1
|
Huang R, Qin Y, Huang Y, Huang Z, Ye GJ. A convenient smartphone-assisted colorimetric for 6-Mercaptopurine detection using enhanced oxidase-like activity of β-cyclodextrin modified MnO 2 nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124493. [PMID: 38796891 DOI: 10.1016/j.saa.2024.124493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
6-mercaptopurine (6-MP) is widely used in the treatment of many diseases, but exhibits some serious side effects due to its toxicity. Therefore, it is important and imperative to effectively control and monitoring concentration of 6-MP. Herein, we designed a smartphone-assisted colorimetric sensing platform for 6-MP detection, based on an excellent β-cyclodextrin modified MnO2 nanosheets (β-CD@MnO2 NNS) mediated oxidase-like activity. β-CD@MnO2 NNS can directly oxidizes 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB with color changes, yielding more than 3-fold higher oxidase-like catalytic activity compared with individual MnO2 NNS. After adding 6-MP, β-CD@MnO2 NNS can be reduced to Mn2+ and lose their oxidase-like properties, resulting in a color and absorbance change for sensitive and selectivity detection of 6-MP. Meanwhile, the smartphone-based color recognition application can intuitively and simply measure the concentration of 6-MP. The limits of detection UV-vis instrument and smartphone were 0.35 μM and 0.86 μM, respectively. This method has also been successfully applied to the detection of real samples. Finally, this study provides a new promising platform for detection of 6-MP and is expected to be used in application of pharmaceutical analysis and biomedicine.
Collapse
Affiliation(s)
- Ruiqi Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Yingfeng Qin
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Basic Medical Sciences, Nanning 530021, PR China.
| | - Yanqin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Zengqiong Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China.
| | - Gao-Jie Ye
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
2
|
Singh B, Sarli VN, Lucci A. Inhibition of resistant triple-negative breast cancer cells with low-dose 6-mercaptopurine and 5-azacitidine. Oncotarget 2021; 12:626-637. [PMID: 33868584 PMCID: PMC8021029 DOI: 10.18632/oncotarget.27922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Highly adaptable breast cancer cells that can opportunistically switch between proliferation and quiescence are often responsible for disease relapse. We have developed a function-based selection strategy for such resistant cells, exemplified by SUM149-MA and FC-IBC02-MA triple-negative breast cancer cells. We have also reported that a lengthy treatment with low-dose 6-mercaptopurine, a clinically useful anti-inflammatory drug, inhibits such resistant cells. To more rigorously test the clinical suitability of 6-mercaptopurine, here we investigated effects of further lowering its dose and the possibility of overcoming resistance to single-drug treatment by combining the drug with another ribonucleoside analog 5-azacitidine. We found that that a lengthy treatment with 1 μM 5-azacitidine, without a significant effect on cell proliferation, sensitized cancer cells to the inhibitory effects of low-dose 6-mercaptopurine. Importantly, treatment for several weeks with low doses of 6-mercaptopurine and/or 5-azacitidine did not render cancer cells resistant to chemotherapeutic drugs doxorubicin or paclitaxel. In fact, the cells became more sensitive to chemotherapeutic drugs upon treatment with 6-mercaptopurine and/or 5-azacitidine. Our analyses of protein markers of epithelial-to-mesenchymal transition indicated that treatments with 6-mercaptopurine and/or 5-azacitidine do not significantly reverse this process in our model. Our results showed that safe drugs such as low-dose 6-mercaptopurine singly or combined with 5-azacitidine, which are suitable for use prior to disease relapse, have a potential of inhibiting highly resistant triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, Fiocchi C, Stappenbeck T, Chan T, Eng C, Jung JU, Jehi L, Erzurum S, Cheng F. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol 2020; 18:e3000970. [PMID: 33156843 PMCID: PMC7728249 DOI: 10.1371/journal.pbio.3000970] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/10/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of coexisting medical conditions, while the underlying mechanisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measurement revealed underlying pathogenesis for broad COVID-19-associated disease manifestations. Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn disease patients compared to uninflamed tissues, revealing shared pathobiology between COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2). To prioritize potential treatments, we combined network-based prediction and a propensity score (PS) matching observational study of 26,779 individuals from a COVID-19 registry. We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56-0.91) is significantly associated with a 28% reduced likelihood of a positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay. Using a PS matching user active comparator design, we determined that melatonin usage was associated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54-0.92) or angiotensin-converting enzyme inhibitors (OR = 0.69, 95% CI 0.52-0.90). Importantly, melatonin usage (OR = 0.48, 95% CI 0.31-0.75) is associated with a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking history, and various disease comorbidities using PS matching. In summary, this study presents an integrative network medicine platform for predicting disease manifestations associated with COVID-19 and identifying melatonin for potential prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jiayu Shen
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Reena Mehra
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Neurological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Asha Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daniel A. Culver
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
| | - Samar Farha
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Joe Zein
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Suzy Comhair
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Claudio Fiocchi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thaddeus Stappenbeck
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Timothy Chan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jae U. Jung
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lara Jehi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Neurological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil Erzurum
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
4
|
Zhou Y, Hou Y, Shen J, Kallianpur A, Zein J, Culver DA, Farha S, Comhair S, Fiocchi C, Gack MU, Mehra R, Stappenbeck T, Chan T, Eng C, Jung JU, Jehi L, Erzurum S, Cheng F. A Network Medicine Approach to Investigation and Population-based Validation of Disease Manifestations and Drug Repurposing for COVID-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12579137. [PMID: 32676577 PMCID: PMC7350981 DOI: 10.26434/chemrxiv.12579137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The global Coronavirus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of co-existing medical conditions while the underlying mechanisms remain unclear. Furthermore, there are no proven effective therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, diseases manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measure revealed underlying pathogenesis for broad COVID-19-associated manifestations. Multi-modal analyses of single-cell RNA-sequencing data showed that co-expression of ACE2 and TMPRSS2 was elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn's disease patients compared to uninflamed tissues, revealing shared pathobiology by COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicated that COVID-19 shared intermediate inflammatory endophenotypes with asthma (including IRAK3 and ADRB2). To prioritize potential treatment, we combined network-based prediction and propensity score (PS) matching observational study of 18,118 patients from a COVID-19 registry. We identified that melatonin (odds ratio (OR) = 0.36, 95% confidence interval (CI) 0.22-0.59) was associated with 64% reduced likelihood of a positive laboratory test result for SARS-CoV-2. Using PS-matching user active comparator design, melatonin was associated with 54% reduced likelihood of SARS-CoV-2 positive test result compared to angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors (OR = 0.46, 95% CI 0.24-0.86).
