1
|
Escuder-Rodríguez JJ, Liang D, Jiang X, Sinicrope FA. Ferroptosis: Biology and Role in Gastrointestinal Disease. Gastroenterology 2024; 167:231-249. [PMID: 38431204 PMCID: PMC11193643 DOI: 10.1053/j.gastro.2024.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Ferroptosis is a form of nonapoptotic cell death that involves iron-dependent phospholipid peroxidation induced by accumulation of reactive oxygen species, and results in plasma membrane damage and the release of damage-associated molecular patterns. Ferroptosis has been implicated in aging and immunity, as well as disease states including intestinal and liver conditions and cancer. To date, several ferroptosis-associated genes and pathways have been implicated in liver disease. Although ferroptotic cell death is associated with dysfunction of the intestinal epithelium, the underlying molecular basis is poorly understood. As the mechanisms regulating ferroptosis become further elucidated, there is clear potential to use ferroptosis to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Frank A Sinicrope
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota.
| |
Collapse
|
2
|
Singhabahu R, Kodagoda Gamage SM, Gopalan V. Pathological significance of heme oxygenase-1 as a potential tumor promoter in heme-induced colorectal carcinogenesis. CANCER PATHOGENESIS AND THERAPY 2024; 2:65-73. [PMID: 38601482 PMCID: PMC11002664 DOI: 10.1016/j.cpt.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2024]
Abstract
The significance of the heme-metabolizing enzyme heme oxygenase-1 (HMOX1) in the pathogenesis of colorectal cancer (CRC) has not been fully explored. HMOX1 cytoprotection is imperative to limit oxidative stress. However, its roles in preventing carcinogenesis in response to high levels of heme are not thoroughly understood. This study reviews various mechanisms associated with the paradoxical role of HMOX1, which is advantageous for tumor growth, refractoriness, and survival of cancer cells amid oxidative stress in heme-induced CRC. The alternate role of HMOX1 promotes cell proliferation and metastasis through immune modulation and angiogenesis. Inhibiting HMOX1 has been found to reverse tumor promotion. Thus, HMOX1 acts as a conditional tumor promoter in CRC pathogenesis.
Collapse
Affiliation(s)
- Rachitha Singhabahu
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Sujani M. Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
- Faculty of Health Sciences and Medicine, Bond University, Robina 4226, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
3
|
Kim H, Villareal LB, Liu Z, Haneef M, Falcon DM, Martin DR, Lee H, Dame MK, Attili D, Chen Y, Varani J, Spence JR, Kovbasnjuk O, Colacino JA, Lyssiotis CA, Lin HC, Shah YM, Xue X. Transferrin Receptor-Mediated Iron Uptake Promotes Colon Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207693. [PMID: 36703617 PMCID: PMC10074045 DOI: 10.1002/advs.202207693] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 05/17/2023]
Abstract
Transferrin receptor (TFRC) is the major mediator for iron entry into a cell. Under excessive iron conditions, TFRC is expected to be reduced to lower iron uptake and toxicity. However, the mechanism whereby TFRC expression is maintained at high levels in iron-enriched cancer cells and the contribution of TFRC to cancer development are enigmatic. Here the work shows TFRC is induced by adenomatous polyposis coli (APC) gene loss-driven β-catenin activation in colorectal cancer, whereas TFRC-mediated intratumoral iron accumulation potentiates β-catenin signaling by directly enhancing the activity of tankyrase. Disruption of TFRC leads to a reduction of colonic iron levels and iron-dependent tankyrase activity, which caused stabilization of axis inhibition protein 2 (AXIN2) and subsequent repression of the β-catenin/c-Myc/E2F Transcription Factor 1/DNA polymerase delta1 (POLD1) axis. POLD1 knockdown, iron chelation, and TFRC disruption increase DNA replication stress, DNA damage response, apoptosis, and reduce colon tumor growth. Importantly, a combination of iron chelators and DNA damaging agents increases DNA damage response and reduces colon tumor cell growth. TFRC-mediated iron import is at the center of a novel feed-forward loop that facilitates colonic epithelial cell survival. This discovery may provide novel strategies for colorectal cancer therapy.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Luke B Villareal
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Zhaoli Liu
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Mohammad Haneef
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Daniel M Falcon
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - David R Martin
- Department of PathologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Ho‐Joon Lee
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Michael K Dame
- Department of Internal MedicineDivision of GastroenterologyUniversity of MichiganAnn ArborMI48109USA
| | - Durga Attili
- Department of PathologyThe University of Michigan Medical SchoolAnn ArborMI48109USA
| | - Ying Chen
- Center for clinical research and translational medicineYangpu hospitalTongji University School of MedicineShanghai200090China
| | - James Varani
- Department of PathologyThe University of Michigan Medical SchoolAnn ArborMI48109USA
| | - Jason R. Spence
- Department of Internal MedicineDivision of GastroenterologyUniversity of MichiganAnn ArborMI48109USA
| | - Olga Kovbasnjuk
- Division of Gastroenterology and HepatologyDepartment of Medicinethe University of New MexicoAlbuquerqueNM87131USA
| | - Justin A Colacino
- Department of Environmental Health SciencesUniversity of MichiganAnn ArborMI48109USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Henry C Lin
- Section of GastroenterologyMedicine ServiceNew Mexico VA Health Care SystemAlbuquerqueNM87108USA
| | - Yatrik M Shah
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Xiang Xue
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| |
Collapse
|
4
|
Dang D, Meng Z, Zhang C, Li Z, Wei J, Wu H. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. FASEB J 2022; 36:e22649. [PMID: 36383399 DOI: 10.1096/fj.202200853rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Transfusion-associated necrotising enterocolitis (TANEC) is a life-threatening disease with a poor prognosis in preterm infants. This study explored whether and how heme induces ferroptosis in TANEC gut injury. A TANEC mouse model and a cell culture system for heme and Caco-2 cells were established. Ferroptosis was assessed by measuring iron and malondialdehyde (MDA) levels and mitochondrial morphology in intestinal tissues and Caco-2 cells. Mitochondrial dysfunction was evaluated by measuring mitochondrial reactive oxygen species (ROS) production and membrane potential using JC-1. The intestinal injury grade was higher in the anemia-transfusion group than in the control group (p < .0001). Higher intestinal iron concentration (p < .0001), elevated levels of lipid peroxidation MDA (p = .0021), and ferroptotic mitochondrial morphological changes were found in mice of the anemia-transfusion group; specific ferroptosis inhibitor could alleviate anemia-transfusion gut injury, suggesting that ferroptosis play a role in the TANEC gut injury. Next, we explored whether heme released by hemolysis of erythrocytes induces ferroptosis in intestinal epithelial cells in vitro. The viability of Caco-2 cells significantly decreased after heme treatment (p < .0001). Iron accumulation, MDA elevated levels, and mitochondrial dysfunction also existed in the co-culture system, which ferroptosis inhibitors could reduce. In summary, ferroptosis was discovered in TANEC, and heme could induce ferroptosis in intestinal epithelial cells via mitochondrial dysfunction. Heme-inducing ferroptosis may be a possible mechanism and therapeutic target for TANEC.
