1
|
Effects of Lipoic Acid on Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5093216. [PMID: 34650663 PMCID: PMC8510805 DOI: 10.1155/2021/5093216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (I/R) injury often occurred in some pathologies and surgeries. I/R injury not only harmed to physiological functions of corresponding organ and tissue but also induced multiple tissue or organ dysfunctions (even these in distant locations). Although the reperfusion of blood attenuated I/R injury to a certain degree, the risk of secondary damages was difficult to be controlled and it even caused failures of these tissues and organs. Lipoic acid (LA), as an endogenous active substance and a functional agent in food, owns better safety and effects in our body (e.g., enhancing antioxidant activity, improving cognition and dementia, controlling weight, and preventing multiple sclerosis, diabetes complication, and cancer). The literature searching was conducted in PubMed, Embase, Cochrane Library, Web of Science, and SCOPUS from inception to 20 May 2021. It had showed that endogenous LA was exhausted in the process of I/R, which further aggravated I/R injury. Thus, supplements with LA timely (especially pretreatments) may be the prospective way to prevent I/R injury. Recently, studies had demonstrated that LA supplements significantly attenuated I/R injuries of many organs, though clinic investigations were short at present. Hence, it was urgent to summarize these progresses about the effects of LA on different I/R organs as well as the potential mechanisms, which would enlighten further investigations and prepare for clinic applications in the future.
Collapse
|
2
|
Mauerhofer C, Grumet L, Schemmer P, Leber B, Stiegler P. Combating Ischemia-Reperfusion Injury with Micronutrients and Natural Compounds during Solid Organ Transplantation: Data of Clinical Trials and Lessons of Preclinical Findings. Int J Mol Sci 2021; 22:10675. [PMID: 34639016 PMCID: PMC8508760 DOI: 10.3390/ijms221910675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although extended donor criteria grafts bear a higher risk of complications such as graft dysfunction, the exceeding demand requires to extent the pool of potential donors. The risk of complications is highly associated with ischemia-reperfusion injury, a condition characterized by high loads of oxidative stress exceeding antioxidative defense mechanisms. The antioxidative properties, along with other beneficial effects like anti-inflammatory, antiapoptotic or antiarrhythmic effects of several micronutrients and natural compounds, have recently emerged increasing research interest resulting in various preclinical and clinical studies. Preclinical studies reported about ameliorated oxidative stress and inflammatory status, resulting in improved graft survival. Although the majority of clinical studies confirmed these results, reporting about improved recovery and superior organ function, others failed to do so. Yet, only a limited number of micronutrients and natural compounds have been investigated in a (large) clinical trial. Despite some ambiguous clinical results and modest clinical data availability, the vast majority of convincing animal and in vitro data, along with low cost and easy availability, encourage the conductance of future clinical trials. These should implement insights gained from animal data.
Collapse
Affiliation(s)
- Christina Mauerhofer
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Lukas Grumet
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Peter Schemmer
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Bettina Leber
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Philipp Stiegler
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| |
Collapse
|
3
|
Abstract
α-Lipoic acid has been shown to provide cytoprotection in some tissues through antioxidant and antiapoptotic mechanisms. We have enhanced these properties by synthetic modification, resulting in a new chemical entity, CMX-2043, with proven efficacy in an animal model of cardiac ischemia-reperfusion injury. The present studies compare cytoprotective cellular pathways of R-α-lipoic acid and CMX-2043. Biochemical and cellular assays were used to compare antioxidant potency, tyrosine kinase activation, and protein kinase B (Akt) phosphorylation. CMX-2043 was more effective than lipoic acid in antioxidant effect, activation of insulin receptor kinase, soluble tyrosine kinase, and Akt phosphorylation. Activation of insulin-like growth factor 1 receptor was similar for both. CMX-2043 stimulation of Akt phosphorylation was abolished by the phosphatidylinositide 3-kinase inhibitor LY294002. Consistent with Akt activation, CMX-2043 reduced carbachol-induced calcium overload. The S-stereoisomer of CMX-2043 was less active in the biochemical assays than the R-isomer. These results are consistent with cytoprotection through activation of Akt and antioxidant action. CMX-2043 may thus provide a pharmacological approach to cytoprotection consistent with established anti-apoptotic mechanisms.
