-mediated dUTP-biotin nick end labeling assay. The results show that the novel compound-MnSbW-bpp-is synthesized and identified by its physical and chemical characteristics, such as the fluorescent and paramagnetic activities. MnSbW-bpp indicates a potency inhibition of human cancer lines, such as SGC-7901, HT-29, HepG2, Hela, U2OS, SaoS2, and HMC cells. MnSbW-bpp also inhibits the growth of tumor xenograft in mice, induced cell apoptosis, and released cytochrome c in vivo and in vitro. Thus, MnSbW-bpp, as a new compound, possesses the potent inhibition of cancer cells, which indicates that the MnSbW-bpp has potential merit for the further evaluation of a novel antitumor agent.
Collapse
Affiliation(s)
- Lu Wang
- Harbin Institute of Technology Harbin 150001 P. R. China
| | - Shubin Li
- Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yu Kai
- Harbin Normal University Harbin 150025 P. R. China
| | - Jiang Zhu
- Harbin Medical University Harbin 150001 P. R. China
| | - Huijie Shi
- Harbin Medical University Harbin 150001 P. R. China
| | - Baibin Zhou
- Harbin Normal University Harbin 150025 P. R. China
| | - Jiaren Liu
- Harbin Medical University Harbin 150001 P. R. China
| |
Collapse
|
12
|
Chen L, Liang R, Wang Y, Yokoyama W, Chen M, Zhong F. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8336-8345. [PMID: 29847116 DOI: 10.1021/acs.jafc.7b06130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposomes with phase transition temperatures, Tm, near pathogenic site temperature are potential chemoprophylactic delivery vehicles. We prepared and characterized the thermal properties of liposomes composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) incorporating β-ionone with Tm at 42 °C. Liposomes with β-ionone/lipid ratio (w/w) of 1:20 and 1:8 had the necessary stability and released most of the β-ionone. The molecular architecture surrounding Tm was studied by fluorescent probes, Raman spectroscopy, and differential scanning calorimeter (DSC). β-Ionone was found to be preferentially located in the deep regions of the lipid bilayer (toward the long chain alkyl of the lipid) at moderate loading. The results showed that β-ionone encapsulated liposomes have a superior release at higher loading amount. Increasing β-ionone leads to disorder in the liquid crystalline state and accelerates the release rate. These studies provide information on the membrane structural properties of β-ionone loaded liposomes that guide rational bioactive molecular delivery systems design for health products.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , P.R. China
| | - Yihan Wang
- Zhejiang Institute for Food and Drug Control , Zhejiang 310000 , P.R. China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS , USDA , Albany , California 94710 , United States
| | - Maoshen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| |
Collapse
|
13
|
Abstract
Apocarotenoids are cleavage products of C40 isoprenoid pigments, named carotenoids, synthesized exclusively by plants and microorganisms. The colors of flowers and fruits and the photosynthetic process are examples of the biological properties conferred by carotenoids to these organisms. Mammals do not synthesize carotenoids but obtain them from foods of plant origin. Apocarotenoids are generated upon enzymatic and nonenzymatic cleavage of the parent compounds both in plants and in the tissues of mammals that have ingested carotenoid-containing foods. The best-characterized apocarotenoids are retinoids (vitamin A and its derivatives), generated upon central oxidative cleavage of provitamin A carotenoids, mainly β-carotene. In addition to the well-known biological actions of vitamin A, it is becoming apparent that nonretinoid apocarotenoids also have the potential to regulate a broad spectrum of critical cellular functions, thus influencing mammalian health. This review discusses the current knowledge about the generation and biological activities of nonretinoid apocarotenoids in mammals.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Loredana Quadro
- Department of Food Science; Rutgers Center for Lipid Research; and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, USA;
| |
Collapse
|
14
|
Gelis L, Jovancevic N, Bechara FG, Neuhaus EM, Hatt H. Functional expression of olfactory receptors in human primary melanoma and melanoma metastasis. Exp Dermatol 2017; 26:569-576. [DOI: 10.1111/exd.13316] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Lian Gelis
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | | | - Falk G. Bechara
- Clinic for Dermatology, Venereology and Allergology; St. Josephs Hospital; Ruhr-University Bochum; Bochum Germany
| | - Eva M. Neuhaus
- Department of Pharmacology and Toxicology; University Hospital Jena; Jena Germany
| | - Hanns Hatt
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| |
Collapse
|
15
|
Proteome Changes of Human Bone Marrow Mesenchymal Stem Cells Induced by 1,4-Benzoquinone. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2789245. [PMID: 28119923 PMCID: PMC5227119 DOI: 10.1155/2016/2789245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/29/2023]
Abstract
Benzene is metabolized to hydroquinone in liver and subsequently transported to bone marrow for further oxidization to 1,4-benzoquinone (1,4-BQ), which may be related to the leukemia and other blood disorders. In the present study, we investigated the proteome profiles of human primary bone marrow mesenchymal stem cells (hBM-MSCs) treated by 1,4-BQ. We identified 32 proteins that were differentially expressed. Two of them, HSP27 and Vimentin, were verified at both mRNA and protein levels and their cellular localization was examined by immunofluorescence. We also found increased mRNA level of RAP1GDS1, a critical factor of metabolism that has been identified as a fusion partner in various hematopoietic malignancies. Therefore, these differentially expressed proteins can play important roles in benzene-mediated hematoxicity.
Collapse
|
16
|
Zhang X, Pei J, Zhao L, Tang F, Fang X, Xie J. Overexpression and characterization of CCD4 from Osmanthus fragrans and β-ionone biosynthesis from β-carotene in vitro. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Ansari M, Emami S. β-Ionone and its analogs as promising anticancer agents. Eur J Med Chem 2016; 123:141-154. [PMID: 27474930 DOI: 10.1016/j.ejmech.2016.07.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
β-Ionone is an end-ring analog of β-carotenoids which widely distributed in fruit and vegetables. Recent studies have demonstrated anti-proliferative, anti-metastatic and apoptosis induction properties of β-ionone in vitro and in vivo. Also, the studies have focused on investigating the β-ionone action on different types of malignant cells and the possible mechanisms of action. Moreover, the quest of new synthetic β-ionone-based compounds possessing anti-proliferative, anti-metastatic and apoptosis induction activities may enable the discovery of compounds which can be used in combination regimes thus overcoming tumor resistance to conventional anticancer agents. These new agents will also be useful for targeting distinct signaling pathways, to activate selectively mechanisms for apoptosis in cancer cells but devoid of undesirable side effects. In this paper, we reviewed the potentialities of β-ionone and related compounds in cancer prevention and chemotherapy.