Collapse
Affiliation(s)
- Dan Dang
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital of Jilin University, Changchun, China
| | - Chuan Zhang
- Department of Pediatric Surgery, First Hospital of Jilin University, Changchun, China
| | - Zhenyu Li
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Jiaqi Wei
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Png CW, Chua YK, Law JH, Zhang Y, Tan KK. Alterations in co-abundant bacteriome in colorectal cancer and its persistence after surgery: a pilot study. Sci Rep 2022; 12:9829. [PMID: 35701595 PMCID: PMC9198081 DOI: 10.1038/s41598-022-14203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in the role of gut microbiome in colorectal cancer (CRC), ranging from screening to disease recurrence. Our study aims to identify microbial markers characteristic of CRC and to examine if changes in bacteriome persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for analysis by bacterial 16S rRNA gene sequencing. Bacterial richness and diversity were reduced, while pro-carcinogenic bacteria such as Bacteroides fragilis and Odoribacter splanchnicus were increased in CRC patients compared to NC group. These differences were no longer observed after surgery. Comparison between pre-op and post-op CRC showed increased abundance of probiotic bacteria after surgery. Concomitantly, bacteria associated with CRC progression were observed to have increased after surgery, implying persistent dysbiosis. In addition, functional pathway predictions based on the bacterial 16S rRNA gene data showed that various pathways were differentially enriched in CRC compared to NC. Microbiome signatures characteristic of CRC comprise altered bacterial composition. Elements of these dysbiotic signatures persists even after surgery, suggesting possible field-change in remnant non-diseased colon. Future studies should involve a larger sample size with microbiome data collected at multiple time points after surgery to examine if these dysbiotic patterns truly persist and also correlate with disease outcomes.
Collapse
Affiliation(s)
- Chin-Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong-Kang Chua
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jia-Hao Law
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Krukowska K, Magierowski M. Carbon monoxide (CO)/heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochem Pharmacol 2022; 201:115058. [PMID: 35490732 DOI: 10.1016/j.bcp.2022.115058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Gastrointestinal (GI) tract cancers pose a significant pharmacological challenge for researchers in terms of the discovery of molecular agents and the development of targeted therapies. Although many ongoing clinical trials have brought new perspectives, there is still a lack of successful long-term treatment. Several novel pharmacological and molecular agents are being studied in the prevention and treatment of GI cancers. On the other hand, pharmacological tools designed to release an endogenous gaseous mediator, carbon monoxide (CO), were shown to prevent the gastric mucosa against various types of injuries and exert therapeutic properties in the treatment of GI pathologies. In this review, we summarized the current evidence on the role of CO and heme oxygenase 1 (HO-1) as a CO producing enzyme in the pathophysiology of GI tumors. We focused on a beneficial role of HO-1 and CO in biological systems and common pathological conditions. We further discussed the complex and ambiguous function of the HO-1/CO pathway in cancer cells with a special emphasis on molecular and cellular pro-cancerous and anti-cancer mechanisms. We also focused on the role that HO-1/CO plays in GI cancers, especially within upper parts such as esophagus or stomach.
Collapse
Affiliation(s)
- Kinga Krukowska
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland.
| |
Collapse
|
7
|
Lee JY, Davis I, Youth EHH, Kim J, Churchill G, Godwin J, Korstanje R, Beck S. Misexpression of genes lacking CpG islands drives degenerative changes during aging. SCIENCE ADVANCES 2021; 7:eabj9111. [PMID: 34910517 PMCID: PMC8673774 DOI: 10.1126/sciadv.abj9111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 05/14/2023]
Abstract
Cellular aging is characterized by disruption of the nuclear lamina and its associated heterochromatin. How these structural changes within the nucleus contribute to age-related degeneration of the organism is unclear. Genes lacking CpG islands (CGI− genes) generally associate with heterochromatin when they are inactive. Here, we show that the expression of these genes is globally activated in aged cells and tissues. This CGI− gene misexpression is a common feature of normal and pathological aging in mice and humans. We report evidence that CGI− gene up-regulation is directly responsible for age-related physiological deterioration, notably for increased secretion of inflammatory mediators.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ian Davis
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Elliot H. H. Youth
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- Brown University, Providence, RI 02912, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - James Godwin
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Samuel Beck
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
8
|
Chen J, Song Y, Chen D, Yu B, He J, Mao X, Huang Z, Luo J, Yu J, Luo Y, Yan H, Zheng P. Low Birth Weight Disturbs the Intestinal Redox Status and Mitochondrial Morphology and Functions in Newborn Piglets. Animals (Basel) 2021; 11:ani11092561. [PMID: 34573527 PMCID: PMC8469446 DOI: 10.3390/ani11092561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Low birth-weight piglets normally have a higher growth retardation and are more prone to disease such as diarrhea compared to NBW piglets, which are strongly associated with intestinal health, body redox status and mitochondrial morphology and function. The present study showed that low birth-weight piglets exhibited abnormal intestinal development and impaired intestinal barrier function and redox status when compared to normal- birth-weight piglets. Furthermore, we found that the impaired mitochondrial structure and functions may be one of the main causes of intestinal dysfunction in low birth-weight piglets. These results provided insights for the mechanisms of intestinal dysfunction in low birth-weight piglets. Abstract Low birth-weight (LBW) neonates exhibit a lower growth rate and impaired intestinal development. However, the reasons for abnormal development of small intestine in LBW piglets have not been widely studied. The present study focused on the redox status and mitochondrial morphology and functions of the small intestine in LBW newborn piglets. Ten newborn normal birth-weight (NBW) piglets and LBW piglets from 10 primiparous sows with the same parturition day were selected and sampled immediately without sucking colostrum. The small intestine tissues were collected and measured. Compared with NBW newborn piglets, LBW newborn piglets had a significantly decreased length and weight of the small intestine (p < 0.05) as well as the villus height/crypt depth (V/C) index in the jejunum (p < 0.05). Furthermore, LBW piglets had a lower gene expression of tight junction protein zonula occluden-1 (ZO1), claudin 1, antioxidant enzyme catalase (CAT), glutathione peroxidase (GPX) and heme oxygenase-1 (HO-1) in jejunum (p < 0.05). Meanwhile, LBW induced mitochondrial vacuolation and significantly decreased the mRNA expression of PPARγ coactivator-1α (PGC-1α) (p < 0.05) and tended to decrease the expression of cytochrome coxidase IV (Ccox IV) (p = 0.07) and cytochrome C (Cytc) (p = 0.08). In conclusion, LBW newborn piglets showed an abnormal development of the small intestine and disturbed redox status, and this may be caused by impaired morphology and the functions of mitochondria in the jejunum.
Collapse
|
9
|
Man Y, Xu T, Adhikari B, Zhou C, Wang Y, Wang B. Iron supplementation and iron-fortified foods: a review. Crit Rev Food Sci Nutr 2021; 62:4504-4525. [PMID: 33506686 DOI: 10.1080/10408398.2021.1876623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
About one-third of the world population is suffering from iron deficiency. Delivery of iron through diet is a practical, economical, and sustainable approach. Clinical studies have shown that the consumption of iron-fortified foods is one of the most effective methods for the prevention of iron deficiency. However, supplementing iron through diet can cause undesirable side-effects. Thus, it is essential to develop new iron-rich ingredients, iron-fortified products with high bioavailability, better stability, and lower cost. It is also essential to develop newer processing technologies for more effective fortification. This review compared the iron supplementation strategies used to treat the highly iron-deficient population and the general public. We also reviewed the efficacy of functional (iron-rich) ingredients that can be incorporated into food materials to produce iron-fortified foods. The most commonly available foods, such as cereals, bakery products, dairy products, beverages, and condiments are still the best vehicles for iron fortification and delivery.Scope of reviewThe manuscript aims at providing a comprehensive review of the latest publications that cover three aspects: administration routes for iron supplementation, iron-rich ingredients used for iron supplementation, and iron-fortified foods.