Collapse
|
4
|
Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, Naso A, Grande R, Serra R, Nardo B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33 Suppl 1:S57-70. [PMID: 27255130 DOI: 10.1016/j.ijsu.2016.05.050] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is not only a pathophysiological process involving the liver, but also a complex systemic process affecting multiple tissues and organs. Hepatic IRI can seriously impair liver function, even producing irreversible damage, which causes a cascade of multiple organ dysfunction. Many factors, including anaerobic metabolism, mitochondrial damage, oxidative stress and secretion of ROS, intracellular Ca(2+) overload, cytokines and chemokines produced by KCs and neutrophils, and NO, are involved in the regulation of hepatic IRI processes. Matrix Metalloproteinases (MMPs) can be an important mediator of early leukocyte recruitment and target in acute and chronic liver injury associated to ischemia. MMPs and neutrophil gelatinase-associated lipocalin (NGAL) could be used as markers of I-R injury severity stages. This review explores the relationship between factors and inflammatory pathways that characterize hepatic IRI, MMPs and current pharmacological approaches to this disease.
Collapse
Affiliation(s)
- Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Michele Ruggiero
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Giuseppe Gallelli
- Department of Emergency, Pugliese-Ciaccio Hospital, Catanzaro, Italy.
| | - Simone Serafini
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Mazzitelli Maria
- Department of Primary Care, Provincial Health Authority of Vibo Valentia, 89900 Vibo Valentia, Italy.
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Bruno Nardo
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy; Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| |
Collapse
|
5
|
GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids. J Hepatol 2014; 60:625-32. [PMID: 24262133 DOI: 10.1016/j.jhep.2013.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Many of the beneficial effects of ω3-fatty acids (ω3FAs) are being attributed to their anti-inflammatory properties. In animal models, ω3FAs also protect from hepatic ischemia reperfusion injury (IRI), a significant cause of complications following liver surgery. Omegaven®, a clinical ω3FA-formulation, might counteract the exaggerated inflammatory response underlying IRI, but the according mechanisms are unresearched. Recently, GPR120 has been identified as a first receptor for ω3FAs, mediating their anti-inflammatory effects. Here, we sought to investigate whether Omegaven® protects from hepatic IRI through GPR120. METHODS Using a mouse model of liver IRI, we compared the effects of a GPR120 agonist with those of Omegaven®. RESULTS GPR120 in liver was located to Kupffer cells (KCs). Agonist and Omegaven® provided similar protection from IRI, which was abolished by clodronate-depletion of KCs or by pretreatment with an αGpr120-siRNA. In vitro and in vivo, both agents dampened the NFκB/JNK-mediated inflammatory response. Dampening was associated with an M1>M2 macrophage polarization shift as assessed by marker expression. In αGpr120-siRNA-pretreated mice with or without ischemia, Omegaven® was no more able to promote M2 marker expression, indicating its anti-inflammatory properties are dependent on GPR120 in liver. CONCLUSIONS These findings establish KC-GPR120 as a key mediator of Omegaven® effects and suggest GPR120 as a therapeutic target to mitigate inflammatory stress in liver.
Collapse
|
6
|
Grossini E, Pollesello P, Bellofatto K, Sigaudo L, Farruggio S, Origlia V, Mombello C, Mary DASG, Valente G, Vacca G. Protective effects elicited by levosimendan against liver ischemia/reperfusion injury in anesthetized rats. Liver Transpl 2014; 20:361-75. [PMID: 24273004 DOI: 10.1002/lt.23799] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
As in other organs, oxidative stress-induced injury and cell death may result from free oxygen radical-dependent mechanisms and alterations in signal transduction pathways leading to apoptosis. Among the new suggested therapies for injuries caused by oxidative stress, the use of levosimendan has been reported to be quite promising. In the present study, we aimed to examine the protective effects of levosimendan against liver oxidative stress in anesthetized rats and to analyze the involvement of mitochondrial adenosine triphosphate-dependent potassium (mitoK(ATP)) channels and nitric oxide (NO). In 50 anesthetized rats, liver ischemia/reperfusion (I/R) was performed via nontraumatic portal occlusion. In some animals, levosimendan was infused into the portal vein at the onset of reperfusion, whereas other rats received the vehicle only. Moreover, in some rats, levosimendan was given after the intraportal administration of L-Nω-nitro-arginine methyl ester (L-NAME) or 5-hydroxydecanoate (5HD). The portal vein blood flow was measured, and blood samples were taken for the determination of transaminases, thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH); liver biopsy samples were used for B cell lymphoma 2-associated X protein, caspase-9, Akt, and endothelial nitric oxide synthase (eNOS) activation through western blotting. Also, caspase-3 activity was measured. In rats, I/R caused an increase in apoptotic markers, transaminases, and TBARS and a decrease in GSH and Akt activation. Levosimendan administration was able to counteract oxidative damage and apoptosis in a dose-dependent way and to increase GSH, Akt, and eNOS activation. All effects of levosimendan were abolished by pretreatment with L-NAME and 5HD. In conclusion, the results of the present study show that levosimendan can exert protection against ischemic liver damage through mechanisms related to NO production and mitoKATP channel function. These data provide interesting perspectives into the use of levosimendan in hepatic surgery and transplantation.
