1
|
Plat VD, van Rossen TM, Daams F, de Boer NK, de Meij TGJ, Budding AE, Vandenbroucke-Grauls CMJE, van der Peet DL. Esophageal microbiota composition and outcome of esophageal cancer treatment: a systematic review. Dis Esophagus 2021; 35:6425236. [PMID: 34761269 PMCID: PMC9376764 DOI: 10.1093/dote/doab076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The role of esophageal microbiota in esophageal cancer treatment is gaining renewed interest, largely driven by novel DNA-based microbiota analysis techniques. The aim of this systematic review is to provide an overview of current literature on the possible association between esophageal microbiota and outcome of esophageal cancer treatment, including tumor response to (neo)adjuvant chemo(radio)therapy, short-term surgery-related complications, and long-term oncological outcome. METHODS A systematic review of literature was performed, bibliographic databases were searched and relevant articles were selected by two independent researchers. The Newcastle-Ottawa scale was used to estimate the quality of included studies. RESULTS The search yielded 1303 articles, after selection and cross-referencing, five articles were included for qualitative synthesis and four studies were considered of good quality. Two articles addressed tumor response to neoadjuvant chemotherapy and described a correlation between high intratumoral Fusobacterium nucleatum levels and a poor response. One study assessed surgery-related complications, in which no direct association between esophageal microbiota and occurrence of complications was observed. Three studies described a correlation between shortened survival and high levels of intratumoral F. nucleatum, a low abundance of Proteobacteria and high abundances of Prevotella and Streptococcus species. CONCLUSIONS Current evidence points towards an association between esophageal microbiota and outcome of esophageal cancer treatment and justifies further research. Whether screening of the individual esophageal microbiota can be used to identify and select patients with a predisposition for adverse outcome needs to be further investigated. This could lead to the development of microbiota-based interventions to optimize esophageal microbiota composition, thereby improving outcome of patients with esophageal cancer.
Collapse
Affiliation(s)
- Victor D Plat
- Address correspondence to: Mr Victor Dirk Plat, MD, Department of Gastrointestinal Surgery, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, ZH 7F020, 1081 HV Amsterdam, The Netherlands.
| | - Tessel M van Rossen
- Department of Medical Microbiology and Infection Control, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Freek Daams
- Department of Gastrointestinal Surgery, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, VU University Medical Center Amsterdam, The Netherlands
| | - Tim G J de Meij
- Department of Pediatric Gastroenterology and Hepatology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Christina M J E Vandenbroucke-Grauls
- Department of Medical Microbiology and Infection Control, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Donald L van der Peet
- Department of Gastrointestinal Surgery, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zhou J, Shrestha P, Qiu Z, Harman DG, Teoh WC, Al-Sohaily S, Liem H, Turner I, Ho V. Distinct Microbiota Dysbiosis in Patients with Non-Erosive Reflux Disease and Esophageal Adenocarcinoma. J Clin Med 2020; 9:jcm9072162. [PMID: 32650561 PMCID: PMC7408827 DOI: 10.3390/jcm9072162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Non-erosive reflux disease (NERD) and esophageal adenocarcinoma (EAC) are often regarded as bookends in the gastroesophageal reflux disease spectrum. However, there is limited clinical evidence to support this disease paradigm while the underlying mechanisms of disease progression remain unclear. In this study, we used 16S rRNA sequencing and mass-spectrometer-based proteomics to characterize the esophageal microbiota and host mucosa proteome, respectively. A total of 70 participants from four patient groups (NERD, reflux esophagitis, Barrett’s esophagus, and EAC) and a control group were analyzed. Our results showed a unique NERD microbiota composition, distinct to control and other groups. We speculate that an increase in sulfate-reducing Proteobacteria and Bacteroidetes along with hydrogen producer Dorea are associated with a mechanistic role in visceral hypersensitivity. We also observed a distinct EAC microbiota consisting of a high abundance of lactic acid-producing bacteria (Staphylococcus, Lactobacillus, Bifidobacterium, and Streptococcus), which may contribute towards carcinogenesis through dysregulated lactate metabolism. This study suggests the close relationship between esophageal mucosal microbiota and the appearance of pathologies of this organ.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Correspondence: ; Tel.: +61-2-4620-3865
| | - Prapti Shrestha
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
| | - Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2750, Australia;
| | - David G. Harman
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
| | - Wun-Chung Teoh
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Sam Al-Sohaily
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Han Liem
- Nepean Hospital, Kingswood, NSW 2747, Australia;
| | - Ian Turner
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
3
|
Kaakoush NO, Lecomte V, Maloney CA, Morris MJ. Cross-talk among metabolic parameters, esophageal microbiota, and host gene expression following chronic exposure to an obesogenic diet. Sci Rep 2017; 7:45753. [PMID: 28362001 PMCID: PMC5374643 DOI: 10.1038/srep45753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022] Open
Abstract
Unhealthy diets, and ensuing weight gain, predispose individuals to the development of esophageal adenocarcinoma. We examined the effect of chronic high fat diet (HFD) on the esophageal microbiota of Sprague Dawley rats using Illumina MiSeq amplicon sequencing (V4, 515 F/806 R) and on esophageal expression of IL18, PTGS2, PPARA, FFAR3, and CRAT. The relationships among metabolic parameters, esophageal microbiota, and host gene expression were determined. We observed a significant difference between the upper and lower esophageal microbiota in control fed rats, emphasized by enrichment of Lactobacillus species in the lower esophagus. Rats on HFD gained significantly more fat and had reduced insulin sensitivity. Diet type significantly affected the esophageal microbiota, with Clostridium sensu stricto being enriched in both upper and lower segments of HFD fed rats. Of interest, bacterial pathways related to carotenoid biosynthesis were significantly decreased in the lower esophagus of HFD fed rats. We observed strong correlations between metabolic parameters, the esophageal microbial profiles, and host esophageal gene expression. In particular, Fusobacterium, Rothia, and Granulicatella showed consistent correlations across a range of metabolic and gene markers. Our data indicates that unhealthy diets can significantly alter the esophageal microbiota, and enrich for bacterial species previously associated with chronic gastrointestinal diseases.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Medical Sciences, UNSW Australia, Sydney 2052, NSW, Australia
| | - Virginie Lecomte
- School of Medical Sciences, UNSW Australia, Sydney 2052, NSW, Australia
| | | | - Margaret J Morris
- School of Medical Sciences, UNSW Australia, Sydney 2052, NSW, Australia
| |
Collapse
|
4
|
Huang H, Krishnan HB, Pham Q, Yu LL, Wang TTY. Soy and Gut Microbiota: Interaction and Implication for Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8695-8709. [PMID: 27798832 DOI: 10.1021/acs.jafc.6b03725] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, University of Missouri , Columbia, Missouri 65211, United States
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| |
Collapse
|
5
|
Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, Morris MJ. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One 2015; 10:e0126931. [PMID: 25992554 PMCID: PMC4436290 DOI: 10.1371/journal.pone.0126931] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/09/2015] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.
Collapse
Affiliation(s)
- Virginie Lecomte
- School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | | | - Mukesh Raipuria
- School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Karina D. Huinao
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Hazel M. Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Margaret J. Morris
- School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Metabolic diseases and pro- and prebiotics: Mechanistic insights. Nutr Metab (Lond) 2012; 9:60. [PMID: 22713169 PMCID: PMC3464869 DOI: 10.1186/1743-7075-9-60] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 02/08/2023] Open
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual’s behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases.
Collapse
|