Collapse
Affiliation(s)
- Yaxing Man
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Australia
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuchuan Wang
- School of Food Engineering, Jiangnan University, Wuxi, PR China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
10
|
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Hemin Prevents Increased Glycolysis in Macrophages upon Activation: Protection by Microbiota-Derived Metabolites of Polyphenols. Antioxidants (Basel) 2020; 9:antiox9111109. [PMID: 33187129 PMCID: PMC7696608 DOI: 10.3390/antiox9111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022] Open
Abstract
Meat consumption plays a critical role in the development of several types of cancer. Hemin, a metabolite of myoglobin produced after meat intake, has been demonstrated to be involved in the cancer initiation phase. Macrophages are key components of the innate immunity, which, upon activation, can prevent cancer development by eliminating neoplastic cells. Metabolic reprogramming, characterized by high glycolysis and low oxidative phosphorylation, is critical for macrophage activation. 3,4-dihydroxyphenylacetic acid (3,4DHPAA) and 4-hydroxyphenylacetic acid (4HPAA), both microbiota-derived metabolites of flavonoids, have not been extensively studied although they exert antioxidant properties. The aim of this study was to determine the effect of hemin on the anticancer properties of macrophages and the role of 3,4DHPAA and 4HPAA in metabolic reprogramming and activation of macrophages leading to the elimination of cancer cells. The results showed that hemin inhibited glycolysis, glycolytic, and pentose phosphate pathway (PPP) enzyme activities and hypoxia-inducible factor-1 alpha (HIF-1α) stabilization, which interferes with macrophage activation (evidenced by decreased interferon-γ-inducible protein 10 (IP-10) release) and their ability to eliminate cancer cells (via cytotoxic mediators and phagocytosis). Hemin also reduced the mitochondrial membrane potential (MMP) and mitochondrial mass in macrophages. 3,4DHPAA and 4HPAA, by stimulating glycolysis and PPP, prevented the impairment of the macrophage anticancer activity induced by hemin. In conclusion, 3,4HPAA and 4HPAA administration could represent a promising strategy for preventing the reduction of macrophage activation induced by hemin.
Collapse
|
12
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
13
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
14
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Dietary hemin promotes colonic preneoplastic lesions and DNA damage but not tumor development in a medium-term model of colon carcinogenesis in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403076. [PMID: 31585636 DOI: 10.1016/j.mrgentox.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023]
Abstract
Red and processed meat consumption has been strongly related to increase the risk of colorectal cancer (CRC), although its impact is largely unknown. Hemin, an iron-containing porphyrin, is acknowledged as a putative factor of red and processed meat pro-carcinogenic effects. The aim of this study was to investigate the effects of high dietary hemin on the promotion/progression stages of 1,2-dimethylhydrazine (1,2-DMH)-induced colon carcinogenesis. Twenty-four Wistar male rats were given four subcutaneous 1,2-DMH injections and received either balanced diet or balanced diet supplemented with hemin 0.5 mmol/kg for 23 weeks. Colon specimens were analyzed for aberrant crypt foci (ACF) and tumor development. Dietary hemin significantly increased ACF number and fecal water cytotoxicity/genotoxicity in Caco-2 cells when compared to 1,2-DMH control group. However, tumor incidence, multiplicity and cell proliferation did not differ between 1,2-DMH + hemin and 1,2-DMH control group. Gene expression analysis of 91 target-genes revealed that only three genes (Figf, Pik3r5 and Tgfbr2) were down-regulated in the tumors from hemin-fed rats compared to those from 1,2-DMH control group. Therefore, the findings of this study show that high hemin intake promotes mainly DNA damage and ACF development and but does not change the number nor incidence of colon tumors induced by 1,2-DMH in male rats.
Collapse
Affiliation(s)
- Nelci A de Moura
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Brunno F R Caetano
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
15
|
Wu MS, Chien CC, Chang J, Chen YC. Pro-apoptotic effect of haem oxygenase-1 in human colorectal carcinoma cells via endoplasmic reticular stress. J Cell Mol Med 2019; 23:5692-5704. [PMID: 31199053 PMCID: PMC6653387 DOI: 10.1111/jcmm.14482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Several biological effects of haem oxygenase (HO)‐1, including anti‐inflammatory, antiapoptotic and antioxidative properties were reported; however, the role of HO‐1 in apoptosis is still unclear. In the presence of stimulation by cobalt protoporphyrin (CoPP), an HO‐1 inducer, apoptotic characteristics were observed, including DNA laddering, hypodiploid cells, and cleavages of caspase (Casp)‐3 and poly(ADP) ribose polymerase (PARP) proteins in human colon carcinoma COLO205, HCT‐15, LOVO and HT‐29 cells in serum‐free (SF) conditions with increased HO‐1, but not heat shock protein 70 (HSP70) or HSP90. The addition of 10% foetal bovine serum (FBS) or 1% bovine serum albumin accordingly inhibited CoPP‐induced apoptosis and HO‐1 protein expression in human colon cancer cells. CoPP‐induced apoptosis of colon cancer cells was prevented by the addition of the pan‐caspase inhibitor, Z‐VAD‐FMK (VAD), and the Casp‐3 inhibitor, Z‐DEVD‐FMK (DEVD). N‐Acetyl cysteine inhibited reactive oxygen species‐generated H2O2‐induced cell death with reduced intracellular peroxide production, but did not affect CoPP‐induced apoptosis in human colorectal carcinoma (CRC) cells. Two CoPP analogs, ferric protoporphyrin and tin protoporphyrin, did not affect the viability of human CRC cells or HO‐1 expression by those cells, and knockdown of HO‐1 protein expression by HO‐1 small interfering (si)RNA reversed the cytotoxic effect elicited by CoPP. Furthermore, the carbon monoxide (CO) donor, CORM, but not FeSO4 or biliverdin, induced DNA ladders, and cleavage of Casp‐3 and PARP proteins in human CRC cells. Increased phosphorylated levels of the endoplasmic reticular (ER) stress proteins, protein kinase R‐like ER kinase (PERK), and eukaryotic initiation factor 2α (eIF2α) by CORM and CoPP were identified, and the addition of the PERK inhibitor, GSK2606414, inhibited CORM‐ and CoPP‐induced apoptosis. Increased GRP78 level and formation of the HO‐1/GRP78 complex were detected in CORM‐ and CoPP‐treated human CRC cells. A pro‐apoptotic role of HO‐1 against the viability of human CRC cells via induction of CO and ER stress was firstly demonstrated herein.
Collapse
Affiliation(s)
- Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Kim H, Yin K, Falcon DM, Xue X. The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol Appl Pharmacol 2019; 374:77-85. [PMID: 31054940 DOI: 10.1016/j.taap.2019.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023]
Abstract
Several large epidemiological and animal studies demonstrate a direct correlation between dietary heme iron intake and/or systemic iron levels and cancer risk in several cancers including colorectal cancer (CRC). However, the precise mechanisms for how heme iron contributes to CRC and how cancer cells respond to heme iron-induced stress are still unclear. Previously we have shown that one of the stress-inducible proteins, Sestrin2 (SESN2), is a novel tumor suppressor in colon by limiting endoplasmic reticulum stress and mammalian target of rapamycin complex 1 (mTORC1) signaling and tumor growth. But the relationship between heme iron and SESN2, especially in the context of colon carcinogenesis, was not investigated previously. Here, we found that hemin dose-dependently increased SESN2 expression in an oxidative stress and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2, NRF2)-dependent manner. Since SESN2 overexpression reduced hemin-induced oxidative stress, SESN2 could be an important target of NRF2 exerting antioxidant function. Indeed, expression of several oxidative stress responsive proteins such as NRF2 and its target genes was reduced by SESN2. Although we formerly reported that SESN2 expression was reduced after p53 mutation in colon tumors, mouse colon tumors, which have intact p53 and NRF2, induced SESN2 expression in response to iron stimulus. Although SESN2 overexpression decreased murine colon tumor cell growth both in vitro and in vivo, it rendered colon cancer cells more resistant to hemin-induced apoptosis and therefore promoted tumor growth during hemin treatment. Taken together, although SESN2 generally suppresses tumorigenesis, it can produce tumor-promoting role in iron-rich environment by suppressing oxidative stress-associated cancer cell death.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Kunlun Yin
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Daniel M Falcon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
17
|
Different forms and sources of iron in relation to colorectal cancer risk: a case-control study in China. Br J Nutr 2019; 121:735-747. [PMID: 30688185 DOI: 10.1017/s0007114519000023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Few studies have examined the association of various types of Fe with colorectal cancer risk. The aim of this study was to investigate different forms and sources of Fe in relation to colorectal cancer risk in a Chinese population. A total of 2138 patients with colorectal cancer and 2144 sex- and age-matched (5-year interval) controls were recruited from July 2010 to November 2017. Dietary information was assessed by face-to-face interviews using a validated FFQ. Multivariable logistic regression was used to estimate the OR and 95 % CI on models. Intake of Fe from plants and Fe from white meat were inversely associated with the risk of colorectal cancer, while haem Fe and Fe from red meat were positively associated with colorectal cancer risk. The multivariable OR for the highest quartile v. the lowest quartile were 0·72 (95 % CI 0·59, 0·87, P trend<0·001) for Fe from plants, 0·54 (95 % CI 0·45, 0·66, P trend<0·001) for Fe from white meat, 1·26 (95 % CI 1·04, 1·53, P trend=0·005) for haem Fe and 1·83 (95 % CI 1·49, 2·24, P trend<0·001) for Fe from red meat intake, respectively. However, no significant association was found between the consumption of total dietary Fe, non-haem Fe, Fe from meat and colorectal cancer risk. This study showed that lower intake of Fe from plants and white meat, as well as higher intake of haem Fe and Fe from red meat, were associated with colorectal cancer risk in a Chinese population.
