1
|
Li XJ, Zhu F, Li B, Zhang D, Liang CW. Recombinant human regenerating gene 4 attenuates the severity of osteoarthritis by promoting the proliferation of articular chondrocyte in an animal model. Curr Mol Pharmacol 2021; 15:693-699. [PMID: 34488597 DOI: 10.2174/1874467214666210901163144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a dominant cause of morbidity and disability. As a chronic disease, its etiological risk factors and most therapies at present, are empirical and symptomatic. Regenerating gene 4 (Reg4) is involved in cell growth, survival, regeneration, adhesion, and resistance to apoptosis, which are partially thought to be the pathogenic mechanisms of OA. However, the proper role of Reg4 in OA is still unknown. METHODS In this study, a consecutive administration of rhReg4 was applied to normal Sprague-Dawley rats or rats after OA induction. Histological changes and chondrocyte proliferation in the articular cartilage were measured. RESULTS We found that RhReg4 promotes chondrocyte proliferation in normal rats, and RhReg4 attenuated the severity of OA in rats by promoting chondrocytes' proliferation in OA rats. CONCLUSION In conclusion, recombinant human regenerating gene 4 (rhReg4) attenuates the severity of osteoarthritis in OA animal models and may be used as a new method for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xue-Jia Li
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Fei Zhu
- Department of Orthopaedics, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Bo Li
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Dong Zhang
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Cheng-Wei Liang
- Department of Orthopaedics, Huadong Hospital Affiliated to Fudan University, Shanghai. China
| |
Collapse
|
2
|
The Potential Role of REG Family Proteins in Inflammatory and Inflammation-Associated Diseases of the Gastrointestinal Tract. Int J Mol Sci 2021; 22:ijms22137196. [PMID: 34281249 PMCID: PMC8268738 DOI: 10.3390/ijms22137196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerating gene (REG) family proteins serve as multifunctional secretory molecules with trophic, antiapoptotic, anti-inflammatory, antimicrobial and probably immuno-regulatory effects. Since their discovery, accumulating evidence has clarified the potential roles of the REG family in the occurrence, progression and development of a wide range of inflammatory and inflammation-associated diseases of the gastrointestinal (GI) tract. However, significant gaps still exist due to the undefined nature of certain receptors, regulatory signaling pathways and possible interactions among distinct Reg members. In this narrative review, we first describe the structural features, distribution pattern and purported regulatory mechanisms of REG family proteins. Furthermore, we summarize the established and proposed roles of REG proteins in the pathogenesis of various inflammation-associated pathologies of the GI tract and the body as a whole, focusing particularly on carcinogenesis in the ulcerative colitis—colitic cancer sequence and gastric cancer. Finally, the clinical relevance of REG products in the context of diagnosis, treatment and prognostication are also discussed in detail. The current evidence suggests a need to better understanding the versatile roles of Reg family proteins in the pathogenesis of inflammatory-associated diseases, and their broadened future usage as therapeutic targets and prognostic biomarkers is anticipated.
Collapse
|
3
|
Weidle UH, Birzele F, Brinkmann U, Auslaender S. Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:497-514. [PMID: 34183383 DOI: 10.21873/cgp.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Gao L, Wu X, Zhang L, Dai Y, Zhu Z, Zhi Y, Wang K. REG4 is a Potential Biomarker for Radiochemotherapy Sensitivity in Colorectal Cancer. Onco Targets Ther 2021; 14:1605-1611. [PMID: 33688207 PMCID: PMC7936684 DOI: 10.2147/ott.s296031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the most common types of malignancies, and radiochemotherapy (RCT) followed by surgery is the recommended approach for CRC treatment. However, some cases do not respond to first-line conventional chemotherapy or even progress further after treatment. Moreover, there is a risk of severe side effects, such as radiodermatitis. Therefore, identifying predictors for RCT sensitivity is an essential step toward predicting and eventually overcoming resistance. Materials and Methods We used integrative bioinformatics analysis and experimental validation to show that regenerating family member 4 (REG4) may be a potential biomarker for RCT sensitivity in CRC. Results REG4, whose expression is upregulated in some CRC tissues and downregulated in RCT-sensitive CRC cells, was identified as a potential genetic marker for RCT sensitivity in CRC. Immunohistochemistry-based tissue microarray of human CRC was used to experimentally validate REG4 data obtained from the bioinformatics analysis. Conclusion Collectively, these results indicate that REG4 may be a potential biomarker for RCT sensitivity in CRC.
