1
|
Duplan P, Choudhry H, Memon M, Klein D, Ghanekar D. Severe Gastric Mucosal Necrosis Due to Giant Paraesophageal Hernia. Cureus 2022; 14:e24564. [PMID: 35651445 PMCID: PMC9138213 DOI: 10.7759/cureus.24564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
|
2
|
Humulene Inhibits Acute Gastric Mucosal Injury by Enhancing Mucosal Integrity. Antioxidants (Basel) 2021; 10:antiox10050761. [PMID: 34064830 PMCID: PMC8150829 DOI: 10.3390/antiox10050761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to determine whether α-humulene, a major constituent in many plants used in fragrances, has a protective role against gastric injury in vivo and in vitro. A rat model of hydrochloric acid (HCl)/ethanol-induced gastritis and human mast cells (HMC-1) were used to investigate the mucosal protective effect of α-humulene. α-Humulene significantly inhibited gastric lesions in HCl/ethanol-induced acute gastritis and decreased gastric acid secretion pyloric ligation-induced gastric ulcers in vivo. In addition, α-humulene reduced the amount of reactive oxygen species and malondialdehyde through upregulation of prostaglandin E2 (PGE2) and superoxide dismutase (SOD). In HMC-1 cells, α-humulene decreased intracellular calcium and increased intracellular cyclic adenosine monophosphate (cAMP) levels, resulting in low histamine levels. α-Humulene also reduced the expression levels of cytokine genes such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF) by downregulating nuclear factor-κB (NF-κB) nuclear translocation. Finally, α-humulene upregulated the expression levels of mucin 5AC (Muc5ac), Muc6, trefoil factor 1 (Tff1), trefoil factor 2 (Tff2), and polymeric immunoglobulin receptor (pigr). α-Humulene may attenuate HCl/ethanol-induced gastritis by inhibiting histamine release and NF-κB activation and stimulating antioxidants and mucosal protective factors, particularly Muc5ac and Muc6. Therefore, these data suggest that α-humulene is a potential drug candidate for the treatment of stress-induced or alcoholic gastritis.
Collapse
|
3
|
Vigneshwari A, Erdenebileg S, Fujkin K, Csupor D, Hohmann J, Papp T, Vágvölgyi C, Szekeres A. Revealing of biodiversity and antimicrobial effects of Artemisia asiatica endophytes. ACTA BIOLOGICA SZEGEDIENSIS 2021. [DOI: 10.14232/abs.2020.2.111-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endophytic fungi produce a plethora of secondary metabolites, which may open new avenues to study their applicability in pharmaceuticals. Therefore, the present study focuses on the fungal endophytic community of Artemisia asiatica. During our work, fungal endophytes were isolated from a medicinal plant, A. asiatica. The culturable endophytic fungi were identified using molecular techniques and biodiversity, richness and tissue specificity were examined. As these microorganisms have been generally identified as an abundant reservoir of novel antimicrobial compounds, the antimicrobial (i.e. antibacterial and antifungal) activities of the metabolites produced by the isolated fungi were studied. Numerous extracts containing the endophytic metabolites proved to be active against the applied test microorganisms including Gram-positive and Gram-negative bacteria, as well as yeasts and filamentous fungi, which can be examined in detail in the future and, based on the the chemical nature of these active metabolites, allow to discover novel bioactive metabolites.
Collapse
Affiliation(s)
- Aruna Vigneshwari
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged
| | - Saruul Erdenebileg
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged
| | - Kata Fujkin
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged
| |
Collapse
|
4
|
Gastroprotective Effects of Inulae Flos on HCl/Ethanol-Induced Gastric Ulcers in Rats. Molecules 2020; 25:molecules25235623. [PMID: 33260419 PMCID: PMC7730672 DOI: 10.3390/molecules25235623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022] Open
Abstract
Inulae Flos, the flower of Inula britannica L., is used as a dietary supplement, beverage, and medicine in East Asia. In this study, we evaluated the gastroprotective effects of Inulae Flos extract (IFE) against gastric mucosal lesions induced by hydrochloric acid (HCl)/ethanol in rats and explored its potential mechanisms by measuring antioxidant enzyme activity, mucus secretion, and prostaglandin E2 (PGE2) levels. Pretreatment with IFE at doses of 100 and 300 mg/kg significantly inhibited gastric lesions in HCl/ethanol-treated rats. IFE increased the activities of superoxide dismutase and catalase and the levels of glutathione and PGE2 in gastric tissues. The administration of IFE also significantly increased the gastric wall mucus contents in HCl/ethanol-induced gastric lesions. These findings suggest that IFE has gastroprotective effects against HCl/ethanol-induced gastric lesions and exerts these effects through increased antioxidant levels and gastric mucus secretion. Inulae Flos may be a promising agent for the prevention and treatment of gastritis and gastric ulcers.