Collapse
Affiliation(s)
- Mahsa Ansari
- Student Research Committee, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
18
|
Faezizadeh Z, Gharib A, Godarzee M. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/zjrms-7364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
M JF, P L. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog Biomater 2015; 4:113-121. [PMID: 26566469 PMCID: PMC4636515 DOI: 10.1007/s40204-015-0042-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022] Open
Abstract
This article describes the synthesis of silver nanoparticles using the aqueous extract of Alternanthera sessilis as a reducing agent by sonication, espousing green chemistry principles. Biologically synthesized nanoparticle-based drug
delivery systems have significant potential in the field of biopharmaceutics due to its smaller size entailing high surface area and synergistic effects of embedded biomolecules. In the present work the cytotoxic effect of biosynthesized silver nanoparticles studied by MTT assay against breast cancer cells (MCF-7 cell line) showed significant cytotoxic activity with IC50 value 3.04 μg/mL compared to that of standard cisplatin. The superior activity of the silver nanoparticles may be due to the spherical shape and smaller particle size 10–30 nm as confirmed from transmission electron microscope (TEM) analysis. The data obtained in the study reveal the potent therapeutic value of biogenic silver nanoparticles and the scope for further development of anticancer drugs.
Collapse
Affiliation(s)
- Jannathul Firdhouse M
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, 641043 Tamil Nadu India
| | - Lalitha P
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, 641043 Tamil Nadu India
| |
Collapse
|
20
|
Wang L, Yu K, Zhou BB, Su ZH, Gao S, Chu LL, Liu JR. The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells. Dalton Trans 2014; 43:6070-8. [PMID: 24463531 DOI: 10.1039/c3dt53030b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lu Wang
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis Colleges of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, the People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Jones S, Fernandes NV, Yeganehjoo H, Katuru R, Qu H, Yu Z, Mo H. β-ionone induces cell cycle arrest and apoptosis in human prostate tumor cells. Nutr Cancer 2013; 65:600-10. [PMID: 23659452 DOI: 10.1080/01635581.2013.776091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase is the rate-limiting activity in the mevalonate pathway that provides essential intermediates for posttranslational modification of growth-associated proteins. Assorted dietary isoprenoids found in plant foods suppress HMG CoA reductase and have cancer chemopreventive activity. β-Ionone, a cyclic sesquiterpene and an end-ring analog of β-carotene, induced concentration-dependent inhibition of the proliferation of human DU145 (IC50 = 210 μmol/L) and LNCaP (IC50 = 130 μmol/L) prostate carcinoma cells and PC-3 prostate adenocarcinoma cells (IC50 = 130 μmol/L). Concomitantly, β-ionone-induced apoptosis and cell cycle arrest at the G1 phase in DU145 and PC-3 cells were shown by fluorescence microscopy, flow cytometry, and TUNEL reaction, and downregulation of cyclin-dependent kinase 4 (Cdk4) and cyclin D1 proteins. Growth suppression was accompanied by β-ionone-induced downregulation of reductase protein. A blend of β-ionone (150 μmol/L) and trans, trans-farnesol (25 μmol/L), an acyclic sesquiterpene that putatively initiates the degradation of reductase, suppressed the net growth of DU145 cells by 73%, an impact exceeding the sum of those of β-ionone (36%) and farnesol (22%), suggesting a synergistic effect. β-ionone, individually or in combination with other HMG CoA reductase suppressors, may have potential in prostate cancer chemoprevention and/or therapy.
Collapse
Affiliation(s)
- Sheila Jones
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas 76204, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee SM, Kim YS, Jang WJ, Rakib AM, Oh TW, Kim BH, Kim SY, Kim JO, Ha YL. Anti-proliferative Effects of β-ionone on Human Lung Cancer A-549 Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.11.1351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang L, Zhou BB, Yu K, Su ZH, Gao S, Chu LL, Liu JR, Yang GY. Novel antitumor agent, trilacunary Keggin-type tungstobismuthate, inhibits proliferation and induces apoptosis in human gastric cancer SGC-7901 cells. Inorg Chem 2013; 52:5119-27. [PMID: 23573961 DOI: 10.1021/ic400019r] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new one-dimensional chain-like compound of tungstobismuthate, [(W(OH)2)2 (Mn(H2O)3)2(Na3(H2O)14)(BiW9O33)2](Himi)2·16H2O (1) (imi = iminazole), has been synthesized in aqueous solution. The structure of 1 was identified by elemental analysis, IR, thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), (183)W-NMR, and single crystal X-ray diffraction. To investigate the inhibitory effect of 1 on human gastric adenocarcinoma SGC-7901 cells, cell proliferation and apoptosis initiation were examined by MTT assay (MTT = 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide), flow cytometry, nuclear staining, transmission electron microscopy, single cell gel electrophoresis, DNA fragmentation, and Western blotting. The results showed that 1 inhibited cell proliferation and induced apoptosis in SGC-7901 cells in dose-dependent manner. In addition, 1 also decreased the expression of bcl-2 protein and nuclear factor-κB p65 protein in SGC-7901 cells. And expression of bcl-2 protein exhibits a decreasing trend with increase of concentration of 1. Thus, 1 possessed a potential antitumor activity in SGC-7901 cells. This suggests that polyoxotungstates will provide a promising and novel antitumor agent in prevention and treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis Colleges of Heilongjiang Province, Department of Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dong HW, Zhang S, Sun WG, Liu Q, Ibla JC, Soriano SG, Han XH, Liu LX, Li MS, Liu JR. β-Ionone arrests cell cycle of gastric carcinoma cancer cells by a MAPK pathway. Arch Toxicol 2013; 87:1797-808. [PMID: 23536271 DOI: 10.1007/s00204-013-1041-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/08/2013] [Indexed: 01/18/2023]
Abstract