Collapse
Affiliation(s)
- Elena Grossini
- Physiology Laboratory, Department of Translational Medicine, A. Avogadro University of East Piedmont, Novara, Italy; Experimental Surgery, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kates SA, Casale RA, Baguisi A, Beeuwkes R. Lipoic acid analogs with enhanced pharmacological activity. Bioorg Med Chem 2013; 22:505-12. [PMID: 24316353 DOI: 10.1016/j.bmc.2013.10.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Lipoic acid (1,2-dithiolane-3-pentanoic acid) is a pharmacophore with unique antioxidant and cytoprotective properties. We synthesized a library based upon the condensation of natural and unnatural amino acids with the carboxylic acid moiety of lipoic acid. SAR studies were conducted using a cardiac ischemia-reperfusion animal model. Cytoprotective efficacy was associated with the R-enantiomer of the dithiolane. Potency of library compounds was dictated by the acidic strength of the adduct. α-N-[(R)-1,2-dithiolane-3-pentanoyl]-L-glutamyl-L-alanine, designated CMX-2043, was chosen for further pharmacologic evaluation.
Collapse
Affiliation(s)
- Steven A Kates
- Ischemix, LLC, 63 Great Road, Maynard, MA 01759, United States.
| | - Ralph A Casale
- Ischemix, LLC, 63 Great Road, Maynard, MA 01759, United States
| | | | | |
Collapse
|
8
|
Kireev R, Bitoun S, Cuesta S, Tejerina A, Ibarrola C, Moreno E, Vara E, Tresguerres JAF. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis. Eur J Pharmacol 2012; 701:185-93. [PMID: 23220161 DOI: 10.1016/j.ejphar.2012.11.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
Fatty livers occur in up to 20% of potential liver donors and increase cellular injury during the ischemia/reperfusion phase, so any intervention that could enable a better outcome of grafts for liver transplantation would be very useful. The effect of melatonin on liver ischemia/reperfusion injury in a rat model of obesity and hepatic steatosis has been investigated. Forty fa/fa Zucker rats were divided in 4 groups. 3 groups were subjected to 35 min of warm hepatic ischemia and 36 h of reperfusion. One experimental group remained untreated and 2 were given 10mg/kg melatonin intraperitoneally or orally. Another group was sham-operated. Plasma ALT, AST and hepatic content of ATP, MDA, hydroxyalkenals, NOx metabolites, antioxidant enzyme activity, caspase-9 and DNA fragmentation were determined in the liver. The expression of iNOS, eNOS, Bcl2, Bax, Bad and AIF were determined by RT-PCR Melatonin was effective at decreasing liver injury by both ways as assessed by liver transaminases, markers of apoptosis, of oxidative stress and improved liver ATP content. Melatonin administration decreased the activities or levels of most of the parameters measured in a beneficial way, and our study identified also some of the mechanisms of protection. We conclude that administration of melatonin improved liver function, as well as markers of pro/antioxidant status and apoptosis following ischemia/reperfusion in obese rats with fatty liver. These data suggest that this substance could improve outcome in patients undergoing liver transplantation who receive a fatty liver implant and suggest the need of clinical trials with it in liver transplantation.