Collapse
|
5
|
Ahuja A, Yi YS, Kim MY, Cho JY. Ethnopharmacological properties of Artemisia asiatica: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:117-128. [PMID: 29604379 DOI: 10.1016/j.jep.2018.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/24/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia asiatica Nakai (Compositae) has a long history as a traditional remedy. Preparation from various parts of the plant (aerial parts and leaves) are used to treat a wide range of diseases including gastric trouble, liver dysfunction, and skin inflammation. AIMS OF THIS REVIEW The aims of this review were: 1) to provide an overview of recent studies and progress on A. asiatica-derived ethnopharmacological compounds and their pharmacological activities; and 2) to summarize existing evidence and provide insight for future studies. MATERIALS AND METHODS This investigation was carried out by analyzing published books and research papers via scientific databases, namely Science Direct, PubMed ACS Publication, Wiley Online Library, CNKI and information obtained online. The keywords "Artemisia asiatica traditional uses," "Compounds isolated and studied in Artemisia asiatica," and "Pharmacological advances in Artemisia asiatica" were used and articles published between 1995 and 2017 were considered. In total, 500 works related to biological activities of A. asiatica were identified, and only materials published in English were included in the review. RESULTS Comparative analysis of literature searched through sources available confirmed that the ethnopharmacological use of A. asiatica was recorded in Korea, China, and Japan. Phytochemical studies revealed the presence of flavonoids, sesquiterpene lactones, monoterpenes, and steroids in A. asiatica. Of these, flavonoids have been shown to exhibit significant pharmacological effects such as gastroprotective, anti-inflammatory, anti-tumor, and anti-microbial actions. CONCLUSIONS Phytochemical and pharmacological studies of Artemisia asiatica have proven that this plant is one of valuable medicinal sources with neuroprotective, gastroprotective, anti-oxidative, anti-inflammatory, and anti-cancer effects. Although ethanol extract of this plant is now being prescribed as gastroprotective and anti-ulcerative medicine, it is now time to expand its application to other human inflammatory diseases such as pancreatitis and hepatitis and further extensive study on toxicity in human. Therefore, the present review will encourage further studies of A. asiatica in the pursuit of wide range of therapeutic remedy.
Collapse
Affiliation(s)
- Akash Ahuja
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Lee D, Kim CE, Park SY, Kim KO, Hiep NT, Lee D, Jang HJ, Lee JW, Kang KS. Protective Effect of Artemisia argyi and Its Flavonoid Constituents against Contrast-Induced Cytotoxicity by Iodixanol in LLC-PK1 Cells. Int J Mol Sci 2018; 19:ijms19051387. [PMID: 29735908 PMCID: PMC5983776 DOI: 10.3390/ijms19051387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
Preventive effects and corresponding molecular mechanisms of mugwort (Artemisia argyi) extract and its flavonoid constituents on contrast-induced nephrotoxicity were explored in the present study. We treated cultured LLC-PK1 cells with iodixanol to induce contrast-induced nephrotoxicity, and found that A. argyi extracts ameliorated the reduction in cellular viability following iodixanol treatment. The anti-apoptotic effect of A. argyi extracts on contrast-induced nephrotoxicity was mediated by the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation and the activation of caspases. The flavonoid compounds isolated from A. argyi improved the viability of iodixanol-treated cells against contrast-induced nephrotoxicity. Seven compounds (1, 2, 3, 15, 16, 18, and 19) from 19 flavonoids exerted a significant protective effect. Based on the in silico oral-bioavailability and drug-likeness assessment, which evaluate the drug potential of these compounds, compound 2 (artemetin) showed the highest oral bioavailability (49.55%) and drug-likeness (0.48) values. We further investigated the compound–target–disease network of compound 2, and proliferator-activated receptor gamma (PPAR-γ) emerged as a predicted key marker for the treatment of contrast-induced nephrotoxicity. Consequently, compound 2 was the preferred candidate, and its protective effect was mediated by inhibiting the contrast-induced inflammatory response through activation of PPAR-γ and inhibition of MAPK phosphorylation and activation of caspases.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sa-Yoon Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Kem Ok Kim