Collapse
|
18
|
Digit Tip Injuries: Current Treatment and Future Regenerative Paradigms. Stem Cells Int 2019; 2019:9619080. [PMID: 30805012 PMCID: PMC6360566 DOI: 10.1155/2019/9619080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Over the past several decades there has been a profound increase in the understanding of tissue regeneration, driven largely by the observance of the tremendous regenerative capacity in lower order life forms, such as hydra and urodeles. However, it is known that humans and other mammals retain the ability to regenerate the distal phalanges of the digits after amputation. Despite the increased knowledge base on model organisms regarding regenerative paradigms, there is a lack of application of regenerative medicine techniques in clinical practice in regard to digit tip injury. Here, we review the current understanding of digit tip regeneration and discuss gaps that remain in translating regenerative medicine into clinical treatment of digit amputation.
Collapse
|
19
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
20
|
Kopp TI, Vogel U, Tjonneland A, Andersen V. Meat and fiber intake and interaction with pattern recognition receptors (TLR1, TLR2, TLR4, and TLR10) in relation to colorectal cancer in a Danish prospective, case-cohort study. Am J Clin Nutr 2018; 107:465-479. [PMID: 29566186 DOI: 10.1093/ajcn/nqx011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Background Meat and dietary fiber are associated with increased and decreased risk of colorectal cancer (CRC), respectively. Toll-like receptors (TLRs) regulate the intestinal immune response in a complex interplay between the mucosal epithelium and the microbiota and may therefore be important modulators of diet-induced CRC together with other inflammatory mediators. Objective Our aim was to investigate the association between functional TLR polymorphisms and risk of CRC and the interaction with dietary factors. Additionally, interactions with previously studied polymorphisms in IL10, IL1B, PTGS2, and NFKB1 were assessed in order to examine possible biological pathways in meat-induced CRC. Design A nested case-cohort study of 897 CRC cases and 1689 randomly selected participants from the Danish prospective "Diet, Cancer and Health" study encompassing 57,053 persons was performed using Cox proportional hazard models and the likelihood ratio test. Results We found associations between polymorphisms in TLR2 (P = 0.018) and TLR4 (P = 0.044) and risk of CRC per se, interactions between intake of red and processed meat (10 g/d) and polymorphisms in TLR1 (P-interaction = 0.032) and TLR10 (P-interaction = 0.026 and 0.036), and intake of cereals (50 g/d) and TLR4 (P-interaction = 0.044) in relation to risk of CRC. Intake of red and processed meat also interacted with combinations of polymorphisms in TLR1 and TLR10 and polymorphisms in NFKB1, IL10, IL1B, and PTGS2 (P-interaction; TLR1/rs4833095 × PTGS2/rs20417 = 0.021, TLR10/rs11096955 × IL10/rs3024505 = 0.047, TLR10/rs11096955 × PTGS2/rs20417 = 0.017, TLR10/rs4129009 × NFKB1/rs28362491 = 0.027, TLR10/rs4129009 × IL1B/rs4848306 = 0.020, TLR10/rs4129009 × IL1B/rs1143623 = 0.021, TLR10/rs4129009 × PTGS2/rs20417 = 0.027), whereas intake of dietary fiber (10 g/d) interacted with combinations of polymorphisms in TLR4, IL10, and PTGS2 (P-interaction; TLR4/rs1554973 × IL10/rs3024505 = 0.0012, TLR4/rs1554973 × PTGS2/rs20417 = 0.0041, TLR4/rs1554973 × PTGS2/rs5275 = 0.0064). Conclusions Our study suggests that meat intake may activate TLRs at the epithelial surface, leading to CRC via inflammation by nuclear transcription factor-κB-initiated transcription of inflammatory genes, whereas intake of fiber may protect against CRC via TLR4-mediated secretion of interleukin-10 and cyclooxygenase-2. Our results should be replicated in other prospective cohorts with well-characterized participants. The trial was registered at www.clinicaltrials.gov as NCT03250637.
Collapse
Affiliation(s)
- Tine Iskov Kopp
- Research Centre for Prevention and Health, Rigshospitalet-Glostrup, Glostrup, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Laboratory Center, Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Regional Health Research-Center Sønderjylland.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Ashmore JH, Rogers CJ, Kelleher SL, Lesko SM, Hartman TJ. Dietary Iron and Colorectal Cancer Risk: A Review of Human Population Studies. Crit Rev Food Sci Nutr 2017; 56:1012-20. [PMID: 25574701 DOI: 10.1080/10408398.2012.749208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iron is an essential micronutrient that is involved in many redox processes and serves as an integral component in various physiological functions. However, excess iron can cause tissue damage through its pro-oxidative effects, potentiating the development of many diseases such as cancer through the generation of reactive oxidative species. The two major forms of iron in the diet are heme and nonheme iron, both of which are found in several different foods. In addition to natural food sources, intake of nonheme iron may also come from fortified foods or in supplement form. This review summarizes the results of human population studies that have examined the role of dietary iron (heme and nonheme), heme iron alone, and iron from supplements in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Joseph H Ashmore
- a Department of Pharmaceutical Sciences , Washington State University , Spokane , Washington , USA
| | - Connie J Rogers
- b Department of Nutritional Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Shannon L Kelleher
- b Department of Nutritional Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Samuel M Lesko
- c Northeast Regional Cancer Institute , Scranton , Pennsylvania , USA.,d The Commonwealth Medical College , Scranton , Pennsylvania , USA
| | - Terryl J Hartman
- e Department of Epidemiology , Rollins School of Public Health and Winship Cancer Institute, Emory University , Atlanta , Georgia , USA
| |
Collapse
|
22
|
Latunde-Dada GO. Is the calcium transporter a potential candidate for heme transport? Med Hypotheses 2016; 91:84-85. [DOI: 10.1016/j.mehy.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/03/2016] [Indexed: 10/22/2022]
|
23
|
Ghosh S. Human regeneration: An achievable goal or a dream? J Biosci 2016; 41:157-65. [PMID: 26949097 DOI: 10.1007/s12038-016-9589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human regeneration.