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jiayu Shen
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Asha Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Joe Zein
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel A. Culver
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Samar Farha
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Suzy Comhair
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Claudio Fiocchi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michaela U. Gack
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Reena Mehra
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thaddeus Stappenbeck
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Timothy Chan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jae U. Jung
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lara Jehi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Serpil Erzurum
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Singh B, Sarli VN, Kinne HE, Shamsnia A, Lucci A. Evaluation of 6-mercaptopurine in a cell culture model of adaptable triple-negative breast cancer with metastatic potential. Oncotarget 2019; 10:3681-3693. [PMID: 31217902 PMCID: PMC6557209 DOI: 10.18632/oncotarget.26978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Progenitor-like cancer cells that can survive in reversible quiescence when faced with various challenges in the body are often behind disease progression. A lack of glutamine in culture medium, which eliminates >99.9% of proliferating SUM149 triple-negative breast cancer cells, selects such adaptable, pan-resistant cells. Our data support the hypothesis that a lack of glutamine forces the selection of an epigenetic state that does not require a high level of TET2, thus selecting an “undifferentiated” therapy-resistant phenotype as seen in TET2-mutant cancers. Our data suggesting that highly adaptable cells are generated through reprograming of the epigenome and transcriptome led us to evaluate low-dose 6-mercaptopurine as a potential therapy in our model. We found that a long treatment with low-dose 6-mercaptopurine inhibited the proliferation of these adaptable cells to a greater extent than it inhibited parental cells. Importantly, a small percentage of adaptable cells survived a low-dose 6-mercaptopurine treatment in a reversible quiescence, analogous to the persistence of abnormal progenitor-like cells in inflammatory bowel disease, which stays in a durable remission with a 6-mercaptopurine treatment. Based on a biomarkers analysis, a long treatment with 6-mercaptopurine or aspirin partially reversed epithelial to mesenchymal transition in adaptable cancer cells. A cell culture model of adaptable cancer cells that persist in the body will help in discovering superior therapies that can be offered before the disease advances to metastasis.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah E Kinne
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Shamsnia
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Valdés Zurita F, Brown Vega N, Gutiérrez Cabrera M. Semisynthesis, Characterization and Evaluation of New Adenosine Derivatives as Antiproliferative Agents. Molecules 2018; 23:E1111. [PMID: 29738449 PMCID: PMC6099407 DOI: 10.3390/molecules23051111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 01/10/2023] Open
Abstract
We describe the semisynthesis and biological effects of adenosine derivatives, which were anticipated to function as agonists for the A₃ receptor. Molecular docking was used to select candidate compounds. Fifteen nucleoside derivatives were obtained through nucleophilic substitutions of the N⁶-position of the nucleoside precursor 6-chloropurine riboside by amines of different origin. All compounds were purified by column chromatography and further characterized by spectroscopic and spectrometric techniques, showing moderate yield. These molecules were then evaluated for their antiproliferative activity in human gastric cancer cells expressing the A₃ receptor. We found that the compounds obtained have antiproliferative activity and that new structural modifications can enhance their biological activity. The ADME (Absorption, Distribution, Metabolism and Excretion) properties of the most active compounds were also evaluated theoretically.
Collapse
Affiliation(s)
| | - Nelson Brown Vega
- Medical School, University of Talca, 3460000 Talca, Chile.
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, 3460000 Talca, Chile.
| | | |
Collapse
|
7
|
Affiliation(s)
- Burton I Korelitz
- Division of Gastroenterology, Department of Medicine, Lenox Hill Hospital, New York, NY, 10075, USA.
| |
Collapse
|
8
|
Axelrad JE, Roy A, Lawlor G, Korelitz B, Lichtiger S. Thiopurines and inflammatory bowel disease: Current evidence and a historical perspective. World J Gastroenterol 2016; 22:10103-10117. [PMID: 28028358 PMCID: PMC5155169 DOI: 10.3748/wjg.v22.i46.10103] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
The use of thiopurines in inflammatory bowel disease (IBD) has been examined in numerous prospective, controlled trials, with a majority demonstrating a clinical benefit. We conducted this review to describe the historical and current evidence in the use of thiopurines in IBD. A systematic search was performed on MEDLINE between 1965 and 2016 to identify studies on thiopurines in IBD. The most robust evidence for thiopurines in IBD includes induction of remission in combination with anti-tumor necrosis factor (anti-TNF) agents, and maintenance of remission and post-operative maintenance in Crohn’s disease. Less evidence exists for thiopurine monotherapy in induction of remission, maintenance of ulcerative colitis, chemoprevention of colorectal cancer, and in preventing immunogenicity to anti-TNF. Evidence was often limited by trial design. Overall, thiopurines have demonstrated efficacy in a broad range of presentations of IBD. With more efficacious novel therapeutic agents, the positioning of thiopurines in the management of IBD will change and future studies will analyze the benefit of thiopurines alone and in conjunction with these new medications.
Collapse
|