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Nguyen Tuan Hiep
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hyuk-Jai Jang
- Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jae Wook Lee
- Natural Constituent Research Center, Korea Institute of Science and Technology, Gangnung 210-340, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
7
|
Protective effects of ethanol extracts of Artemisia asiatica Nakai ex Pamp. on ageing-induced deterioration in mouse oocyte quality. ZYGOTE 2017. [DOI: 10.1017/s0967199417000296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SummaryFollowing ovulation, oocytes undergo a time-dependent deterioration in quality referred to as post-ovulatory ageing. Although various factors influence the post-ovulatory ageing of oocytes, oxidative stress is a key factor involved in deterioration of oocyte quality. Artemisia asiatica Nakai ex Pamp. has been widely used in East Asia as a food ingredient and traditional medicine for the treatment of inflammation, cancer, and microbial infections. Recent studies have shown that A. asiatica exhibits antioxidative effects. In this study, we investigated whether A. asiatica has the potential to attenuate deterioration in oocyte quality during post-ovulatory ageing. Freshly ovulated mouse oocytes were cultured with 0, 50, 100 or 200 μg/ml ethanol extracts of A. asiatica Nakai ex Pamp. After culture for up to 24 h, various ageing-induced oocyte abnormalities, including morphological changes, reactive oxygen species (ROS) accumulation, apoptosis, chromosome and spindle defects, and mitochondrial aggregation were determined. Treatment of oocytes with A. asiatica extracts reduced ageing-induced morphological changes. Moreover, A. asiatica extracts decreased ROS generation and the onset of apoptosis by preventing elevation of the Bax/Bcl-2 expression ratio during post-ovulatory ageing. Furthermore, A. asiatica extracts attenuated the ageing-induced abnormalities including spindle defects, chromosome misalignment and mitochondrial aggregation. Our results demonstrate that A. asiatica can relieve deterioration in oocyte quality and delay the onset of apoptosis during post-ovulatory ageing.
Collapse
|
8
|
Kim JS, Cha KH, Kang SY, Won D, Jang SW, Son M, Son MH, Choi HJ, Lee YW, Kang MJ. In vivo gastric residence and gastroprotective effect of floating gastroretentive tablet of DA-9601, an extract of Artemisia asiatica, in beagle dogs. Drug Des Devel Ther 2016; 10:1917-25. [PMID: 27354765 PMCID: PMC4907637 DOI: 10.2147/dddt.s102918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE DA-9601, an extract of Artemisia asiatica containing eupatilin and jaceosidin as active compounds, has been prescribed to treat gastritis in Asia. In recent times, sustained-release, floating gastroretentive (GR) tablets of DA-9601 are available on the market. In the present study, the physical properties and in vitro drug release profile, in vivo gastric residence time, and gastroprotective effect of GR tablet were compared to those of immediate release (IR) tablets of DA-9601. METHOD In vitro buoyancy behavior (floating lag time and duration) and release profile of eupatilin were assessed in acidic medium. The in vivo intragastric behaviors of the barium sulfate-loaded IR and GR tablets were evaluated in beagle dogs by radiographic studies. Local gastroprotective effect was compared in an experimentally induced gastric lesion in beagle dogs after oral administration of IR (three times per day) or GR (twice daily) tablets for 15 days. RESULTS Upon contact with gastric juice, a low-density floating tablet (apparent density of 0.93 g/cm(3)) was buoyant on the medium and was upheld for 14 hours, providing sustained drug release profile, whereas the IR tablet disintegrated within 10 minutes, showing complete drug release within 2 hours. In vivo radiographic studies showed that the GR tablet was retained for >4 hours in the stomach. Both DA-9601 formulations remarkably alleviated gastric mucosal injury compared to placebo group, when observed by gastric endoscopy. CONCLUSION Twice-daily GR tablets exhibited a prolonged gastric residence time and a remarkable mucosal restoration effect in animal models. Therefore, the GR system of DA-9601 could be a substitute dosage form for the treatment of gastritis, while reducing the dosing frequency and thus improving patient compliance.