Collapse
Affiliation(s)
- Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P.C. Road, Kolkata 700 009, India,
| |
Collapse
|
24
|
Wang W, Degroote J, Van Ginneken C, Van Poucke M, Vergauwen H, Dam TMT, Vanrompay D, Peelman LJ, De Smet S, Michiels J. Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J 2015; 30:863-73. [PMID: 26514167 DOI: 10.1096/fj.15-274779] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/19/2015] [Indexed: 01/29/2023]
Abstract
Neonates with intrauterine growth restriction (IUGR) show lower efficiency of nutrient utilization compared to normal birth weight (NBW) newborns. This study was conducted using neonatal piglets as a model to test the hypothesis that IUGR affects the intestinal barrier function, intestinal structure, and antioxidant system development during the suckling period. The small intestinal mucosae were obtained from IUGR and NBW littermates in the suckling period (d 0, 3, 8, and 19 postnatal). The epithelial barrier function was assessed by FITC-dextran 4 (FD4) and horseradish peroxidase (HRP) fluxes across the epithelium, histomorphologic measurements, and expression of tight-junction proteins. Redox status represented by the glutathione disulfide/glutathione ratio and malondialdehyde concentrations was determined, whereas mRNA expressions of some redox-sensitive proteins were quantified. Results showed that IUGR piglets exhibited a 2-fold higher intestinal permeability in the proximal small intestine on d 0 (P < 0.05), and this difference between IUGR and NBW piglets was widened to 3 and 4 times for FD4 and HRP, respectively (P < 0.05), on d 3. In accordance, expression of occludin was down-regulated at the transcriptional level in IUGR piglets at d 0 and 19 (P < 0.01). Furthermore, the transcription of heme oxygenase 1, catalase, and thioredoxin reductase genes was down-regulated in IUGR piglets, mainly on postnatal d 0 and 19 (P < 0.01). It appears that IUGR subjects have a lower capacity to mount an antioxidant response in the early postnatal period. Collectively, these results add to our understanding of the mechanisms responsible for intestinal dysfunction in IUGR neonates.
Collapse
Affiliation(s)
- Wei Wang
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jeroen Degroote
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Van Ginneken
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mario Van Poucke
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans Vergauwen
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Thi Minh Tho Dam
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc J Peelman
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefaan De Smet
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joris Michiels
- *Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium; Department of Applied Bioscience, Faculty of Bioscience Engineering, and Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; and Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Padmanabhan H, Brookes MJ, Iqbal T. Iron and colorectal cancer: evidence from in vitro and animal studies. Nutr Rev 2015; 73:308-17. [DOI: 10.1093/nutrit/nuu015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Andersen V, Vogel U. Interactions between meat intake and genetic variation in relation to colorectal cancer. GENES AND NUTRITION 2014; 10:448. [PMID: 25491747 PMCID: PMC4261072 DOI: 10.1007/s12263-014-0448-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
Abstract
Meat intake is associated with the risk of colorectal cancer. The objective of this systematic review was to evaluate interactions between meat intake and genetic variation in order to identify biological pathways involved in meat carcinogenesis. We performed a literature search of PubMed and Embase using “interaction”, “meat”, “polymorphisms”, and “colorectal cancer”, and data on meat–gene interactions were extracted. The studies were divided according to whether information on meat intake was collected prospectively or retrospectively. In prospective studies, interactions between meat intake and polymorphisms in PTGS2 (encoding COX-2), ABCB1, IL10, NFKB1, MSH3, XPC (Pint = 0.006, 0.01, 0.04, 0.03, 0.002, 0.01, respectively), but not IL1B, HMOX1, ABCC2, ABCG2, NR1I2 (encoding PXR), NR1H2 (encoding LXR), NAT1, NAT2, MSH6, or MLH1 in relation to CRC were found. Interaction between a polymorphism in XPC and meat was found in one prospective and one case–control study; however, the directions of the risk estimates were opposite. Thus, none of the findings were replicated. The results from this systematic review suggest that genetic variation in the inflammatory response and DNA repair pathway is involved in meat-related colorectal carcinogenesis, whereas no support for the involvement of heme and iron from meat or cooking mutagens was found. Further studies assessing interactions between meat intake and genetic variation in relation to CRC in large well-characterised prospective cohorts with relevant meat exposure are warranted.
Collapse
Affiliation(s)
- Vibeke Andersen
- Organ Center, Hospital of Southern Jutland, Aabenraa, Denmark,
| | | |
Collapse
|
27
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1395] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
28
|
Iron homeostasis in breast cancer. Cancer Lett 2014; 347:1-14. [DOI: 10.1016/j.canlet.2014.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
|
29
|
Badenhorst CPS, Erasmus E, van der Sluis R, Nortje C, van Dijk AA. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metab Rev 2014; 46:343-61. [PMID: 24754494 DOI: 10.3109/03602532.2014.908903] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A number of endogenous and xenobiotic organic acids are conjugated to glycine, in animals ranging from mosquitoes to humans. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, the recently proposed glycine deportation hypothesis states that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilized as neurotransmitters in the central nervous systems of animals. This hypothesis is based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. In this review it will be argued that the major role of glycine conjugation is to dispose of the end products of phenylpropionate metabolism. Furthermore, glucuronidation, which occurs in the endoplasmic reticulum, would not be ideal for the detoxification of free benzoate, which has been shown to accumulate in the mitochondrial matrix. Glycine conjugation, however, prevents accumulation of benzoic acid in the mitochondrial matrix by forming hippurate, a less lipophilic conjugate that can be more readily transported out of the mitochondria. Finally, it will be explained that the glycine conjugation of benzoate, a commonly used preservative, exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated.
Collapse
|
30
|
Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 2014; 6:1080-102. [PMID: 24633395 PMCID: PMC3967179 DOI: 10.3390/nu6031080] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 12/11/2022] Open
Abstract
Heme constitutes 95% of functional iron in the human body, as well as two-thirds of the average person’s iron intake in developed countries. Hence, a wide range of epidemiological studies have focused on examining the association of dietary heme intake, mainly from red meat, with the risks of common diseases. High heme intake is associated with increased risk of several cancers, including colorectal cancer, pancreatic cancer and lung cancer. Likewise, the evidence for increased risks of type-2 diabetes and coronary heart disease associated with high heme intake is compelling. Furthermore, recent comparative metabolic and molecular studies of lung cancer cells showed that cancer cells require increased intracellular heme biosynthesis and uptake to meet the increased demand for oxygen-utilizing hemoproteins. Increased levels of hemoproteins in turn lead to intensified oxygen consumption and cellular energy generation, thereby fueling cancer cell progression. Together, both epidemiological and molecular studies support the idea that heme positively impacts cancer progression. However, it is also worth noting that heme deficiency can cause serious diseases in humans, such as anemia, porphyrias, and Alzheimer’s disease. This review attempts to summarize the latest literature in understanding the role of dietary heme intake and heme function in diverse diseases.
Collapse
|
31
|
Winter J, Young GP, Hu Y, Gratz SW, Conlon MA, Le Leu RK. Accumulation of promutagenic DNA adducts in the mouse distal colon after consumption of heme does not induce colonic neoplasms in the western diet model of spontaneous colorectal cancer. Mol Nutr Food Res 2013; 58:550-8. [PMID: 24115497 DOI: 10.1002/mnfr.201300430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 01/22/2023]
Abstract
SCOPE Red meat is considered a risk factor for colorectal cancer (CRC). Heme is considered to promote colonic hyperproliferation and cell damage. Resistant starch (RS) is a food that ferments in the colon with studies demonstrating protective effects against CRC. By utilizing the western diet model of spontaneous CRC, we determined if feeding heme (as hemin chloride) equivalent to a high red meat diet would increase colonic DNA adducts and CRC and whether RS could abrogate such effects. METHODS AND RESULTS Four groups of mice: control, heme, RS and heme + RS were fed diets for 1 or 18 months. Colons were analyzed for apoptosis, proliferation, DNA adducts "8-hydroxy-2-deoxyguanosine" and "O(6) -methyl-2-deoxyguanosine" (O(6) MeG), and neoplasms. In the short term, heme increased cell proliferation (p < 0.05). Changes from 1 to 18 months showed increased cell proliferation (p < 0.01) and 8-hydroxy-2-deoxyguanosine adducts (p < 0.05) in all groups, but only heme-fed mice showed reduced apoptosis (p < 0.01) and increased O(6) MeG adducts (p < 0.01). The incidence of colon neoplasms was not different between any interventions. CONCLUSION We identified heme to increase proliferation in the short term, inhibit apoptosis over the long term, and increase O(6) MeG adducts in the colon over time although these changes did not affect colonic neoplasms within this mouse model.
