1
|
Bhatt M, Lazzarin E, Alberto-Silva AS, Domingo G, Zerlotti R, Gradisch R, Bazzone A, Sitte HH, Stockner T, Bossi E. Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1). Cell Mol Life Sci 2024; 81:269. [PMID: 38884791 PMCID: PMC11335192 DOI: 10.1007/s00018-024-05309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K0.5. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Erika Lazzarin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Guido Domingo
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Rocco Zerlotti
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339, Munich, Germany
| | - Ralph Gradisch
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339, Munich, Germany
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elena Bossi
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
- Centre for Neuroscience, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
2
|
Bhatt M, Di Iacovo A, Romanazzi T, Roseti C, Bossi E. Betaine-The dark knight of the brain. Basic Clin Pharmacol Toxicol 2023; 133:485-495. [PMID: 36735640 DOI: 10.1111/bcpt.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The role of betaine in the liver and kidney has been well documented, even from the cellular and molecular point of view. Despite literature reporting positive effects of betaine supplementation in Alzheimer's, Parkinson's and schizophrenia, the role and function of betaine in the brain are little studied and reviewed. Beneficial effects of betaine in neurodegeneration, excitatory and inhibitory imbalance and against oxidative stress in the central nervous system (CNS) have been collected and analysed to understand the main role of betaine in the brain. There are many 'dark' aspects needed to complete the picture. The understanding of how this osmolyte is transported across neuron and glial cells is also controversial, as the expression levels and functioning of the known protein capable to transport betaine expressed in the brain, betaine-GABA transporter 1 (BGT-1), is itself not well clarified. The reported actions of betaine beyond BGT-1 related to neuronal degeneration and memory impairment are the focus of this work. With this review, we underline the scarcity of detailed molecular and cellular information about betaine action. Consequently, the requirement of detailed focus on and study of the interaction of this molecule with CNS components to sustain the therapeutic use of betaine.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Angela Di Iacovo
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Cristina Roseti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- Centre for Neuroscience, University of Insubria, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- Centre for Neuroscience, University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Parameswaran M, Hasan HA, Sadeque J, Jhaveri S, Avanthika C, Arisoyin AE, Dhanani MB, Rath SM. Factors That Predict the Progression of Non-alcoholic Fatty Liver Disease (NAFLD). Cureus 2021; 13:e20776. [PMID: 35111461 PMCID: PMC8794413 DOI: 10.7759/cureus.20776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a spectrum of diseases involving the deposition of fat in the hepatocytes of people with little to no alcohol consumption. NAFLD is associated with hypertension, diabetes, obesity, etc. As their prevalence increases, the propensity and severity of NAFLD might increase. As per the recently developed multi-hit hypothesis, factors like oxidative stress, genetic predisposition, lipotoxicity, and insulin resistance have been found to play a key role in the development of NAFLD and its associated complications. This article focuses on NAFLD, its pathophysiology, risk factors, and the various genetic and epigenetic factors involved in its development along with possible treatment modalities. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until October 2021. The following search strings and Medical Subject Heading (MeSH) terms were used: “NAFLD,” “NASH,” “Fibrosis,” and “Insulin Resistance.” We explored the literature on NAFLD for its epidemiology, pathophysiology, the role of various genes, and how they influence the disease and associated complications about the disease and its hepatic and extrahepatic complications. With its rapidly increasing prevalence rates across the world and serious complications like NASH and hepatocellular carcinoma, NAFLD is becoming a major public health issue and more research is needed to formulate better screening tools and treatment protocols.
Collapse
Affiliation(s)
| | | | - Jafor Sadeque
- Internal Medicine, Al Mostaqbal Hospital, Jeddah, SAU
| | - Sharan Jhaveri
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | | | | | - Maulik B Dhanani
- Internal Medicine, Southwestern University School of Medicine, Cebu City, PHL
| | - Swaroopa M Rath
- Medicine, Srirama Chandra Bhanja Medical College and Hospital, Cuttack, IND
| |
Collapse
|
4
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
5
|
Ommati MM, Farshad O, Mousavi K, Jamshidzadeh A, Azmoon M, Heidari S, Azarpira N, Niknahad H, Heidari R. Betaine supplementation mitigates intestinal damage and decreases serum bacterial endotoxin in cirrhotic rats. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Schofield Z, Reed MAC, Newsome PN, Adams DH, Günther UL, Lalor PF. Changes in human hepatic metabolism in steatosis and cirrhosis. World J Gastroenterol 2017; 23:2685-2695. [PMID: 28487605 PMCID: PMC5403747 DOI: 10.3748/wjg.v23.i15.2685] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To understand the underlying metabolic changes in human liver disease we have applied nuclear magnetic resonance (NMR) metabolomics analysis to human liver tissue.
METHODS We have carried out pilot study using 1H-NMR to derive metabolomic signatures from human liver from patients with steatosis, nonalcoholic steatohepatitis (NASH) or alcohol-related liver damage (ARLD) to identify species that can predict outcome and discriminate between alcohol and metabolic-induced liver injuries.
RESULTS Changes in branched chain amino acid homeostasis, tricarboxylic acid cycle and purine biosynthesis intermediates along with betaine were associated with the development of cirrhosis in both ARLD and nonalcoholic fatty liver disease. Species such as propylene glycol and as yet unidentified moieties that allowed discrimination between NASH and ARLD samples were also detected using our approach.
CONCLUSION Our high throughput, non-destructive technique for multiple analyte quantification in human liver specimens has potential for identification of biomarkers with prognostic and diagnostic significance.