Collapse
Affiliation(s)
- Jeong Soo Kim
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Kwang Ho Cha
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Seung Yeob Kang
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Donghan Won
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Sun Woo Jang
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Miwon Son
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Moon Ho Son
- Dong-A Pharmaceutical Co. Ltd., Giheung-gu, Yongin, Gyeonggi, South Korea
| | - Ho Jung Choi
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Young Won Lee
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, South Korea
| |
Collapse
|
9
|
Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep 2015; 13:1141-6. [PMID: 26676446 PMCID: PMC4732834 DOI: 10.3892/mmr.2015.4671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
Eupatilin, one of the major flavonoids in Artemisia asiatica Nakai (Asteraceae), has been reported to possess antitumor properties. However, thus far there have been no reports regarding the effects of eupatilin on glioma. Therefore, in the current study the effects of eupatilin on glioma and the underlying molecular mechanism were explored. The effect of eupatilin on cell viability was detected by the MTT assay. Cell invasion and migration were performed with Transwell assays and cell apoptosis was determined by flow cytometric analysis. Notch-1 knockdown cells were established by transfection with Notch-1 small interfering RNA (siRNA). The expression levels of Notch-1 were detected by quantitative reverse transcription-polymerase chain reaction and western blotting. The results of the present study indicated that eupatilin exhibits an anticancer effect on glioma cells. Eupatilin inhibited proliferation, reduced cell invasion and migration, and promoted the apoptosis of glioma cells. Additionally, it suppressed Notch-1 expression. Knockdown of Notch-1 by siRNA contributed to the inhibitory effect of eupatilin on proliferation and invasion of glioma cells. In conclusion, eupatilin had an inhibitory effect on proliferation, invasion and migration, and promoted apoptosis of glioma cells through suppression of the Notch-1 signaling pathway. Therefore, eupatilin may have potential as an effective agent for the treatment of glioma.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Electromyography, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Hongwei Hou
- Department of Infection Control, Hebei Chest Hospital, Shijiazhuang, Hebei 050048, P.R. China
| | - Ming Li
- Basic Medical Institution, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Lan Sun
- Basic Medical Institution, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| |
Collapse
|
10
|
Protective Effect of Artemisia asiatica Extract and Its Active Compound Eupatilin against Cisplatin-Induced Renal Damage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:483980. [PMID: 26539226 PMCID: PMC4619882 DOI: 10.1155/2015/483980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/14/2015] [Indexed: 12/20/2022]
Abstract
The present study investigated the renoprotective effect of an Artemisia asiatica extract and eupatilin in kidney epithelial (LLC-PK1) cells. Although cisplatin is effective against several cancers, its use is limited due to severe nephrotoxicity. Eupatilin is a flavonoid compound isolated from the Artemisia plant and possesses antioxidant as well as potent anticancer properties. In the LLC-PK1 cellular model, the decline in cell viability induced by oxidative stress, such as that induced by cisplatin, was significantly and dose-dependently inhibited by the A. asiatica extract and eupatilin. The increased protein expressions of phosphorylated JNK and p38 by cisplatin in cells were markedly reduced after A. asiatica extract or eupatilin cotreatment. The elevated expression of cleaved caspase-3 was significantly reduced by A. asiatica extract and eupatilin, and the elevated percentage of apoptotic cells after cisplatin treatment in LLC-PK1 cells was markedly decreased by cotreatment with A. asiatica extract or eupatilin. Taken together, these results suggest that A. asiatica extract and eupatilin could cure or prevent cisplatin-induced renal toxicity without any adverse effect; thus, it can be used in combination with cisplatin to prevent nephrotoxicity.
Collapse
|
11
|
EXP CLIN TRANSPLANTExp Clin Transplant 2015; 13. [DOI: 10.6002/ect.mesot2014.p227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Kim J, Kim Y, Yi H, Jung H, Rim YA, Park N, Jung SM, Park SH, Ju JH. Eupatilin ameliorates collagen induced arthritis. J Korean Med Sci 2015; 30:233-9. [PMID: 25729243 PMCID: PMC4330475 DOI: 10.3346/jkms.2015.30.3.233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/06/2014] [Indexed: 12/15/2022] Open
Abstract
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-α and then treated with eupatilin, and the levels of IL-6 and IL-1β mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-α treatment of synoviocytes increased the expression of IL-6 and IL-1β mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cells, Cultured
- Collagen Type II
- Cytokines/biosynthesis
- Disease Models, Animal
- Drugs, Chinese Herbal/therapeutic use
- Female
- Flavonoids/pharmacology
- Flavonoids/therapeutic use
- Humans
- Inflammation/drug therapy
- Inflammation/immunology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lymph Nodes/cytology
- Mice
- Mice, Inbred DBA
- Monocytes/cytology
- Osteoclasts/cytology
- Plant Extracts/pharmacology
- RNA, Messenger/biosynthesis
- Synovial Membrane/cytology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Juryun Kim
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngkyun Kim
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoju Yi
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyerin Jung
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeri Alice Rim
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Narae Park
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Min Jung
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Clinical Immunology and STEM (CiSTEM) Cell Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Protective Effect of Flos Lonicerae against Experimental Gastric Ulcers in Rats: Mechanisms of Antioxidant and Anti-Inflammatory Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:596920. [PMID: 25610477 PMCID: PMC4290635 DOI: 10.1155/2014/596920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
Flos Lonicerae is one of the oldest and most commonly prescribed herbs in Eastern traditional medicine to treat various inflammatory diseases. In the present study, we investigated the effects of ethyl acetate fraction of Flos Lonicerae (GC-7101) on experimental gastric ulcer models and its mechanisms of action in gastric ulcer healing. The pharmacological activity of GC-7101 was investigated in rats on HCl/EtOH, indomethacin, water immersion restraint stress induced acute gastric ulcer, and acetic-acid-induced subchronic gastric ulcer. To determine its gastroprotective mechanisms, gastric wall mucus secretion, mucosal PGE2, mucosal NO content, nuclear translocation of NF-κB, mRNA expression of inflammatory cytokines, lipid peroxidation and glutathione content, and superoxide dismutase and catalase activities were measured. GC-7101 significantly attenuated development of acute gastric ulcer and accelerated the healing of acetic-acid-induced subchronic gastric ulcer. In HCl/EtOH-induced gastric ulcer, GC-7101 markedly enhanced gastric wall mucus content which was accompanied by increased mucosal PGE2 and NO production. Furthermore, treatment of GC-7101 exhibited anti-inflammatory and antioxidant activities as evidenced by decreased myeloperoxidase activity, NF-κB translocation, inflammatory cytokines mRNA expression, and lipid peroxidation and increased glutathione content and superoxide dismutase and catalase activities. These results demonstrated that GC-7101 possesses strong antiulcerogenic effect by modulating oxidative stress and proinflammatory mediators.