Collapse
Affiliation(s)
- Jean Winter
- Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Badenhorst CPS, van der Sluis R, Erasmus E, van Dijk AA. Glycine conjugation: importance in metabolism, the role of glycine N-acyltransferase, and factors that influence interindividual variation. Expert Opin Drug Metab Toxicol 2013; 9:1139-53. [PMID: 23650932 DOI: 10.1517/17425255.2013.796929] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glycine conjugation of mitochondrial acyl-CoAs, catalyzed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterized in detail. Here, we review the causes and possible consequences of interindividual variation in the glycine conjugation pathway. AREAS COVERED The authors review the importance of CoASH in metabolism, formation and toxicity of xenobiotic acyl-CoAs, and mechanisms for restoring levels of CoASH. They focus on GLYAT, glycine conjugation, how genetic variation in the GLYAT gene could influence glycine conjugation, and the emerging roles of glycine metabolism in cancer and musculoskeletal development. EXPERT OPINION The substrate selectivity of GLYAT and its variants needs to be further characterized, as organic acids can be toxic if the corresponding acyl-CoA is not a substrate for glycine conjugation. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability, and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development, and mitochondrial energy metabolism.
Collapse
|
33
|
Sahoo S, Thiele I. Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum Mol Genet 2013; 22:2705-22. [PMID: 23492669 PMCID: PMC3674809 DOI: 10.1093/hmg/ddt119] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small intestinal epithelial cells (sIECs) have a significant share in whole body metabolism as they perform enzymatic digestion and absorption of nutrients. Furthermore, the diet plays a key role in a number of complex diseases including obesity and diabetes. The impact of diet and altered genetic backgrounds on human metabolism may be studied by using computational modeling. A metabolic reconstruction of human sIECs was manually assembled using the literature. The resulting sIEC model was subjected to two different diets to obtain condition-specific metabolic models. Fifty defined metabolic tasks evaluated the functionalities of these models, along with the respective secretion profiles, which distinguished between impacts of different dietary regimes. Under the average American diet, the sIEC model resulted in higher secretion flux for metabolites implicated in metabolic syndrome. In addition, enzymopathies were analyzed in the context of the sIEC metabolism. Computed results were compared with reported gastrointestinal (GI) pathologies and biochemical defects as well as with biomarker patterns used in their diagnosis. Based on our simulations, we propose that (i) sIEC metabolism is perturbed by numerous enzymopathies, which can be used to study cellular adaptive mechanisms specific for such disorders, and in the identification of novel co-morbidities, (ii) porphyrias are associated with both heme synthesis and degradation and (iii) disturbed intestinal gamma-aminobutyric acid synthesis may be linked to neurological manifestations of various enzymopathies. Taken together, the sIEC model represents a comprehensive, biochemically accurate platform for studying the function of sIEC and their role in whole body metabolism.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Center for Systems Biology and Faculty of Industrial Engineering, Mechanical Engineering & Computer Science, University of Iceland, 101 Reykjavik, Iceland
| | | |
Collapse
|
34
|
Hiyama K, Matsui H, Tamura M, Shimokawa O, Hiyama M, Kaneko T, Nagano Y, Hyodo I, Tanaka J, Miwa Y, Ogawa T, Nakanishi T, Tamai I. Cancer cells uptake porphyrinsviaheme carrier protein 1. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although exogenous porphyrin accumulation in cancer cells is important for the success of photodynamic therapies, the mechanism is not clear. We hypothesized that a newly reported transporter, heme carrier protein 1 (HCP1), is highly expressed in cancer cells, and transports porphyrins into the cells. We investigated the following three unknowns: whether cancer cells take up hematoporphyrin derivative via HCP1, whether HCP1 is involved in photodynamic therapies, and whether cancer cells highly express HCP1. First, when HCP1-overexpressed cells were treated with hematoporphyrin derivative and then exposed to an eximer laser beam, they emitted a significantly higher intensity of hematoporphyrin derivative fluorescence and became more susceptible to the laser beam than control. Second, when three other types of cancer cells with silenced HCP1 were treated with hematoporphyrin derivative and then exposed to the laser beam, they emitted a significantly lower intensity of hematoporphyrin derivative fluorescence. Third, non-cancer cells slightly expressed HCP1; on the other hand, the three other types of cancer cells clearly expressed HCP1. These results indicated that cancer cells uptake hematoporphyrin derivative via HCP1 and over-expression of HCP1 increases the efficacy of photodynamic therapies by increasing porphyrin accumulation in the cells. This is the first report about a transporter of porphyrin in cancer cells.
Collapse
Affiliation(s)
- Kazuhiro Hiyama
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Masato Tamura
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Osamu Shimokawa
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Mariko Hiyama
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Tsuyoshi Kaneko
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Yumiko Nagano
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Ichinosuke Hyodo
- Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Junko Tanaka
- Department of Molecular Pharmacology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Yoshihiro Miwa
- Department of Molecular Pharmacology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Japan
| | - Tetsuo Ogawa
- Department of Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
35
|
Barcellos-de-Souza P, Moraes JA, de-Freitas-Junior JCM, Morgado-Díaz JA, Barja-Fidalgo C, Arruda MA. Heme modulates intestinal epithelial cell activation: involvement of NADPHox-derived ROS signaling. Am J Physiol Cell Physiol 2012; 304:C170-9. [PMID: 23114967 DOI: 10.1152/ajpcell.00078.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many gut chronic inflammatory conditions, intestinal epithelium (IE) is deprived of the protection of the mucus secreted by IE-specialized cells. In these events, bleeding and subsequent lysis of erythrocytes are common. This may lead to the release of high amounts of heme in the intestinal lumen, which interacts with IE. Previous works from our group have shown that heme itself is a proinflammatory molecule, activating a number of phlogistic signaling events in a nicotinamide adenine dinucleotide phosphate oxidase (NADPHox)-dependent manner. In this study, we aim to evaluate the effects of heme upon a well-established nontransformed small intestine epithelial cell lineage (IEC 6). Our results show that free heme evokes intracellular reactive oxygen species (ROS) production by IEC 6 cells, which is inhibited both by pharmacological inhibition with diphenyleneiodonium (10 μM), a NADPHox inhibitor, and small interfering RNA-mediated suppression of NOX1, a constitutive NADPHox isoform present in intestinal epithelial cells. Focal adhesion kinase phosphorylation and actin cytoskeleton polymerization are also induced by heme in a NADPHox-dependent manner. Heme increases monolayer permeability and redistributes key modulators of cell-cell adhesion as zona occludens-1 and E-cadherin proteins via NADPHox signaling. Heme promotes IEC 6 cell migration and proliferation, phenomena also regulated by NADPHox-derived ROS. Heme, in NADPHox-activating concentrations, is able to induce mRNA expression of IL-6, a cytokine implicated in inflammatory and tumorigenic responses. These data indicate a prominent role for heme-derived signaling in the pathophysiology of intestinal mucosa dysfunction and address an important role of NADPHox activity on the pathogenesis of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Pedro Barcellos-de-Souza
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Le Blanc S, Garrick MD, Arredondo M. Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am J Physiol Cell Physiol 2012; 302:C1780-5. [DOI: 10.1152/ajpcell.00080.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme-Fe is an important source of dietary iron in humans; however, the mechanism for heme-Fe uptake by enterocytes is poorly understood. Heme carrier protein 1 (HCP1) was originally identified as mediating heme-Fe transport although it later emerged that it was a folate transporter. We asked what happened to heme-Fe and folate uptake and the relative abundance of hcp1 and ho1 mRNA in Caco-2 cells after knockdown by transfection with HCP1-directed short hairpin (sh)RNA. Control Caco-2 cells were cultured in bicameral chambers with 0–80 μM heme-Fe for selected times. Intracellular Fe and heme concentration increased in Caco-2 cells reflecting higher external heme-Fe concentrations. Maximum Fe, heme, and heme oxygenase 1 (HO1) expression and activity were observed between 12 and 24 h of incubation. Quantitative RT-PCR for hcp1 revealed that its mRNA decreased at 20 μM heme-Fe while ho1 mRNA and activity increased. When shRNA knocked down hcp1 mRNA, heme-55Fe uptake and [3H]folate transport mirrored the mRNA decrease, ho1 mRNA increased, and flvcr mRNA was unchanged. These data argue that HCP1 is involved in low-affinity heme-Fe uptake not just in folate transport.