Collapse
Affiliation(s)
- Lei Gao
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, 230001, People's Republic of China
| | - Xingjun Wu
- Department of Oncology, Jiangsu Taizhou NO. 2 People Hospital, Jiangsu, People's Republic of China
| | - Libo Zhang
- Department of Hepatological Surgery, General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Yang Dai
- Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhe Zhu
- Department of Hepatological Surgery, General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Yunqing Zhi
- Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| | - Kaijing Wang
- Department of Hepatological Surgery, General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| |
Collapse
|
5
|
Enblad M, Graf W, Terman A, Pucholt P, Viklund B, Isaksson A, Birgisson H. Gains of Chromosome 1p and 15q are Associated with Poor Survival After Cytoreductive Surgery and HIPEC for Treating Colorectal Peritoneal Metastases. Ann Surg Oncol 2019; 26:4835-4842. [PMID: 31620944 PMCID: PMC6863794 DOI: 10.1245/s10434-019-07923-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/21/2022]
Abstract
Purpose Genetic alterations in colorectal peritoneal metastases (PM) are largely unknown. This study was designed to analyze whole-genome copy number alterations (CNA) in colorectal PM and to identify alterations associated with prognosis after cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Methods All patients with PM, originating from a colorectal adenocarcinoma, who were treated with CRS and HIPEC in Uppsala Sweden, between 2004 and 2015, were included (n = 114). DNA derived from formalin-fixed paraffin-embedded (FFPE) specimens were analyzed for CNA using molecular inversion probe arrays. Results There were extensive but varying degrees of CNA, ranging from minimal CNA to total aneuploidy. In particular, gain of parts of chromosome 1p and major parts of 15q were associated with poor survival. A combination of gains of 1p and 15q was associated with poor survival, also after adjustment for differences in peritoneal cancer index and completeness of cytoreduction score [hazard ratio (HR) 5.96; 95% confidence interval (CI) 2.19–16.18]. These patients had a mean copy number (CN) of 3.19 compared with 2.24 in patients without gains. Complete CN analysis was performed in 53 patients. Analysis was unsuccessful for the remaining patients due to insufficient amounts of DNA and signals caused by interstitial components and normal cells. There was no difference in survival between patients with successful and unsuccessful CN analysis. Conclusions This study shows that gains of parts of chromosome 1p and of major parts of chromosome 15q were significantly associated with poor survival after CRS and HIPEC, which could represent future prognostic biomarkers. Electronic supplementary material The online version of this article (10.1245/s10434-019-07923-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malin Enblad
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Uppsala, Sweden.
| | - Wilhelm Graf
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Uppsala, Sweden
| | - Alexei Terman
- Department of Immunology, Genetics and Pathology, Experimental Pathology, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Björn Viklund
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Isaksson
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Dai Y, Wang Q, Gonzalez Lopez A, Anders M, Malfertheiner P, Vieth M, Kemmner W. Genome-Wide Analysis of Barrett's Adenocarcinoma. A First Step Towards Identifying Patients at Risk and Developing Therapeutic Paths. Transl Oncol 2017; 11:116-124. [PMID: 29223109 PMCID: PMC6002392 DOI: 10.1016/j.tranon.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND: Barrett's esophagus metaplasia is the key precursor lesion of esophageal adenocarcinoma. The aim of this study was to find a subset of markers that may allow the identification of patients at risk for esophageal adenocarcinoma, and to determine genes differentially expressed in esophageal squamous cell carcinoma. METHODS: Laser capture microdissection technique was applied to procure cells from defined regions. Genome-wide RNA profiling was performed on esophageal adenocarcinoma (n = 21), Barrett's esophagus (n = 20), esophageal squamous carcinoma (n = 9) and healthy esophageal biopsies (n = 18) using the Affymetrix Human Genome U133plus 2.0 array. Microarray results were validated by quantitative real-time polymerase chain reaction in a second and independent cohort and by immunohistochemistry of two putative markers in a third independent cohort. RESULTS: Through unsupervised hierarchical clustering and principal component analysis, samples were separated into four distinct groups that match perfectly with histology. Many genes down-regulated in esophageal cancers belong to the epidermal differentiation complex or the related GO-group “cornified envelope” of terminally differentiated keratinocytes. Similarly, retinol metabolism was strongly down-regulated. Genes showing strong overexpression in esophageal carcinomas belong to the GO groups extracellular region /matrix such as MMP1, CTHRC1, and INHBA. According to an analysis of genes strongly up-regulated in both esophageal adenocarcinoma and Barrett's esophagus, REG4 might be of particular interest as an early marker for esophageal adenocarcinoma. CONCLUSIONS: Our study provides high quality data, which could serve for identification of potential biomarkers of Barrett's esophagus at risk of esophageal adenocarcinoma progression.