Collapse
|
7
|
Svingen GFT, Schartum-Hansen H, Pedersen ER, Ueland PM, Tell GS, Mellgren G, Njølstad PR, Seifert R, Strand E, Karlsson T, Nygård O. Prospective Associations of Systemic and Urinary Choline Metabolites with Incident Type 2 Diabetes. Clin Chem 2016; 62:755-65. [DOI: 10.1373/clinchem.2015.250761] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/12/2016] [Indexed: 12/13/2022]
Abstract
Abstract
BACKGROUND
Several compounds in the choline oxidation pathway are associated with insulin resistance and prevalent diabetes; however, prospective data are scarce.
We explored the relationships between systemic and urinary choline-related metabolites and incident type 2 diabetes in an observational prospective study among Norwegian patients.
METHODS
We explored risk associations by logistic regression among 3621 nondiabetic individuals with suspected stable angina pectoris, of whom 3242 provided urine samples. Reclassification of patients was investigated according to continuous net reclassification improvement (NRI >0).
RESULTS
After median (25th to 75th percentile) follow-up of 7.5 (6.4–8.7) years, 233 patients (6.4%) were registered with incident type 2 diabetes. In models adjusted for age, sex, and fasting status, plasma betaine was inversely related to new-onset disease [odds ratio (OR) per 1 SD, 0.72; 95% CI, 0.62–0.83; P < 0.00001], whereas positive associations were observed for urine betaine (1.25; 1.09–1.43; P = 0.001), dimethylglycine (1.22; 1.06–1.40; P = 0.007), and sarcosine (1.30; 1.13–1.49; P < 0.001). The associations were maintained in a multivariable model adjusting for body mass index, hemoglobin A1c, urine albumin-to-creatinine ratio, estimated glomerular filtration rate, C-reactive protein, HDL cholesterol, and medications. Plasma betaine and urine sarcosine, the indices most strongly related to incident type 2 diabetes, improved reclassification [NRI >0 (95% CI) 0.33 (0.19–0.47) and 0.16 (0.01–0.31), respectively] and showed good within-person reproducibility.
CONCLUSIONS
Systemic and urinary concentrations of several choline metabolites were associated with risk of incident type 2 diabetes, and relevant biomarkers may improve risk prediction.
Collapse
Affiliation(s)
| | | | | | - Per M Ueland
- Department of Clinical Science
- Laboratory for Clinical Biochemistry
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, and
- Department of Health Registries, Norwegian Institute of Public Health, Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science
- Hormone Laboratory, and
- KG Jebsen Center for Diabetes Research, Department of Pediatrics, University of Bergen, Bergen, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Pediatrics, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | | | | | | | - Ottar Nygård
- Department of Clinical Science
- Department of Heart Disease
- KG Jebsen Center for Diabetes Research, Department of Pediatrics, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta Gen Subj 2016; 1860:1098-106. [PMID: 26850693 DOI: 10.1016/j.bbagen.2016.02.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. SCOPE OF REVIEW The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. MAJOR CONCLUSIONS A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. GENERAL SIGNIFICANCE The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease.
Collapse
|
9
|
Federico A, Zulli C, de Sio I, Del Prete A, Dallio M, Masarone M, Loguercio C. Focus on emerging drugs for the treatment of patients with non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20:16841-16857. [PMID: 25492998 PMCID: PMC4258554 DOI: 10.3748/wjg.v20.i45.16841] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/16/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder in Western countries and is increasingly being recognized in developing nations. Fatty liver disease encompasses a spectrum of hepatic pathology, ranging from simple steatosis to non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma and end-stage liver disease. Moreover, NAFLD is often associated with other metabolic conditions, such as diabetes mellitus type 2, dyslipidemia and visceral obesity. The most recent guidelines suggest the management and treatment of patients with NAFLD considering both the liver disease and the associated metabolic co-morbidities. Diet and physical exercise are considered the first line of treatment for patients with NAFLD, but their results on therapeutic efficacy are often contrasting. Behavior therapy is necessary most of the time to achieve a sufficient result. Pharmacological therapy includes a wide variety of classes of molecules with different therapeutic targets and, often, little evidence supporting the real efficacy. Despite the abundance of clinical trials, NAFLD therapy remains a challenge for the scientific community, and there are no licensed therapies for NAFLD. Urgently, new pharmacological approaches are needed. Here, we will focus on the challenges facing actual therapeutic strategies and the most recent investigated molecules.
Collapse
|
10
|
Herbal products: benefits, limits, and applications in chronic liver disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:837939. [PMID: 22991573 PMCID: PMC3443820 DOI: 10.1155/2012/837939] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
Complementary and alternative medicine soughts and encompasses a wide range of approaches; its use begun in ancient China at the time of Xia dynasty and in India during the Vedic period, but thanks to its long-lasting curative effect, easy availability, natural way of healing, and poor side-effects it is gaining importance throughout the world in clinical practice. We conducted a review describing the effects and the limits of using herbal products in chronic liver disease, focusing our attention on those most known, such as quercetin or curcumin. We tried to describe their pharmacokinetics, biological properties, and their beneficial effects (as antioxidant role) in metabolic, alcoholic, and viral hepatitis (considering that oxidative stress is the common pathway of chronic liver diseases of different etiology). The main limit of applicability of CAM comes from the lacking of randomized, placebo-controlled clinical trials giving a real proof of efficacy of those products, so that anecdotal success and personal experience are frequently the driving force for acceptance of CAM in the population.
Collapse
|