β-Ionone is an end ring analog of β-carotenoid which has been shown to possess potent anti-proliferative activity both in vitro and in vivo. To investigate the possible inhibitory effects of β-ionone, we studied cell growth characteristics, DNA synthesis, cell cycle progression, as well as mitogen-activated protein kinases (MAPKs) pathways in the human gastric adenocarcinoma cancer cell line (SGC-7901). Our results show that cell growth and DNA synthesis were inhibited, and the cell cycle was arrested at the G0/G1 phase in a dose-dependent manner in cells treated with β-ionone (25, 50, 100 and 200 μmol/L) for 24 h. We found that the β-ionone significantly decreased the extracellular signal-regulated kinase protein expression and significantly increased the levels of p38 and Jun-amino-terminal kinase protein expression (P < 0.01). β-Ionone also inhibited cell cycle-related proteins of Cdk4, Cyclin B1, D1 and increased p27 protein expression in SGC-7901 cells. These results suggested that the cell cycle arrest observed may be regulated through a MAPK pathway by transcriptional down-regulation of cell cycle proteins. These results demonstrate potent ability of β-ionone to arrest cell cycle of SGC-7901 cells and decrease proliferation.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Harbin Medical University, 157 BaoJian Road, NanGang District, Harbin, 150081, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells. PLoS One 2013; 8:e57779. [PMID: 23469066 PMCID: PMC3585143 DOI: 10.1371/journal.pone.0057779] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/29/2013] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most serious illnesses among diagnosed cancer. As a new type of anti-cancer composition from tocotrienol-rich fraction of palm oil, γ-tocotrienol is widely used in anti-cancer research. The objectives of this study were to investigate the effects of γ-tocotrienol on human colon cancer SW620 and HCT-8 cells. We showed that treatment with different concentrations of γ-tocotrienol resulted in a dose dependent inhibition of cell growth. Cell death induced by γ-tocotrienol was mediated by a paraptosis-like cell death in SW620 and HCT-8 cells. Real-time RT-PCR and western blot analyses showed that γ-tocotrienol inhibited the expression level of β-catenin, cyclin D1 and c-jun. These data suggest that a paraptosis-like cell death induced by γ-tocotrienol in SW620 cells is associated with the suppression of the Wnt signaling pathway, which offers a novel tool for treating apoptosis-resistance colon cancer.
Collapse
|
26
|
Liu Q, Dong HW, Sun WG, Liu M, Ibla JC, Liu LX, Parry JW, Han XH, Li MS, Liu JR. Apoptosis initiation of β-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway. Arch Toxicol 2012; 87:481-90. [PMID: 23100158 DOI: 10.1007/s00204-012-0962-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
Abstract
β-ionone has been shown to hold potent anti-proliferative and apoptosis induction properties in vitro and in vivo. To investigate the effects of β-ionone on apoptosis initiation and its possible mechanisms of action, we qualified cell apoptosis, proteins related to apoptosis and a phosphatidylinositol 3-kinase (PI3K)-AKT pathway in human gastric adenocarcinoma cancer SGC-7901 cells. The results demonstrated that β-ionone-induced apoptosis in a dose-dependent manner in SGC-7901 cells treated with β-ionone (25, 50, 100 and 200 μmol/L) for 24 h. β-ionone was also shown to induce the expression of cleaved-caspase-3 and inhibit bcl-2 expression in SGC-7901 cells in a dose-dependent manner. The significantly decreased levels of p-PI3K and p-AKT expression were observed in SGC-7901 cells after β-ionone treatments in a time- and dose-dependent manner (P < 0.01). Thus, the apoptosis induction in SGC-7901 cells by β-ionone may be regulated through a PI3K-AKT pathway. These results demonstrate a potential mechanism by which β-ionone to induce apoptosis initiation in SGC-7901 cells.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pediatric Surgery, GanNan Medical University, 1 YiXueYuan Road, GanZhou, 341000, Jiangxi, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Valente MJ, de Pinho PG, Henrique R, Pereira JA, Carvalho M. Further insights into chemical characterization through GC–MS and evaluation for anticancer potential of Dracaena draco leaf and fruit extracts. Food Chem Toxicol 2012; 50:3847-52. [DOI: 10.1016/j.fct.2012.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/05/2012] [Accepted: 03/10/2012] [Indexed: 11/25/2022]
|
28
|
Dong YW, Zhang F, Liu L, Liu JR. Effects of epidural capsaicin on nociceptive threshold and neurological functions in rabbits. PAIN MEDICINE 2011; 12:1777-83. [PMID: 22054108 DOI: 10.1111/j.1526-4637.2011.01265.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
UNLABELLED Capsaicin, as a principle active component of Chili peppers, is popularly consumed by many people around the world. Whether capsaicin-induced neuropathy alters the function of sensory neurons is still unknown. OBJECTIVE The objectives of this study were to determine the effects of epidural capsaicin on nociceptive threshold and neurological functions in a rabbit model. DESIGN An intrathecal injection system was set up using a rabbit model. Rabbits were treated with capsaicin at doses of 0.04, 0.10, and 0.20 mg/kg once. The changes in neurological functions and morphology of the spinal cord and spinal nerve roots were determined within 24 hours. Changes in the nociceptive threshold in the hind limbs of the rabbits were observed for 30 days. METHODS Capsaicin's effect on the changing neurological functions was evaluated by the neurological functional scores. The structural changes of spinal cord and spinal nerve roots were observed by hematoxylin and eosin staining and transmission electron microscopy. The nociceptive threshold changes in the rabbits were measured by the responding time for pain induced by a thermostimulation. RESULTS The results showed that capsaicin reversed changes in the neurological function of rabbit hindlimbs. In the 0.10 and 0.20 mg/kg groups, structural abnormalities were found in the rabbit's spinal nerves. Capsaicin also significantly increased the pain threshold in rabbits when compared with the control group (P < 0.05 or P < 0.01). The maximum values of pain threshold were found in the 0.10 mg/kg capsaicin group after 3 days of capsaicin treatment. CONCLUSION With the exception of a potential toxicity, capsaicin may be a potential candidate agent for providing pain relief of both neuropathic and nociceptive conditions.