Collapse
Affiliation(s)
- Solange Le Blanc
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; and
| | - Michael D. Garrick
- Department of Biochemistry, State University of New York, Buffalo, New York
| | - Miguel Arredondo
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; and
| |
Collapse
|
37
|
Gerjevic LN, Lu S, Chaky JP, Harrison-Findik DD. Regulation of heme oxygenase expression by alcohol, hypoxia and oxidative stress. World J Biol Chem 2011; 2:252-60. [PMID: 22216371 PMCID: PMC3247681 DOI: 10.4331/wjbc.v2.i12.252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the effect of both acute and chronic alcohol exposure on heme oxygenases (HOs) in the brain, liver and duodenum.
METHODS: Wild-type C57BL/6 mice, heterozygous Sod2 knockout mice, which exhibit attenuated manganese superoxide dismutase activity, and liver-specific ARNT knockout mice were used to investigate the role of alcohol-induced oxidative stress and hypoxia. For acute alcohol exposure, ethanol was administered in the drinking water for 1 wk. Mice were pair-fed with regular or ethanol-containing Lieber De Carli liquid diets for 4 wk for chronic alcohol studies. HO expression was analyzed by real-time quantitative polymerase chain reaction and Western blotting.
RESULTS: Chronic alcohol exposure downregulated HO-1 expression in the brain but upregulated it in the duodenum of wild-type mice. It did not alter liver HO-1 expression, nor HO-2 expression in the brain, liver or duodenum. In contrast, acute alcohol exposure decreased both liver HO-1 and HO-2 expression, and HO-2 expression in the duodenum of wild-type mice. The decrease in liver HO-1 expression was abolished in ARNT+/- mice. Sod2+/- mice with acute alcohol exposure did not exhibit any changes in liver HO-1 and HO-2 expression or in brain HO-2 expression. However, alcohol inhibited brain HO-1 and duodenal HO-2 but increased duodenal HO-1 expression in Sod2+/- mice. Collectively, these findings indicate that acute and chronic alcohol exposure regulates HO expression in a tissue-specific manner. Chronic alcohol exposure alters brain and duodenal, but not liver HO expression. However, acute alcohol exposure inhibits liver HO-1 and HO-2, and also duodenal HO-2 expression.
CONCLUSION: The inhibition of liver HO expression by acute alcohol-induced hypoxia may play a role in the early phases of alcoholic liver disease progression.
Collapse
Affiliation(s)
- Lisa Nicole Gerjevic
- Lisa Nicole Gerjevic, Sizhao Lu, Jonathan Pascal Chaky, Duygu Dee Harrison-Findik, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5820, United States
| | | | | | | |
Collapse
|
38
|
Wysokinski D, Synowiec E, Chmielewska M, Wozniak K, Zaras M, Sklodowska A, Blasiak J, Szaflik J, Szaflik JP. Lack of association between the c.544G>A polymorphism of the heme oxygenase-2 gene and age-related macular degeneration. Med Sci Monit 2011; 17:CR449-455. [PMID: 21804464 PMCID: PMC3539623 DOI: 10.12659/msm.881906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a primary cause of blindness among the elderly in developed countries. The nature of AMD is complex and includes both environmental and hereditary factors. Oxidative stress is thought to be essential in AMD pathogenesis. Iron is suggested to be implicated in the pathogenesis of AMD through the catalysis of the production of reactive oxygen species, which can damage the retina. Heme oxygenase-2 is capable of degradation of heme producing free iron ions, thus, diversity in heme oxygenase-2 gene may contribute to AMD. In the present work we analyzed the association between the c.544G>A polymorphism of the heme oxygenase-2 gene (HMOX2) (rs1051308) and AMD. Material/Methods This study enrolled 276 AMD patients and 105 sex- and age-matched controls. Genotyping of the polymorphism was performed with restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) on DNA isolated from peripheral blood. Results We did not find any association between the genotypes of the c.544G>A polymorphism and the occurrence of AMD. This lack of association was independent of potential AMD risk factors: tobacco smoking, sex and age. Moreover, we did not find any association between AMD and smoking in our study population. Conclusions The results suggest that the c.544G>A polymorphism of the heme oxygenase-2 gene is not associated with AMD in this Polish subpopulation.
Collapse
|
39
|
Zhu X, Fan WG, Li DP, Kung H, Lin MCM. Heme oxygenase-1 system and gastrointestinal inflammation: A short review. World J Gastroenterol 2011; 17:4283-8. [PMID: 22090784 PMCID: PMC3214703 DOI: 10.3748/wjg.v17.i38.4283] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/21/2011] [Accepted: 03/28/2011] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) system catalyzes heme to biologically active products: carbon monoxide, biliverdin/bilirubin and free iron. It is involved in maintaining cellular homeostasis and many physiological and pathophysiological processes. A growing body of evidence indicates that HO-1 activation may play an important protective role in acute and chronic inflammation of gastrointestinal tract. This review focuses on the current understanding of the physiological significance of HO-1 induction and its possible roles in the gastrointestinal inflammation studied to date. The ability to upregulate HO-1 by pharmacological means or using gene therapy may offer therapeutic strategies for gastrointestinal inflammation in the future.
Collapse
|
40
|
Angeli JPF, Garcia CCM, Sena F, Freitas FP, Miyamoto S, Medeiros MHG, Di Mascio P. Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radic Biol Med 2011; 51:503-15. [PMID: 21600979 DOI: 10.1016/j.freeradbiomed.2011.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/23/2022]
Abstract
Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 μM. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2'-deoxyguanosine and 1,N(2)-etheno-2'-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells.
Collapse
Affiliation(s)
- José Pedro F Angeli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508–000 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Cassidy CM, Tunney MM, Caldwell DL, Andrews GP, Donnelly RF. Development of novel oral formulations prepared via hot melt extrusion for targeted delivery of photosensitizer to the colon. Photochem Photobiol 2011; 87:867-76. [PMID: 21375536 DOI: 10.1111/j.1751-1097.2011.00915.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.