Collapse
|
14
|
Nordin N, Salama SM, Golbabapour S, Hajrezaie M, Hassandarvish P, Kamalidehghan B, Majid NA, Hashim NM, Omar H, Fadaienasab M, Karimian H, Taha H, Ali HM, Abdulla MA. Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models. PLoS One 2014; 9:e111925. [PMID: 25379712 PMCID: PMC4224391 DOI: 10.1371/journal.pone.0111925] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/09/2014] [Indexed: 12/22/2022] Open
Abstract
A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.
Collapse
Affiliation(s)
- Noraziah Nordin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzy Munir Salama
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shahram Golbabapour
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Hajrezaie
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hanita Omar
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Center of Foundation Studies in Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehran Fadaienasab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hairin Taha
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Cheng YT, Ho CY, Jhang JJ, Lu CC, Yen GC. DJ-1 plays an important role in caffeic acid-mediated protection of the gastrointestinal mucosa against ketoprofen-induced oxidative damage. J Nutr Biochem 2014; 25:1045-57. [DOI: 10.1016/j.jnutbio.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
|
16
|
Jeong D, Yi YS, Sung GH, Yang WS, Park JG, Yoon K, Yoon DH, Song C, Lee Y, Rhee MH, Kim TW, Kim JH, Cho JY. Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:487-496. [PMID: 24503036 DOI: 10.1016/j.jep.2014.01.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia asiatica Nakai (Compositae) is a representative herbal plant used to treat infection and inflammatory diseases. Although Artemisia asiatica is reported to have immunopharmacological activities, the mechanisms of these activities and the effectiveness of Artemisia asiatica preparations in use are not known. MATERIALS AND METHODS To evaluate the anti-inflammatory activities of Artemisia asiatica ethanol extract (Aa-EE), we assayed nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) in macrophages and measured the extent of tissue injury in a model of gastric ulcer induced in mice by treatment with HCl in EtOH. Putative enzymatic mediators of Aa-EE activities were identified by nuclear fractionation, reporter gene assay, immunoprecipitation, immunoblotting, and kinase assay. Active compound in Aa-EE was identified using HPLC. RESULTS Treatment of RAW264.7 cells and peritoneal macrophages with Aa-EE suppressed the production of NO, PGE2, and TNF-α in response to lipopolysaccharide (LPS) and induced heme oxygenase-1 expression. The Aa-EE also ameliorated symptoms of gastric ulcer in HCl/EtOH-treated mice. These effects were associated with the inhibition of nuclear translocation of nuclear factor (NF)-κB and activator protein (AP)-1, implying that the anti-inflammatory action of the Aa-EE occurred through transcriptional inhibition. The upstream regulatory signals Syk and Src for translocation of NF-κB and TRAF6 for AP-1 were identified as targets of this effect. Analysis of Aa-EE by HPLC revealed the presence of luteolin, known to inhibit NO and PGE2 activity. CONCLUSION The anti-inflammatory activities attributed to Artemisia asiatica Nakai in traditional medicine may be mediated by luteolin through inhibition of Src/Syk/NF-κB and TRAF6/JNK/AP-1 signaling pathways.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Young-Su Yi
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Gi-Ho Sung
- Department of Herbal Crop Research, National Institutes of Horticultural & Herbal Science, Rural Development Administration, Suwon 441-707, Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncehon 200-701, Republic of Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Tae Woong Kim
- Department of Biochemistry, Kangwon National University, Chuncehon 200-701, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
17
|
Bussmann RW. The globalization of traditional medicine in northern peru: from shamanism to molecules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:291903. [PMID: 24454490 PMCID: PMC3888705 DOI: 10.1155/2013/291903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Northern Peru represents the center of the Andean "health axis," with roots going back to traditional practices of Cupisnique culture (1000 BC). For more than a decade of research, semistructured interviews were conducted with healers, collectors, and sellers of medicinal plants. In addition, bioassays were carried out to evaluate the efficacy and toxicity of plants found. Most of the 510 species encountered were native to Peru (83%). Fifty percent of the plants used in colonial times have disappeared from the pharmacopoeia. Market vendors specialized either on common and exotic plants, plants for common ailments, and plants only used by healers or on plants with magical purposes. Over 974 preparations with up to 29 different ingredients were used to treat 164 health conditions. Almost 65% of the medicinal plants were applied in these mixtures. Antibacterial activity was confirmed in most plants used for infections. Twenty-four percent of the aqueous extracts and 76% of the ethanolic extracts showed toxicity. Traditional preparation methods take this into account when choosing the appropriate solvent for the preparation of a remedy. The increasing demand for medicinal species did not increase the cultivation of medicinal plants. Most species are wild collected, causing doubts about the sustainability of trade.