Collapse
Affiliation(s)
- Ying-Wei Dong
- Department of Anesthesiology, First Clinic Hospital, Harbin Medical University, 23 YouZheng Street, NanGang, Harbin, China.
| | | | | | | |
Collapse
|
29
|
|
30
|
Zhang JS, Li DM, He N, Liu YH, Wang CH, Jiang SQ, Chen BQ, Liu JR. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway. Toxicology 2011; 285:8-17. [PMID: 21453743 DOI: 10.1016/j.tox.2011.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 01/07/2023]
Abstract
Tocotrienol is considered a beneficial effect agent on inhibition of tumor development. In this study, we focused on the effects of δ-tocotrienol and its possible mechanism on induction of death in human colon cancer SW620 cells. δ-Tocotrienol inhibited proliferation of SW620 cell in a dose-dependent manner. Our findings showed that δ-tocotrienol effectively induced paraptosis-like death in SW620 cells, correlated with the vacuolation that may be from welling and fusion of mitochondria and/or the endoplasmic reticulum (ER) as well as caspase-3 nonactivated. However, there were no changes in apoptosis based on flow cytometry analysis. Of being noted, δ-tocotrienol reduced the expression of β-catenin and wnt-1 proteins by about 50% at the highest dose (20μmol/L). δ-Tocotrienol also decreased cyclin D1, c-jun and MMP-7 protein levels in SW620 cells. Altogether, these data indicate that δ-tocotrienol induces paraptosis-like cell death, which is associated with the suppression of the Wnt signaling pathway. Thus, our findings may provide a novel application in treatment of human colon carcinoma.
Collapse
Affiliation(s)
- Jing-Shu Zhang
- Department of Toxicology, Tianjin Center for Disease Control and Prevention, HeDong District, Tianjin 300011, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9',10'-monooxygenase. Arch Biochem Biophys 2011; 506:109-21. [PMID: 21081106 PMCID: PMC3026080 DOI: 10.1016/j.abb.2010.11.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/24/2010] [Accepted: 11/05/2010] [Indexed: 01/10/2023]
Abstract
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15'-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9',10'-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC-MS and GC-MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10'-carotenal, 3-OH-β-apo-10'-carotenal, and β-apo-10'-carotenal, indicating cleavage at both the 9,10 and 9',10' carbon-carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10'-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD(+), in vitro incubation of 3-OH-β-apo-10'-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10'-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.
Collapse
Affiliation(s)
- Jonathan R. Mein
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Gregory G. Dolnikowski
- Mass Spectrometry Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Hansgeorg Ernst
- Fine Chemicals and Biocatalysis Research, GVF/A-B009, BASF AG D-67056, Ludwigshafen, Germany
| | - Robert M. Russell
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| |
Collapse
|
32
|
Liu Y, Liu M, Li B, Zhao JL, Zhang CP, Lin LQ, Chen HS, Zhang SJ, Jin JC, Wang L, Li LJ, Liu JR. Fresh raspberry phytochemical extract inhibits hepatic lesion in a Wistar rat model. Nutr Metab (Lond) 2010; 7:84. [PMID: 21108811 PMCID: PMC2999596 DOI: 10.1186/1743-7075-7-84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 11/25/2010] [Indexed: 02/06/2023] Open
Abstract
Background Red raspberry possesses potent antioxidant capacity and antiproliferative activity against cancer in vitro. Methods The objective of this study was to determine the protective effects of raspberry 80% acetone extract in a rat hepatic lesions model induced by diethylnitrosamine (DEN). Rats were treated with the red raspberry extract (0.75, 1.5 or 3.0 g/kg of body weight) by gavage starting 2 h after DEN administration and continuing for 20 weeks. Results A dose-dependent inhibition by red raspberry extract of DEN-induced hepatic nodule formation which stands for hepatic lesions was observed. Corresponding hepatic nodule incidence rates were 45.0, 40.0, 25.0 and 5.0% in positive control, low, middle and high groups, respectively (P < 0.01 or 0.05). Gross findings, histopathological and ultrastructural evaluations of hepatic lesion were performed on 9, 8, 5 and 1 hepatic nodule in positive control, low, middle and high doses of groups, respectively, identified in rats from the respective groups of 20. A decreasing trend of proportions of hepatocellular carcinoma masses accompanied the increasing doses of red raspberry extract. Conclusions These findings demonstrate that the potent capacity of red raspberry diet could not only suppress DEN-induced hepatic lesions in rats, but also reduce the definite diagnostic features of neoplasm.