Collapse
|
42
|
McIntyre NR, Franco R, Shelnutt JA, Ferreira GC. Nickel(II) chelatase variants directly evolved from murine ferrochelatase: porphyrin distortion and kinetic mechanism. Biochemistry 2011; 50:1535-44. [PMID: 21222436 DOI: 10.1021/bi101170p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heme biosynthetic pathway culminates with the ferrochelatase-catalyzed ferrous iron chelation into protoporphyrin IX to form protoheme. The catalytic mechanism of ferrochelatase has been proposed to involve the stabilization of a nonplanar porphyrin to present the pyrrole nitrogens to the metal ion substrate. Previously, we hypothesized that the ferrochelatase-induced nonplanar distortions of the porphyrin substrate impose selectivity for the divalent metal ion incorporated into the porphyrin ring and facilitate the release of the metalated porphyrin through its reduced affinity for the enzyme. Using resonance Raman spectroscopy, the structural properties of porphyrins bound to the active site of directly evolved Ni(2+)-chelatase variants are now examined with regard to the mode and extent of porphyrin deformation and related to the catalytic properties of the enzymes. The Ni(2+)-chelatase variants (S143T, F323L, and S143T/F323L), which were directly evolved to exhibit an enhanced Ni(2+)-chelatase activity over that of the parent wild-type ferrochelatase, induced a weaker saddling deformation of the porphyrin substrate. Steady-state kinetic parameters of the evolved variants for Ni(2+)- and Fe(2+)-chelatase activities increased compared to those of wild-type ferrochelatase. In particular, the reduced porphyrin saddling deformation correlated with increased catalytic efficiency toward the metal ion substrate (Ni(2+) or Fe(2+)). The results lead us to propose that the decrease in the induced protoporphyrin IX saddling mode is associated with a less stringent metal ion preference by ferrochelatase and a slower porphyrin chelation step.
Collapse
Affiliation(s)
- Neil R McIntyre
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | | | | | | |
Collapse
|
43
|
Effects of dietary delta-aminolevulinic acid and vitamin C on growth performance, immune organ weight and ferrum status in broiler chicks. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.06.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Ishikawa SI, Tamaki S, Ohata M, Arihara K, Itoh M. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr Food Res 2010; 54:1182-91. [PMID: 20112302 DOI: 10.1002/mnfr.200900348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epidemiological and animal model studies have suggested that high intake of heme, present in red meat, is associated with an increased risk of colon cancer. However, the mechanisms underlying this association are not clear. This study aimed to investigate whether heme induces DNA damage and cell proliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase (HO). We examined the effects of zinc protoporphyrin (ZnPP; a HO inhibitor) and catalase on DNA damage, cell proliferation, and IL-8 production induced by the addition of hemin (1-10 microM) to human colonic epithelial Caco-2 cells. DNA damage was determined with a comet assay, and cell proliferation was evaluated with 5-bromo-2'-deoxyuridine incorporation assay. Both ZnPP and exogenous catalase inhibited the hemin-induced DNA damage and cell hyperproliferation dose-dependently. IL-8 messenger RNA expression and IL-8 production in the epithelial cells increased following the hemin treatment, but the production was inhibited by ZnPP and catalase. These results indicate that hemin has genotoxic and hyperproliferative effects on Caco-2 cells by HO and hydrogen peroxide. The mechanism might explain why a high intake of heme is associated with increased risk of colon cancer.
Collapse
Affiliation(s)
- Shin-ichi Ishikawa
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | | | | | | | | |
Collapse
|
45
|
Andersen V, Christensen J, Overvad K, Tjønneland A, Vogel U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer 2010; 10:484. [PMID: 20836841 PMCID: PMC2949803 DOI: 10.1186/1471-2407-10-484] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 09/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Transcription factors and nuclear receptors constitute a link between exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and tobacco smoke and colorectal cancer (CRC) risk. The aim of this study was to investigate if polymorphisms in nuclear factor kappa-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use. Methods The polymorphisms nuclear factor kappa-B (NFkB, NFKB1) -94 insertion/deletion ATTG (rs28362491), pregnane X receptor (PXR, NR1I2) A-24381C (rs1523127), C8055T (rs2276707), A7635G (rs6785049), liver X receptor (LXR-β, NR1H3) C-rs1405655T, T-rs2695121C were assessed together with lifestyle factors in a nested case-cohort study of 378 CRC cases and 756 random participants from the Danish prospective Diet, Cancer and Health study of 57,053 persons. Results Carriers of NFkB -94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR) = 1.45, 95% confidence interval (95% CI): 1.10-1.92). There was interaction between this polymorphism and intake of red and processed meat in relation to CRC risk. Carriers of NFkB -94deletion were at 3% increased risk pr 25 gram meat per day (95% CI: 0.98-1.09) whereas homozygous carriers of the insertion were not at increased risk (p for interaction = 0.03). PXR and LXR polymorphisms were not associated with CRC risk. There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID) or smoking status and NFkB, PXR or LXR polymorphisms. Conclusions A polymorphism in NFkB was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role for NFkB in CRC aetiology.
Collapse
Affiliation(s)
- Vibeke Andersen
- Medical Department, Viborg Regional Hospital, Heibergs Allé 4, DK-8800 Viborg, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Heme oxygenase-1 (HO-1) system catabolizes heme into three products: carbon monoxide, biliverdin/bilirubin and free iron. It is involved in many physiological and pathophysiological processes. A great deal of data has demonstrated the roles of HO-1 in the formation, growth and metastasis of tumors. The interest in this system by investigators involved in gastrointestinal tumors is fairly recent, and few papers on HO-1 have touched upon this subject. This review focuses on the current understanding of the physiological significance of HO-1 induction and its possible roles in the gastrointestinal tumors studied to date. The implications for possible therapeutic manipulation of HO-1 in gastrointestinal tumors are also discussed.
Collapse
|
47
|
Scientific Opinion on the safety of heme iron (blood peptonates) for the proposed uses as a source of iron added for nutritional purposes to foods for the general population, including food supplements. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
48
|
Chua ACG, Klopcic B, Lawrance IC, Olynyk JK, Trinder D. Iron: An emerging factor in colorectal carcinogenesis. World J Gastroenterol 2010; 16:663-72. [PMID: 20135713 PMCID: PMC2817053 DOI: 10.3748/wjg.v16.i6.663] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carcinogenic potential of iron in colorectal cancer (CRC) is not fully understood. Iron is able to undergo reduction and oxidation, making it important in many physiological processes. This inherent redox property of iron, however, also renders it toxic when it is present in excess. Iron-mediated generation of reactive oxygen species via the Fenton reaction, if uncontrolled, may lead to cell damage as a result of lipid peroxidation and oxidative DNA and protein damage. This may promote carcinogenesis through increased genomic instability, chromosomal rearrangements as well as mutations of proto-oncogenes and tumour suppressor genes. Carcinogenesis is also affected by inflammation which is exacerbated by iron. Population studies indicate an association between high dietary iron intake and CRC risk. In this editorial, we examine the link between iron-induced oxidative stress and inflammation on the pathogenesis of CRC.
Collapse
|
49
|
Epimorphic regeneration approach to tissue replacement in adult mammals. Proc Natl Acad Sci U S A 2009; 107:3351-5. [PMID: 19966310 DOI: 10.1073/pnas.0905851106] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor and stem cells to a site of injury. Bioactive molecules resulting from degradation of extracellular matrix (ECM) have been shown to recruit a variety of progenitor and stem cells in vitro in adult mammals. The ability to recruit multipotential cells to the site of injury by in vivo administration of chemotactic ECM degradation products in a mammalian model of digit amputation was investigated in the present study. Adult, 6- to 8-week-old C57/BL6 mice were subjected to midsecond phalanx amputation of the third digit of the right hind foot and either treated with chemotactic ECM degradation products or left untreated. At 14 days after amputation, mice treated with ECM degradation products showed an accumulation of heterogeneous cells that expressed markers of multipotency, including Sox2, Sca1, and Rex1 (Zfp42). Cells isolated from the site of amputation were capable of differentiation along neuroectodermal and mesodermal lineages, whereas cells isolated from control mice were capable of differentiation along only mesodermal lineages. The present findings demonstrate the recruitment of endogenous stem cells to a site of injury, and/or their generation/proliferation therein, in response to ECM degradation products.
Collapse
|
50
|
Klenow S, Glei M. New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 2009; 23:1055-61. [DOI: 10.1016/j.tiv.2009.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 06/01/2009] [Accepted: 06/09/2009] [Indexed: 11/27/2022]
|