Collapse
Affiliation(s)
- Rainer W. Bussmann
- William L. Brown Center, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| |
Collapse
|
18
|
Efficacy of gastro-retentive forms of ecabet sodium in the treatment of gastric ulcer in rats. Arch Pharm Res 2013; 37:1053-62. [PMID: 24254934 DOI: 10.1007/s12272-013-0278-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/22/2013] [Indexed: 12/28/2022]
Abstract
The purpose of the present study is to investigate the influence of gastric retention of ecabet sodium (ECS) on its mucoprotective effect in rat ulcer models. Mini-tablets containing 9 mg ECS were prepared using the direct compression method. The release rates of ECS mini-tablets were controlled by the amount and viscosity grade of hydroxypropylmethyl cellulose incorporated. Gastric retention of ECS mini-tablets after oral administration to rats was visually confirmed using a fluorescence imaging system. Because ECS mini-tablets exhibited size-dependent gastric retention, their gastric retention time was prolonged as the release rate decreased. In the in vivo efficacy study, gastro-retentive dosage forms of ECS did not influence the mucoprotective effect in the immediate irritation model but enhanced the effect in the delayed irritation model compared with ECS suspension. This finding indicates that the duration of the mucoprotective effect of ECS can be extended by the employment of gastro-retentive dosage formulations and provides a rationale for development of ECS gastro-retentive dosage forms.
Collapse
|
19
|
Cheng YT, Wu CH, Ho CY, Yen GC. Catechin protects against ketoprofen-induced oxidative damage of the gastric mucosa by up-regulating Nrf2 in vitro and in vivo. J Nutr Biochem 2013; 24:475-83. [DOI: 10.1016/j.jnutbio.2012.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/14/2012] [Accepted: 01/19/2012] [Indexed: 12/22/2022]
|
20
|
Kim SH, Jeon BJ, Kim DH, Kim TI, Lee HK, Han DS, Lee JH, Kim TB, Kim JW, Sung SH. Prickly pear cactus (Opuntia ficus indica var. saboten) protects against stress-induced acute gastric lesions in rats. J Med Food 2012; 15:968-73. [PMID: 23062184 DOI: 10.1089/jmf.2012.2282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The protective activity of prickly pear cactus (Opuntia ficus indica var. saboten) fruit juice and its main constituent, betanin, were evaluated against stress-induced acute gastric lesions in rats. After 6 h of water immersion restraint stress (WIRS), gastric mucosal lesions with bleeding were induced in Sprague-Dawley rats. Pretreatment of a lyophilized powder containing O. ficus indica var. saboten fruit juice and maltodextrin (OFSM) and betanin significantly reduced stress lesions (800-1600 mg/kg). Both OFSM and betanin effectively prevented the decrease in gastric mucus content as detected by alcian blue staining. In addition, OFSM significantly suppressed WIRS-induced increases in the level of gastric mucosal tumor necrosis factor-α and myeloperoxidase (MPO). Betanin alone was only effective in decreasing MPO. These results revealed the protective activity of OFSM against stress-induced acute gastric lesions and that betanin may contribute to OFSM's gastric protective activity, at least in part. When OFSM and betanin were taken together, OFSM exerted gastroprotective activity against stress-induced gastric lesions by maintaining gastric mucus, which might be related to the attenuation of MPO-mediated damage and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Seung Hyun Kim
- College of Pharmacy, Yonsei Research Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Young Oh T, Ok Ahn B, Jung Jang E, Sang Park J, Jong Park S, Wook Baik H, Hahm KB. Accelerated Ulcer Healing and Resistance to Ulcer Recurrence with Gastroprotectants in Rat Model of Acetic Acid-induced Gastric Ulcer. J Clin Biochem Nutr 2011; 42:204-14. [PMID: 18545642 PMCID: PMC2386523 DOI: 10.3164/jcbn.2008030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 10/26/2006] [Indexed: 12/11/2022] Open
Abstract