Collapse
Affiliation(s)
- Yan Liu
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Ming Liu
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Bin Li
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Jin-Lu Zhao
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Chun-Peng Zhang
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Luo-Qiang Lin
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Hong-Sheng Chen
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Shu-Jun Zhang
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Jun-Chao Jin
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Lei Wang
- Treatment Center of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, The People's Republic of China
| | - Le-Jing Li
- The Affiliated Tumor Hospital of Harbin Medical University, 6 BaoJian Road, NanGang District, Harbin, 150086, The People's Republic of China
| | - Jia-Ren Liu
- Public Health College, Harbin Medical University, 157 BaoJian Road, NanGang District, Harbin, 150081, The People's Republic of China.,Jia-Ren Liu at Harvard Medical School, 300 Longwood Ave, Boston, MA, USA
| |
Collapse
|
33
|
Marsh RS, Yan Y, Reed VM, Hruszkewycz D, Curley RW, Harrison EH. {beta}-Apocarotenoids do not significantly activate retinoic acid receptors {alpha} or {beta}. Exp Biol Med (Maywood) 2010; 235:342-8. [PMID: 20404052 DOI: 10.1258/ebm.2009.009202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-Carotene oxygenase 2 cleaves beta-carotene asymmetrically at non-central double bonds of the polyene chain, yielding apocarotenal molecules. The hypothesis tested was that apocarotenoids are able to stimulate transcription by activating retinoic acid receptors (RARs). The effects of long- and short-chain apocarotenals and apocarotenoic acids on the activation of RARalpha and RARbeta transfected into monkey kidney fibroblast cells (CV-1) were investigated. We synthesized or purified beta-apo-8'-carotenoic acid (apo-8'-CA), beta-apo-14'-carotenoic acid (apo-14'-CA), beta-cyclocitral (BCL), beta-cyclogernanic acid (BCA), beta-ionone (BI), beta-ionylideneacetaldehyde (BIA) beta-ionylideneacetic acid (BIAA) and a C13 ketone, beta-apo-13-carotenone (C13). None of the apocarotenoids tested showed significant transactivation activity for the RARs when compared with all-trans retinoic acid (RA). The results suggest that biological effects of these apocarotenoids are through mechanisms other than activation of RARalpha and beta.
Collapse
Affiliation(s)
- Rebekah S Marsh
- Department of Human Nutrition, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhang Z, Zhang W, Ji YP, Zhao Y, Wang CG, Hu JF. Gynostemosides A-E, megastigmane glycosides from Gynostemma pentaphyllum. PHYTOCHEMISTRY 2010; 71:693-700. [PMID: 20097393 DOI: 10.1016/j.phytochem.2009.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/12/2009] [Accepted: 12/28/2009] [Indexed: 05/28/2023]
Abstract
Megastigmane glycosides (1-5) together with seven (6-12) related known compounds were isolated from the whole plants of Gynostemma pentaphyllum. The structures were elucidated by means of spectroscopic methods, including 2D NMR, HR-ESIMS, and circular dichroism (CD), as well as chemical transformations to be (3R,4R,5S,6S,7E)-3,4,6-trihydroxymegastigmane-7-en-9-one-3-O-beta-D-glucopyranoside (gynostemoside A, 1), (3S,4S,5R,6R,7E,9R)-3,4,6,9-tetrahydroxymegastigmane-7-en-3-O-beta-D-glucopyranoside (gynostemoside B, 2), (3S,4S,5S,6S,7E,9R)-3,4,9-trihydroxymegastigmane-7-en-9-O-beta-D-glucopyranoside (gynostemoside C, 3), (3S,4S,5S,6S,7E,9R)-3,4,9-trihydroxymegastigmane-7-en-3-O-beta-D-glucopyranoside (gynostemoside D, 4), and (3S,4S,5S,6S,7E,9R)-3,4,9-trihydroxymegastigmane-7-en-4-O-beta-D-glucopyranoside (gynostemoside E, 5), respectively.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Liu JR, Dong HW, Sun XR, Wang Q, Sun WG, Parry JW, Liu Q, Han XH, Sun CH, Chen BQ, Yang BF. Effects of beta-ionone on mammary carcinogenesis and antioxidant status in rats treated with DMBA. Nutr Cancer 2010; 62:58-65. [PMID: 20043260 DOI: 10.1080/01635580903191510] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent chemopreventive studies from our group showed that dietary beta -ionone inhibited 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis by the inhibition of cell proliferation and apoptosis initiation. In this study, we examined the chemopreventive effects of varied doses of dietary beta -ionone on the development and growth of DMBA-induced rat mammary tumors as well as plasma antioxidant status. beta -ionone treatment groups were given 9, 18, and 36 mmol/kg in the AIN76A diet starting 2 wk prior to DMBA administration and continuing for the 24 wk. Results showed that tumor incidence was dose dependently reduced by 35.4, 68.3, and 87.8%, respectively, compared to the positive control. Tumor sizes were dose dependently smaller, and tumor weight was less in each group, each rat, and each tumor compared to the positive control (P < 0.05). A significant decrease in lipid peroxidation was observed in the tumor-induced rats treated with dietary beta -ionone, whereas the plasma activities of antioxidant enzymes such as glutathione peroxidase, glutathione reductase, superoxide dismutase, and the nonenzymatic antioxidant glutathione were increased in the beta -ionone treated rats when compared to control. The levels of catalase and lactate dehydrogenase were remarkably decreased in the beta -ionone treated groups compared to the positive control group. These results suggest that dietary beta -ionone has biologically relevant antioxidant activity and plays a chemopreventive role against DMBA induced mammary gland tumors.
Collapse
Affiliation(s)
- Jia-Ren Liu
- Public Health College, Harbin Medical University, NanGang District, Harbin, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhu J, Zhang L, Jin X, Han X, Sun C, Yan J. beta-Ionone-induced apoptosis in human osteosarcoma (U2os) cells occurs via a p53-dependent signaling pathway. Mol Biol Rep 2009; 37:2653-63. [PMID: 19757179 DOI: 10.1007/s11033-009-9793-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 09/02/2009] [Indexed: 01/22/2023]
Abstract
beta-Ionone is a constituent of vegetables and fruits, and can induce apoptosis in some types of malignant cells. However, the mechanism of apoptosis in osteosarcoma (U2os) cells is currently unclear. In this study, we determined whether beta-ionone can induce apoptosis in U2os cells in vitro and which signal pathway(s) is involved. We found that beta-ionone inhibited cell proliferation in U2os cells in a concentration- and time-dependent manner and caused cell cycle arrest at the G1-S phase. TUNEL assay, DNA ladder and assessment of Caspase 3 activity showed that apoptosis was the determinant in the effects of beta-ionone. Furthermore, Expression of the p53 protein increased in a concentration-dependent and time-dependent manner according to immunocytochemistry and immunoblotting after beta-ionone treatment. In addition, beta-ionone upregulated Bax protein and downregulated Bcl2 protein which led to Bax translocation and cytochrome c release, subsequently activated Caspase 3, thus resulting in apoptosis. In summary, these data suggested that beta-ionone induced apoptosis in a concentration-dependent manner in U2os cells via a p53-dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, # 23, Youzheng Street, 150001, Nangang District, Harbin, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Grapevine ( Vitis vinifera) products, grape and grape juice, represent a valuable source of bioactive phytochemicals, synthesized by three secondary metabolic pathways (phenylpropanoid, isoprenoid and alkaloid biosynthetic routes) and stored in different plant tissues. In the last decades, compelling evidence suggested that regular consumption of these products may contribute to reducing the incidence of chronic illnesses, such as cancer, cardiovascular diseases, ischemic stroke, neurodegenerative disorders and aging, in a context of the Mediterranean dietary tradition. The health benefits arising from grape product intake can be ascribed to the potpourri of biologically active chemicals occurring in grapes. Among them, the recently discovered presence of melatonin adds a new element to the already complex grape chemistry. Melatonin, and its possible synergistic action with the great variety of polyphenols, contributes to further explaining the observed health benefits associated with regular grape product consumption.