Collapse
Affiliation(s)
- Roman Kireev
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jin S, Dai CL. Attenuation of reperfusion-induced hepatocyte apoptosis is associated with reversed bcl-2/bax ratio in hemi-hepatic artery-preserved portal occlusion. J Surg Res 2012; 174:298-304. [PMID: 21324399 DOI: 10.1016/j.jss.2010.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/17/2010] [Accepted: 12/20/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study aimed to examine the hepatocyte apoptosis in a hepatic blood inflow occlusion rat model without hemi-hepatic arterial control and its association with the expressions of the apoptosis-regulating genes bcl-2 and bax. MATERIALS AND METHODS Wistar rats were equally and randomly assigned to undergo sham operation (control group, n = 8), Pringle's maneuver (group PR, n = 32), hemi-hepatic occlusion (group HH, n = 32), or hemi-hepatic artery-preserved portal occlusion (group HP, n = 32). The hepatic blood inflow was interrupted for 30 min using a microvascular clip in the three experimental groups. The clips were removed to achieve hepatic reperfusion for up to 24 h. Blood samples and liver specimens were collected following reperfusion to perform pathologic examination, serum transferase assay, apoptosis analysis, and determination of bcl-2 and bax mRNA and protein expressions. RESULTS The reperfusion-related hepatocytic injuries were more severe in the PR group than in the HH and HP groups, both pathologically and biochemically. More reperfused hepatocytes became apoptotic in the PR group than in the HH and HP groups. However, the values of the HH and HP groups were comparable in cellularity, levels of serum transferases, and apoptosis rate following reperfusion. The ratios of bcl-2/bax were reversed, which was more evident in the HH and HP groups than in the PR group. CONCLUSION Hemi-hepatic artery-preserved portal occlusion had little effect on hepatocyte apoptosis compared with Pringle's maneuver and caused minor ischemia-reperfusion injury as shown by the reversed bcl-2/bax ratio.
Collapse
Affiliation(s)
- Shan Jin
- Department of Hepatobiliary Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | | |
Collapse
|
10
|
Koga H, Hagiwara S, Kusaka J, Goto K, Uchino T, Shingu C, Kai S, Noguchi T. New α-Lipoic Acid Derivative, DHL-HisZn, Ameliorates Renal Ischemia-Reperfusion Injury in Rats. J Surg Res 2012; 174:352-8. [DOI: 10.1016/j.jss.2011.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/05/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
|
11
|
Ischemia/reperfusion injury in liver resection: a review of preconditioning methods. Surg Today 2011; 41:620-9. [PMID: 21533932 DOI: 10.1007/s00595-010-4444-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023]
Abstract
Ischemic preconditioning is one of the therapeutic interventions aiming at preventing ischemia/reperfusion-related injury. Numerous experimental studies and a few clinical series have shown that during liver resections, ischemic preconditioning is a promising strategy for optimizing the postoperative outcome. Moreover, various types of pharmacological intervention as well as different types of preconditioning, such as remote preconditioning, the use of heat shock, and hyperbaric oxygen, have been developed to attenuate the functional impairment accompanying ischemia/reperfusion injury. This review summarizes the various forms of preconditioning, thus suggesting that close cooperation between surgeons and anesthesiologists paves the way to apply novel strategies to improve the outcome of liver resection.
Collapse
|
12
|
Junnarkar SP, Tapuria N, Mani A, Dijk S, Fuller B, Seifalian AM, Davidson BR. Attenuation of warm ischemia-reperfusion injury in the liver by bucillamine through decreased neutrophil activation and Bax/Bcl-2 modulation. J Gastroenterol Hepatol 2010; 25:1891-9. [PMID: 21092002 DOI: 10.1111/j.1440-1746.2010.06312.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. METHODS The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. RESULTS The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. CONCLUSIONS Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression.
Collapse
Affiliation(s)
- Sameer P Junnarkar
- Department of Surgery, Royal Free Hospital and University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
The strategy of combined ischemia preconditioning and salvianolic acid-B pretreatment to prevent hepatic ischemia-reperfusion injury in rats. Dig Dis Sci 2009; 54:2568-76. [PMID: 19156521 DOI: 10.1007/s10620-008-0681-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/23/2008] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a serious complication of liver surgery, especially for extended hepatectomy and liver transplantation. The aim of this study was to evaluate the protective effect of combined ischemic preconditioning (IPC) and salvianolic acid-B (Sal-B) pretreatment against IRI-induced hepatocellular injury. METHODS Sixty male Wistar rats weighing around 200 g were randomized into five groups (n=12): sham group: only anesthesia and laparotomy; IR group: 90 min sustained ischemia by blocking the left ortal vessels; IPC group: 10 min ischemia and 10 min reperfusion prior to the sustained ischemia; Sal-B group: 10 mg/kg injection of Sal-B intravenously 10 min prior to the sustained ischemia; IPC+Sal-B group: same IPC procedure as in IPC group, but proceeded by intravenous administration of Sal-B 10 min prior to sustained ischemia. After 5 h of reperfusion, serum levels of ALT and AST were measured; the amount of malondialdehyde (MDA) and adenine nucleotides in liver tissue was determined; the expression of Bcl-2 and caspase-3 was detected by immunofluorescent and western blotting techniques; the severity of apoptosis and pathological alterations was evaluated by TUNEL and H&E staining, respectively. RESULTS The serum aminotransferases, hepatic MDA concentration, and apoptotic index in groups IPC, Sal-B, and IPC+Sal-B were significantly lower than those in the IR group (P<0.001), while the IPC+Sal-B group had the lowest values among these groups (P<0.05). Compared with the IR group, groups IPC and Sal-B not only had statistically higher ATP levels and energy charge (EC) values (P<0.01), but also had upregulated Bcl-2 expression and downregulated cleaved caspase-3 expression in liver tissue. All these effects were further augmented in the IPC+Sal-B group. Liver histopathological findings were consistent with these results. CONCLUSIONS Based on these results, the combined IPC and Sal-B pretreatment had a synergistically protective effect on liver tissue against IRI, which might be due to decreased post-ischemic oxidative stress, improved energy metabolism, and reduced hepatocellular apoptosis.