Quality of ulcer healing (QOUH) is defined as ideal ulcer healing featuring with the fine granular ulcer scar, high functional restoration and the resistance to recurrence. This study was designed to compare the rates of QOUH achievement in rat gastric ulcer model between acid suppressant treated group and gastroprotectant treated group accompanied with elucidations of molecular mechanisms. Serosal injection of acetic acids for generating gastric ulcer and intraperitoneal (ip) injection of recombinant interleukin 1-beta (IL-1β) for recurring healed ulcer was done in SD rats. The 72 rats were divided into three groups according to treatment as follows; Group I, no further treatment, Group II, 8 weeks treatment of omeprazole, and Group III, 8 weeks of gastroprotectant treatment. IL-1β was administered for ulcer recurrence after 28 weeks of acetic acid injection. At four weeks after gastric ulcerogenesis, 58.3% (7/12) of active gastric ulcer were converted to healing stage in Group III, but 16.7% (2/12) in Group II and none in Group I, for which significant levels of epidermal growth factor, mucin, and pS2/trefoil peptide1 were contributive to these accelerated healings of Group III. ip injections of rIL-1β (200 µg/kg) at 28 weeks after acetic acid injection led to 100% of ulcer recurrence in Group I and 75.0% in Group II, but only 16.7% of Group III rats showed ulcer recurrence. Significantly attenuated levels of inflammatory cytokines including IL-2, transforming growth factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), nitrotyrosine were responsible for the resistance to ulcer recurrence in Group III. Conclusively, gastroprotectant might be prerequisite in order to achieve ideal QOUH through significant inductions of remodeling.
Collapse
Affiliation(s)
- Tae Young Oh
- Dong A Pharmaceutical Research Institute, Yongin 130-708, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Lim BO, Chung HG, Lee WH, Lee HW, Suk K. Inhibition of microglial neurotoxicity by ethanol extract of Artemisia asiatica Nakai. Phytother Res 2008; 22:279-82. [PMID: 17886232 DOI: 10.1002/ptr.2304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Artemisia asiatica Nakai has been used for the treatment of infections and inflammatory disorders in traditional Oriental medicine. Previously, an ethanol extract of A. asiatica has been shown to exert antioxidative and antiinflammatory activities and to exhibit protective effects against experimentally induced damage in the gastrointestinal system, liver and pancreas. This study examined whether the ethanol extract of A. asiatica affects inflammatory activation of microglia in the central nervous system, and whether the antiinflammatory activity of A. asiatica is related to neuroprotective effects. The extract of A. asiatica inhibited inflammatory activation of mouse microglial cells as determined by the production of nitric oxide and the expression of inducible nitric oxide synthase and inflammatory cytokine. The extract also protected nerve growth factor-differentiated PC12 cells against microglial cytotoxicity, indicating that the ethanol extract of A. asiatica may be neuroprotective by inhibiting microglial neurotoxicity.
Collapse
Affiliation(s)
- Beong Ou Lim
- Department of Life Science, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
| | | | | | | | | |
Collapse
|
24
|
Park SW, Oh TY, Kim YS, Sim H, Park SJ, Jang EJ, Park JS, Baik HW, Hahm KB. Artemisia asiatica extracts protect against ethanol-induced injury in gastric mucosa of rats. J Gastroenterol Hepatol 2008; 23:976-84. [PMID: 18444990 DOI: 10.1111/j.1440-1746.2008.05333.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Based on our previous studies that Artemisia asiatica extracts exert either antioxidative or cytoprotective actions against non-steroidal anti-inflammatory drugs or Helicobacter pylori-induced gastric mucosal injury, or imposes qualified ulcer healing in an acetic acid-induced gastric ulcer model, we investigated the protective effects of Artemisia asiatica extracts against ethanol-induced gastric mucosal injury. METHODS Sprague-Dawley rats received 4 g/kg body weight (BW) of absolute ethanol intragastrically, which produced visible hemorrhagic gastric lesions 60 min later. RESULTS In this animal setting, the pretreatment of Artemisia extracts (30 or 100 mg/kg BW), 1 h before ethanol administration, significantly attenuated the source of gastric injury, which was assessed with gross and microscopic analysis (P < 0.01). Protection from alcohol-induced damage with Artemisia pretreatment was associated with significantly decreased lipid peroxidation, protecting gastric mucosa from glutathione depletion, as well as the inhibition of the cytochrome 2E1 ethanol-metabolizing enzyme. It attenuated the expressions of ethanol-induced pro-inflammatory cytokines, including interleukin (IL)-1beta and interferon-gamma, a weak activation of IL-10, the inhibition of the alcohol-induced overexpression of intercellular adhesion molecule-1, and the considerable induction of heat shock protein-72 expression in gastric mucosal homogenates. CONCLUSION The data suggest that the ethanol extracts of Artemisia asiatica exerted significant protection from alcohol-induced gastric mucosal injury through bio-regulation, which is essential for cytoprotection and anti-inflammation.