Collapse
Affiliation(s)
- Marcello Iriti
- Dipartimento di Produzione Vegetale, Università di Milano and Istituto di Virologia Vegetale, CNR, Dipartimento Agroalimentare, Via Celoria 2, 20133 Milano, Italy
| | - Franco Faoro
- Dipartimento di Produzione Vegetale, Università di Milano and Istituto di Virologia Vegetale, CNR, Dipartimento Agroalimentare, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
38
|
Xu WL, Liu JR, Liu HK, Qi GY, Sun XR, Sun WG, Chen BQ. Inhibition of proliferation and induction of apoptosis by gamma-tocotrienol in human colon carcinoma HT-29 cells. Nutrition 2009; 25:555-66. [PMID: 19121919 DOI: 10.1016/j.nut.2008.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/09/2008] [Accepted: 10/17/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVE gamma-Tocotrienol is a major component of the tocotrienol-rich fraction of palm oil, but there is limited evidence that it has antitumor activity. In particular, the effects of gamma-tocotrienol on human colon carcinoma cells have not been reported. To investigate the chemopreventive effects of gamma-tocotrienol on colon cancer, we examined its capacity to inhibit proliferation and induce apoptosis in HT-29 cells and explored the mechanism underlying these effects. METHODS We cultured HT-29 cells in the presence of gamma-tocotrienol. The effect of gamma-tocotrienol on cell proliferation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, mitotic index, and colony formation. The cell-cycle distribution was investigated by flow cytometry. We measured apoptosis by nuclear staining, transmission electron microscopy, and DNA fragmentation. Apoptosis-related proteins and the nuclear factor-kappaB p65 protein were determined by western blotting and immunofluorescence. RESULTS gamma-Tocotrienol inhibited cell growth and arrested HT-29 cells in G(0)/G(1) phase. The 50% inhibitory concentration was 31.7 micromol/L (48 h). gamma-Tocotrienol-induced apoptosis in HT-29 cells was accompanied by downregulation of Bcl-2, upregulation of Bax, and activation of caspase-3. Furthermore, we found that gamma-tocotrienol reduced the expression level of total nuclear factor-kappaB p65 protein and inhibited its nuclear translocation. CONCLUSION The results indicated that gamma-tocotrienol inhibits cell proliferation and induces apoptosis in HT-29 cells in a time- and dose-dependent manner, and that this process is accompanied by cell-cycle arrest at G(0)/G(1), an increased Bax/Bcl-2 ratio, and activation of caspase-3. Our data also indicated that nuclear factor-kappaB p65 protein may be involved in these effects.
Collapse
Affiliation(s)
- Wei-Li Xu
- Department of Nutrition and Food Hygiene, Public Health School, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Rodríguez-Bustamante E, Sánchez S. Microbial Production of C13-Norisoprenoids and Other Aroma Compounds via Carotenoid Cleavage. Crit Rev Microbiol 2008; 33:211-30. [PMID: 17653988 DOI: 10.1080/10408410701473306] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carotenoids are important precursors of a variety of compounds: the C(20)-retinoids, the C(15)-phytohormones, and the C(9)- to C(13)-aromas. Among the last type, C(13)-carotenoid-derived compounds (norterpenoids/norisoprenoids) such as ionones and damascones, constitute an essential aroma note in tea, grapes, roses, tobacco, and wine. Extraction of carotenoid-derived aroma compounds from plant sources is not economically realistic or considerably expensive. The biotechnological production of aroma compounds represents a feasible alternative and offers the production of enantiomerically pure molecules which can be labeled as "natural." To date, research in the production of ionones or the C(10)-compound, safranal, has mainly been focused on plant dioxygenases that cleave carotenoids in the positions between carbons 9 and 10 (9'-10') or 7 and 8 (7'-8'), respectively. Although relatively little is known about the microbial conversion of carotenoids into compounds with aroma due to the well known advantages of manipulating microorganisms, the aim of this work is to review the current state of the research in microbial production of norisoprenoids and other aroma compounds derived from carotenoid cleavage.