Collapse
Affiliation(s)
- Yiyang Dai
- Translational Oncology, Experimental Clinical Research Center (ECRC), Charité Campus Buch, 13125 Berlin, Germany
| | - Qing Wang
- Translational Oncology, Experimental Clinical Research Center (ECRC), Charité Campus Buch, 13125 Berlin, Germany
| | - Adrian Gonzalez Lopez
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Mario Anders
- Gastroenterologie und Interdisziplinäre Endoskopie, Vivantes Wenckebach-Klinikum, 12099 Berlin, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Wolfgang Kemmner
- Translational Oncology, Experimental Clinical Research Center (ECRC), Charité Campus Buch, 13125 Berlin, Germany.
| |
Collapse
|
7
|
Regenerating gene 1B silencing inhibits colon cancer cell HCT116 proliferation and invasion. Int J Biol Markers 2015; 30:e217-25. [PMID: 25768000 DOI: 10.5301/jbm.5000133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The human regenerating gene 1B (REG1B) is found to be frequently up-regulated in many types of human tumors. It is unclear whether REG1B expression may have therapeutic value in colorectal carcinoma. Additionally, how REG1B is associated with the clinical features of colorectal carcinoma is not known. To investigate the relationship between REG1B and colorectal cancer, we analyzed REG1B expression in clinical specimens and cell lines and the effect of down-regulation of REG1B by short hairpin RNA (shRNA) in HCT116 cells. METHODS Paraffin-embedded specimens from 30 pairs of colorectal cancer tissues and adjacent colon tissues were used to investigate the expression of REG1B by immunohistochemistry. We also examined whether REG1B itself may be related to cell proliferation, cell cycle arrest, apoptosis, migration and invasion in colon cancer HCT116 cells. RESULTS Our results showed that REG1B was highly expressed in colorectal carcinoma and was significantly associated with cell differentiation status. The results also illustrated that REG1B silencing with shRNA inhibited cell proliferation, migration and invasion but did not induce apoptosis. Furthermore, down-regulation of REG1B induces G1-phase cell cycle arrest in colon cancer cells. CONCLUSIONS Knockdown of REG1B can inhibit cell proliferation, migration and invasion. It may act by a mechanism regulating cell cycle progression. Thus, REG1B may be a novel candidate therapeutic target for colorectal cancer.
Collapse
|
8
|
Huang J, Yang Y, Yang J, Li X. Regenerating gene family member 4 promotes growth and migration of gastric cancer through protein kinase B pathway. Int J Clin Exp Med 2014; 7:3037-3044. [PMID: 25356179 PMCID: PMC4211829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Regenerating gene family member 4 (REG4), a secreted protein, is overexpressed in several cancers, including gastric cancer. The present study was undertaken to determine the roles of REG4 in the growth of gastric cancer in the nude mice and in the proliferation and migration in human gastric cancer cell line and its downstream signaling pathway. Gastric cancer models were elicited by intraperitoneally injecting MKN45 human gastric cancer cells and the tumor size was measured every other day. The expressions of REG4 mRNA and protein were increased in the gastric cancer tissues from gastric cancer patients. REG4 increased the gastric tumor weight and size in the nude mice, and promoted the proliferation and migration of gastric cancer cells MKN45. Adeno-associated viral (AAV)-mediated knockdown of REG4 decreased the gastric tumor weight and size in the nude mice, and suppressed the proliferation and migration of MKN45 cells. REG4 increased the expression of phosphorylated protein kinase B (Akt). Triciribine hydrate (TCN), the inhibitor of Akt, decreased the gastric tumor weight and size in the nude mice and abolished REG4-induced weight and size increase of the tumor. TCN also inhibited proliferation and migration and abolished REG4-induced proliferation and migration increase of human gastric cell line MKN45. These results indicate that REG4 promotes the growth, proliferation and migration of gastric cancer through Akt pathway.
Collapse
Affiliation(s)
- Jiamiao Huang
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| | - Ya Yang
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| | - Jian Yang
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| | - Xian Li
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| |
Collapse
|