Collapse
|
14
|
Hartkorn A, Hoffmann F, Ajamieh H, Vogel S, Heilmann J, Gerbes AL, Vollmar AM, Zahler S. Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury. JOURNAL OF NATURAL PRODUCTS 2009; 72:1741-1747. [PMID: 19757857 DOI: 10.1021/np900230p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Therapeutic effects of dietary flavonoids have been attributed mainly to their antioxidant capacity. Xanthohumol (1), a prominent flavonoid of the hop plant, Humulus lupulus, was investigated for its antioxidant potential and for its effect on NF-kappaB activation. To examine the biological relevance of 1, a hepatic ischemia/reperfusion model was chosen as a widely accepted model of oxidative stress generation. The impact of 1 on endogenous antioxidant systems, on the NF-kappaB signal transduction pathway as well as on apoptotic parameters, and on hepatic tissue damage was evaluated. Compound 1 markedly decreased the level of reactive oxygen species in vitro. Furthermore, levels of enzymatic and nonenzymatic antioxidants were restored after pretreatment in postischemic hepatic tissue, and lipid peroxidation was attenuated. NF-kappaB activity was reduced in vitro as well as in hepatic tissue after ischemia/reperfusion upon pretreatment with 1. In addition, the phosphorylation of Akt was markedly inhibited. Surprisingly, 1 decreased the expression of the antiapoptotic protein Bcl-X and increased caspase-3 like-activity, a proapoptotic parameter. Moreover, hepatic tissue damage as well as TNF-alpha levels increased in xanthohumol-pretreated liver tissue after ischemia/reperfusion. In summary, xanthohumol did not protect against ischemia/reperfusion injury in rat liver, despite its antioxidant and NF-kappaB inhibitory properties.
Collapse
Affiliation(s)
- Andreas Hartkorn
- Center of Drug Research, Department of Pharmacy, University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
We aimed to determine whether 3-nitropropionic acid (3-NPA) preconditioning protects rat livers against warm ischemia/reperfusion injury. We hypothesized that 3-NPA mediates its protective effects by Bcl-2 upregulation. Brown-Norway rats (200 g) were injected with 3-NPA (10 mg/kg intraperitoneally) 24 h before 90 min of selective warm in situ ischemia. In additional experiments, 30-day survival was studied after 90 min of warm liver ischemia and resection of nonischemic liver tissue. We demonstrate increased mRNA and protein levels of Bcl-2 by real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis in 3-NPA-pretreated rats. All treated animals survived, whereas all untreated rats died within 3 days after selective ischemia and resection of the nonischemic tissue. This corresponded well with a significant decrease of caspases 3 and 9 activity at 1 h of reperfusion after preconditioning with 3-NPA as compared with untreated rats. The histological sections showed protection of liver tissue after 3-NPA by reduction of apoptotic and oncotic tissue damage. Lipid peroxidation in liver tissue was reduced after 3-NPA preconditioning. We show that subtoxic doses of the mitochondrial toxin 3-NPA induces tolerance to warm liver ischemia in rats associated by synthesis of Bcl-2. Bcl-2 upregulation might protect against the postischemic burst of reactive oxygen species and therefore reduces apoptotic- and oncotic-related cell death.
Collapse
|