Collapse
Affiliation(s)
- E Rodríguez-Bustamante
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | | |
Collapse
|
40
|
Liu JR, Sun XR, Dong HW, Sun CH, Sun WG, Chen BQ, Song YQ, Yang BF. beta-Ionone suppresses mammary carcinogenesis, proliferative activity and induces apoptosis in the mammary gland of the Sprague-Dawley rat. Int J Cancer 2008; 122:2689-98. [PMID: 18386789 DOI: 10.1002/ijc.23453] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
beta-Ionone demonstrates potent anticancer activity both in vitro and in vivo. We determined tumor incidence and the number of rats bearing tumors as well as cell proliferation and apoptosis in a rat mammary cancer model induced by 7, 12-dimethylbenz[a]anthracene (DMBA). Rats were fed an AIN-76A diet containing beta-ionone (0, 9, 18 or 36 mmol/kg), starting 2 weeks before DMBA administration and continuing for 24 weeks. A dose-dependent inhibition of mammary carcinogenesis by dietary beta-ionone was observed. Corresponding tumor incidence values were 82.1, 53.3, 25.9 and 10.0% (p < 0.01 or 0.05). Time to tumor appearance increased and tumor multiplicity decreased with increasing dietary beta-ionone. Histopathological and immunohistochemical evaluations of tumors were performed on the 64, 31, 15 and 3 tumors, respectively, identified in rats from the respective groups of 30. The proportions of adenocarcinomas, adenomas and benign masses were equally distributed in the latter group. In proportions within the other groups, the proportions of adenocarcinomas and benign masses decreased and increased with increasing dietary beta-ionone. Proliferating cell nuclear antigen (PCNA), cyclin D1 and Bcl-2 expression decreased, and Bax expression and nuclear fragmentation increased with increasing dietary beta-ionone. These results demonstrate the potent capacity of dietary beta-ionone to suppress DMBA-initiated mammary cancer in rats.
Collapse
Affiliation(s)
- Jia-Ren Liu
- Department of Environmental Health, Public Health College, Harbin Medical University, NanGang District, Harbin, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Janakiram NB, Cooma I, Mohammed A, Steele VE, Rao CV. Beta-ionone inhibits colonic aberrant crypt foci formation in rats, suppresses cell growth, and induces retinoid X receptor-alpha in human colon cancer cells. Mol Cancer Ther 2008; 7:181-90. [PMID: 18202021 DOI: 10.1158/1535-7163.mct-07-0529] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta-ionone, an end-ring analogue of beta-carotenoid, which is a constituent of vegetables and fruits, has been analyzed for colon cancer chemoprevention and treatment. beta-Ionone induced cell growth inhibition and apoptosis in human colon cancer HCT116 cell line. We tested the in vivo chemopreventive efficacy in rat colon carcinogenesis model using aberrant crypt foci (ACF) as endpoint marker. HCT116 cells treated with subtoxic concentrations of beta-ionone resulted dose-dependent cell growth suppression with G1-S-phase growth arrest and significant induction of apoptosis. beta-Ionone up-regulated expression of retinoid X receptor-alpha mRNA dose-dependently in HCT116 cells. To evaluate inhibitory properties of beta-ionone on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.1%, or 0.2% beta-ionone. After 1 week, rats received s.c. injections of azoxymethane, 15 mg/kg body weight, once weekly for 2 weeks. Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.1% and 0.2% beta-ionone significantly suppressed total colonic ACF formation up to 34% to 38% (P<0.0002 to P<0.0009), respectively, when compared with control group. Importantly, rats fed beta-ionone showed >55% inhibition (P<0.0001) of foci containing four or more aberrant crypts. Results from in vitro and in vivo bioassay clearly suggest that beta-ionone could be further developed for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Department of Medicine, Hem-Onc Section, OU Cancer Institute, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, BRC Building, Room 1203, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
42
|
Gamma-tocotrienol-induced apoptosis in human gastric cancer SGC-7901 cells is associated with a suppression in mitogen-activated protein kinase signalling. Br J Nutr 2007; 99:1247-54. [PMID: 18081943 DOI: 10.1017/s0007114507879128] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tocotrienols have been shown to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in tocotrienol-induced apoptosis are still unclear. In the present study, gamma-tocotrienol induced apoptosis in human gastric adenocarcinoma SGC-7901 cell line through down regulation of the extracellular signal-regulated kinase (ERK) signalling pathway. Furthermore, gamma-tocotrienol-induced apoptosis was accompanied by down regulation of Bcl-2, up regulation of Bax, activation of caspase-3, and subsequent poly (ADP-ribose) polymerase cleavage. These results indicated that up or down regulation of Bcl-2 family proteins play a major role in the initiation of gamma-tocotrienol-induced apoptosis as an activator of caspase-3. Gamma-tocotrienol also down regulated the activation of the Raf-ERK signalling pathway, and down regulated c-Myc by decreasing the expressions of Raf-1 and p-ERK1/2 proteins. The results suggest that key regulators in tocotrienol-induced apoptosis may be Bcl-2 families and caspase-3 in SGC-7901 cells through down regulation of the Raf-ERK signalling pathway.
Collapse
|
43
|
Zhao WH, Wang SF, Ding W, Sheng JM, Ma ZM, Teng LS, Wang M, Wu FS, Luo B. Apoptosis induced by preoperative oral 5’-DFUR administration in gastric adenocarcinoma and its mechanism of action. World J Gastroenterol 2006; 12:1356-61. [PMID: 16552801 PMCID: PMC4124310 DOI: 10.3748/wjg.v12.i9.1356] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the apoptosis induced by preoperative oral 5’-DFUR administration in gastric adenocarcinoma and its mechanism of action.
METHODS: Sixty gastric cancer patients were divided randomly into three groups (20 each group) before operation: group one: 5’-DFUR oral administration at the dose of 800-1200mg/d for 3 - 5 d, group two: 500mg 5-FU + 200 mg/d CF by venous drip for 3 - 5 d, group three (control group). One or two days after chemotherapy, the patients were operated. Fas/FasL, PD-ECGF and PCNA were examined by immunohistochemistry and apoptotic tumor cells were detected by in situ TUNEL method. Fifty-four patients received gastrectomy, including 12 palliative resections and 42 radical resections. Six patients were excluded. Finally 18 cases in 5’-DFUR group, 16 cases in CF + 5-FU group, and 20 cases in control group were analyzed.
