1
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Chen X, Zhang Y, Mao N, Zhu S, Ji T, Xu W. Intranasal immunization with coxsackievirus A16 virus-like particles confers protection against lethal infection in neonatal mice. Arch Virol 2019; 164:2975-2984. [PMID: 31570994 DOI: 10.1007/s00705-019-04418-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
Abstract
Coxsackievirus A16 (CV-A16) is one of the main causative agents of hand, foot and mouth disease (HFMD) in young children and has become prevalent in the Asia-Pacific region in recent years. However, no approved vaccines or drugs are available for CV-A16 infection. CV-A16 virus-like particles (VLPs) are a potential vaccine candidate; however, whether the intranasal route of immunization is suitable for inducing immune responses against CV-A16 infection has not been clarified. In this study, the comprehensive immunogenicity and protective efficacy of the CV-A16 VLP vaccine were evaluated by multiple methods in a mouse model. In mice, a high neutralizing antibody (NTAb) titre could be elicited by intranasal immunization with CV-A16 VLPs, which produced NTAb levels similar to those induced by intranasal immunization with inactivated CV-A16. Passive immunity with NTAbs provided very good protection, as the survival rate of the immunized neonatal mice was 100% after challenges with CV-A16 at a dose of 1000 LD50. Passive protective effects were transferred to the neonates via the mother, thus protecting all the pups against challenges with the homologous or heterologous strains of CV-A16 at a dose of 1000 LD50. In addition, intranasal immunization with CV-A16 VLPs also induced the production of mucosal secretory IgA (s-IgA) antibodies, which may inhibit CV-A16 virus invasion. This study provides valuable supplemental information to facilitate our understanding of the specific protective efficacy of CV-A16 VLPs and has significance for development of the candidate vaccine into a safe and effective vaccine.
Collapse
Affiliation(s)
- Xiangpeng Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Chang-bai Road, Beijing, 102206, China
| | - Naiying Mao
- WHO WPRO Regional Reference Measles/Rubella Laboratory and NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Chang-bai Road, Beijing, 102206, China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Chang-bai Road, Beijing, 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Chang-bai Road, Beijing, 102206, China. .,WHO WPRO Regional Reference Measles/Rubella Laboratory and NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
3
|
Zhang X, Zhao T, Zeng T, Wu N, Xiao Y, Liu S, Yu J, Jiang C, Gan L, Deng M, Luo X, Zhao F. Intramuscular primary immunization by nucleic acid vaccine pcDNA/Gpd-IL-2 and enhanced immunization with mucosal adjuvant CpG-ODN and Gpd-IL-2 recombinant protein effectively induced strong mucosal immune responses and immune protective effects against Treponema pallidum skin infection. Exp Ther Med 2018; 15:2533-2540. [PMID: 29456657 DOI: 10.3892/etm.2018.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to evaluate the immune effect of intramuscular primary immunization by the nucleic acid vaccine pcDNA/glycerophosphodiester phosphodiesterase-interleukin-2 (pcDNA/Gpd-IL-2) and enhanced immunization 2 weeks later with the combination of mucosal adjuvant CpG-oligodeoxynucleotides (ODN) and Gpd-IL-2 recombinant protein on skin infection caused by Treponema pallidum (Tp) in New Zealand rabbits. At week 8 following immunization, MTT assay was used to detect spleen cell proliferation, while enzyme-linked immunosorbent assay was performed to detect the cytokine and secretory immunoglobulin A (SIgA) levels. At week 10 after primary immunization, rabbits were inoculated with 105 Tp (Nichols strain). Alterations in the skin redness, swelling and ulceration were recorded for 0-60 days. In addition, positive rate of Tp in skin lesions and ulcer formation rate were examined using dark field and silver staining. The results indicated that intramuscular primary immunization by nucleic acid vaccine pcDNA/Gpd-IL-2 followed by enhanced immunization via nasal feeding with mucosal adjuvant CpG-ODN and Gpd-IL-2 recombinant protein induced the higher levels of Tp Gpd specific antibodies, increased the secretion of IL-2 and interferon-γ, and promoted the proliferation of T cells in the first 8 weeks after immunization. Furthermore, this immunization strategy stimulated the production of mucosa specific SIgA antibody. Thus, this strategy led to the lowest Tp positive and ulcer formation rates at the Tp infection sites, as well as healing of skin lesions on the earliest time point (day 42). In conclusion, immunization by nucleic acid vaccine pcDNA/Gpd-IL-2 followed by enhanced immunization with a combination of mucosal adjuvant CpG-ODN and Gpd-IL-2 recombinant protein is an effective immune strategy to induce strong mucosal immune responses and immune protective effects.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Histology and Embryology, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tie Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China.,Collaborative Innovation Center for New Molecular Drug Research, Hengyang, Hunan 421001, P.R. China
| | - Tiebing Zeng
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China.,Collaborative Innovation Center for New Molecular Drug Research, Hengyang, Hunan 421001, P.R. China
| | - Ning Wu
- Department of Clinical Laboratory, Hengyang No. 1 People's Hospital, Hengyang, Hunan 421001, P.R. China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Hospital Affiliated to University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Hospital Affiliated to University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Yu
- Department of Laboratory Animals, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chuanhao Jiang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lin Gan
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meixia Deng
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Luo
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China.,Collaborative Innovation Center for New Molecular Drug Research, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|