Collapse
Affiliation(s)
- Sang Woon Park
- Digestive Disease Center and DMC-MECOX Biomedical Research Center, Jesaeng Hospital, Seongnam, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Topically administered non-steroidal anti-inflammatory drugs (NSAIDs) inhibit periodontal bone loss, but little is known about the mechanism by which they penetrate oral epithelium. Active transporters could potentially play a role in this process. In this study, we used a cell line derived from oral epithelium to investigate a role for transporters and to characterize conditions that enhance epithelial penetration. Using fluorescence to monitor uptake, we demonstrated that SCC-25 cell monolayers transport naproxen with a Michaelis constant (K(m)) and maximum velocity (V(max)) of 164 microg/mL and 0.94 ng/min/microg protein, respectively. At steady state, the intra-cellular/extracellular concentration ratio was 3.4. Naproxen accumulation was more efficient at acidic pH than under neutral or alkaline conditions. Small proportions of glycerol, Pluronic F-127, and glucosylceramide enhanced naproxen entry. The individual and combined effects of glycerol and Pluronic F-127 were of lesser magnitude than those obtained with glucosylceramide or at pH 6.3. Thus, SCC-25 cells possess transporters for naproxen.
Collapse
Affiliation(s)
- R R Fitzgerald
- Section of Periodontology, College of Dentistry, The Ohio State University Health Sciences Center, 305 West 12th Avenue, P.O. Box 182357, Columbus, OH 43218-2357, USA
| | | |
Collapse
|
26
|
Gambero A, Maróstica M, Becker TL, Pedrazzoli J. Effect of different cyclooxygenase inhibitors on gastric adaptive cytoprotection induced by 20% ethanol. Dig Dis Sci 2007; 52:425-33. [PMID: 17226071 DOI: 10.1007/s10620-006-9487-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 06/13/2006] [Indexed: 12/23/2022]
Abstract
In this study, we evaluated the effect of two different dosages of therapeutically prescribed nonsteroidal anti-inflammatory drugs (NSAIDs), ibuprofen, diclofenac, nimesulide, meloxicam, and celecoxib (ED80 for COX-1 and COX-2) on normal gastric mucosa and mucosa, previously exposed to 20% ethanol. At COX-2-inhibiting dosages, the NSAIDs tested were nonulcerogenic, and the same response profile was observed in "adapted" stomachs. Interestingly, low doses of nimesulide and celecoxib increase the levels of Prostaglandin E(2) and COX-2, and protect against subsequent 100% ethanol exposition, suggesting that these drugs may act as "mild irritants" to gastric mucosa. The ulcerogenic response to NSAIDs was prevented by the previous 20% ethanol exposition, probably the result of nitric oxide synthesis, because PGE(2) levels in gastric mucosa were reduced by these agents and a concomitant nitric oxide blockade reversed this protection.
Collapse
Affiliation(s)
- Alessandra Gambero
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Av São Francisco de Assis 218, Bragança Paulista, 12916-900, SP, Brazil.
| | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The duodenum absorbs nearly all secreted gastric acid. Carbonic anhydrases facilitate transmucosal acid movement. The upper gastrointestinal tract must resist a variety of injuries, including those caused by ingested noxious substances, acid, ischemia/reperfusion, and infections such as Helicobacter pylori. The results are similar, however, regardless of insult: inflammation, ulceration, or metaplasia/dysplasia. In the past year, there have been prominent findings suggesting that oxidative stress and the formation of reactive oxygen species may play a pivotal role in all forms of injury, and that antioxidants may be the key to injury prevention and healing. RECENT FINDINGS Oxidative injury may be a common mechanism by which the upper gastrointestinal mucosa responds to noxious insults. Endogenous antioxidants, such as ghrelin, L-carnitine, and annexin-1 attenuate the oxidative-stress response. Similarly, exogenous antioxidants have also been shown to decrease inflammation, upregulate free radical scavengers, and prevent the formation of reactive oxygen species. SUMMARY Many studies published in the past year have linked oxidative stress to a variety of upper gastrointestinal insults. Exogenous and endogenous antioxidant compounds prevent the oxidative stress response. The future holds great promise for the development of pharmaceuticals with antioxidant properties that are safe, efficacious, and inexpensive.
Collapse
Affiliation(s)
- Mamie H Dong
- Department of Internal Medicine, UCLA Medical Center, USA
| | | |
Collapse
|