RESULTS: There was no significant difference in patient mean age, gender, white blood cell count, haematoglobin (HB), thromboplastin, perioperative complication incidence, radical or palliation resection, invasion depth (T), lymphonode involvement (N), metastasis (M) and TNM staging among the three groups. However, the PCNA index (PI) in 5’-DFUR group (40.51 ± 12.62) and 5-FU + CF group (41.12 ± 15.26) was significantly lower than that in control group (58.33 ± 15.69) (F = 9.083, P = 0.000). The apoptotic index (AI) in 5’-DFUR group (14.39 ± 9.49) and 5-FU + CF group (14.11±9.68) was significantly higher than that in control group (6.88 ± 7.37) (F = 4.409, P = 0.017). The expression rates of Fas and FasL in group one and group three were 66.7% (12/18) and 50% (9/18), 43.8% (7/16) and 81.3% (13/16), 45.0% (9/20) and 85% (17/20), respectively. The expression rate of FasL in 5’-DFUR group was significantly lower than that in the other two groups (χ2=6.708, P = 0.035). Meanwhile, the expression rate of PD-ECGF was significantly lower in 5’-DFUR group (4/18,28.6%) than in CF + 5-FU group(9/16,56.3%)and control group (13/20,65.0%) (χ2 = 7.542, P = 0.023). The frequency of Fas expression was significantly correlated with palliative or radical resection (χ2 = 7.651, P = 0.006), invasion depth (χ2 = 8.927, P = 0.003), lymphatic spread (χ2 = 4.488, P = 0.034) and UICC stages (χ2 = 8.063, P = 0.045) respectively. By the end of March 2005, 45 patients were followed up. The 0.5-, 1-, 2-, 3-year survival rates were 96%,73%,60%,48%, respectively, which were related with T, N, M and Fas expression, but not with PD-ECGF and FasL expression.
CONCLUSION: Preoperative oral 5’-DFUR administration may induce apoptosis of gastric carcinoma cells and decrease tumor cell proliferation index, but cannot improve the prognosis of patients with gastric cancer. Down-regulation of FasL and PD-ECGF expression mediated by 5’-DFUR may be one of its anti-cancer mechanisms. Fas expression correlates with the progression of gastric carcinoma and may be an effective prognostic factor.
Collapse
Affiliation(s)
- Wen-He Zhao
- Department of Oncological Surgery, the First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gomes-Carneiro MR, Dias DMM, Paumgartten FJR. Study on the mutagenicity and antimutagenicity of beta-ionone in the Salmonella/microsome assay. Food Chem Toxicol 2005; 44:522-7. [PMID: 16223554 DOI: 10.1016/j.fct.2005.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/19/2005] [Accepted: 08/29/2005] [Indexed: 11/29/2022]
Abstract
beta-Ionone (BIO) is a degraded (C(13)) sesquiterpenoid compound found in a variety of edible and aromatic plants. BIO and other ionone derivatives have been used in fragrance products and as flavoring food additives. In this study we investigated the mutagenic and antimutagenic activities of BIO using the Salmonella/microsome assay. Mutagenicity was evaluated by two tests with Salmonella typhimurium strains TA100, TA98, TA97a and TA1535, without and with addition of S9 mixture. A first assay was performed by the plate incorporation procedure and a confirmation test by the pre-incubation method. In either test, no increase in the number of his(+) revertant colonies over the negative (solvent) control values was noted with any of the four tester strains thereby indicating that BIO was not genotoxic in the Salmonella assay. Antimutagenic activity was investigated by testing (by the plate incorporation method) different non-toxic doses of BIO against one or more non-toxic doses of direct-acting (sodium azide: SA, 4-nitroquinoline-N-oxide: 4-NQNO, 2-nitrofluorene: 2-NF and nitro-o-phenylenediamine: NPD) as well as indirect-acting (cyclophosphamide: CP, benzo[a]pyrene: B[a]P, aflatoxin B1: AFB1, 2-aminoanthracene: 2-AA, and 2-aminofluorene: 2-AF) mutagens. BIO did not alter the effects of any direct-acting mutagen or B[a]P and 2-AF. Mutagenic effects of AFB1 and CP, however, were markedly and dose-dependently antagonized by BIO. It has been reported that, in the rat liver, activation of B[a]P and 2-AF depend on CYP1A1 activity, and that CYP2B subfamily is involved in the metabolic activation of CP and AFB1. It has also been described that BIO is a potent inhibitor of CYP2B1/2 and a weaker inhibitor of CYP1A1. Therefore, antagonism of CP-and AFB1-induced mutagenic effects by BIO could have been mediated-at least in part-by the inhibition of CYP2B enzymes.
Collapse
Affiliation(s)
- M R Gomes-Carneiro
- Laboratory of Environmental Toxicology, Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040-361, Brazil
| | | | | |
Collapse
|
45
|
Lindqvist A, He YG, Andersson S. Cell type-specific expression of beta-carotene 9',10'-monooxygenase in human tissues. J Histochem Cytochem 2005; 53:1403-12. [PMID: 15983114 DOI: 10.1369/jhc.5a6705.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The symmetrically cleaving beta-carotene 15,15'-monooxygenase (BCO1) catalyzes the first step in the conversion of provitamin A carotenoids to vitamin A in the mucosa of the small intestine. This enzyme is also expressed in epithelia in a variety of extraintestinal tissues. The newly discovered beta-carotene 9',10'-monooxygenase (BCO2) catalyzes asymmetric cleavage of carotenoids. To gain some insight into the physiological role of BCO2, we determined the expression pattern of BCO2 mRNA and protein in human tissues. By immunohistochemical analysis it was revealed that BCO2 was detected in cell types that are known to express BCO1, such as epithelial cells in the mucosa of small intestine and stomach, parenchymal cells in liver, Leydig and Sertoli cells in testis, kidney tubules, adrenal gland, exocrine pancreas, and retinal pigment epithelium and ciliary body pigment epithelia in the eye. BCO2 was uniquely detected in cardiac and skeletal muscle cells, prostate and endometrial connective tissue, and endocrine pancreas. The finding that the BCO2 enzyme was expressed in some tissues and cell types that are not sensitive to vitamin A deficiency and where no BCO1 has been detected suggests that BCO2 may also be involved in biological processes other than vitamin A synthesis.
Collapse
Affiliation(s)
- Annika Lindqvist
- University of Texas Southwestern Medical Center, Department of Obstetrics-Gynecology, F2.106 5323 Harry Hines Blvd., Dallas, TX 75390-9032, USA
| | | | | |
Collapse
|