1
|
Sandeep, Shinde SH, Ahmed S, Sharma SS, Pande AH. Engineered polyspecific antibodies: A new frontier in the field of immunotherapeutics. Immunology 2024; 171:464-496. [PMID: 38140855 DOI: 10.1111/imm.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The 21st-century beginning remarked with the huge success of monospecific MAbs, however, in the last couple of years, polyspecific MAbs (PsAbs) have been an interesting topic and show promise of being biobetter than monospecific MAbs. Polyspecificity, in which a single antibody serves multiple specific target binding, has been hypothesized to contribute to the development of a highly effective antibody repertoire for immune defence. This polyspecific MAb trend represents an explosion that is gripping the whole pharmaceutical industry. This review is concerned with the current development and quality enforcement of PsAbs. All provided literature on monospecific MAbs and polyspecific MAbs (PsAbs) were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent and books via the keywords Antibody engineering, Polyspecific antibody, Conventional antibody, non-conventional antibody, and Single domain antibody. In the literature, there are more than 100 different formats to construct PsAb by quadroma technology, chemical conjugation and genetic engineering. Till March 2023, nine PsAb have been approved around the world, and around 330 are in advanced developmental stages, showing the dominancy of PsAb in the growing health sector. Recent advancements in protein engineering techniques and the fusion of non-conventional antibodies have made it possible to create complex PsAbs that demonstrate higher stability and enhanced potency. This marks the most significant achievement for cancer immunotherapy, in which PsAbs have immense promise. It is worth mentioning that seven out of the nine PsAbs have been approved as anti-cancer therapy. As PsAbs continue to acquire prominence, they could pave the way for the development of novel immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
2
|
Brandi N, Renzulli M. The Synergistic Effect of Interventional Locoregional Treatments and Immunotherapy for the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24108598. [PMID: 37239941 DOI: 10.3390/ijms24108598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy has remarkably revolutionized the management of advanced HCC and prompted clinical trials, with therapeutic agents being used to selectively target immune cells rather than cancer cells. Currently, there is great interest in the possibility of combining locoregional treatments with immunotherapy for HCC, as this combination is emerging as an effective and synergistic tool for enhancing immunity. On the one hand, immunotherapy could amplify and prolong the antitumoral immune response of locoregional treatments, improving patients' outcomes and reducing recurrence rates. On the other hand, locoregional therapies have been shown to positively alter the tumor immune microenvironment and could therefore enhance the efficacy of immunotherapy. Despite the encouraging results, many unanswered questions still remain, including which immunotherapy and locoregional treatment can guarantee the best survival and clinical outcomes; the most effective timing and sequence to obtain the most effective therapeutic response; and which biological and/or genetic biomarkers can be used to identify patients likely to benefit from this combined approach. Based on the current reported evidence and ongoing trials, the present review summarizes the current application of immunotherapy in combination with locoregional therapies for the treatment of HCC, and provides a critical evaluation of the current status and future directions.
Collapse
Affiliation(s)
- Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
3
|
Tang M, Li WL, Li JY, Lv J, Chen FK, Zhu JL, Liu PJ. Analysis of factors influencing the distribution of 131-I in combined treatment of Licartin with transcatheter arterial chemoembolization in primary hepatic carcinoma. Front Oncol 2023; 12:993948. [PMID: 36994225 PMCID: PMC10040873 DOI: 10.3389/fonc.2022.993948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 03/18/2023] Open
Abstract
ObjectiveTo analyze the factors influencing the distribution of 131-I in the liver of patients with advanced hepatic carcinoma treated with the combination of Licartin (131I Metuximab) and transcatheter arterial chemoembolization (TACE). This study provides a reference and basis for the clinic on how to choose the best time for the treatment of Licartin and how to reduce other possible factors affecting the role of Licartin.MethodsData from 41 patients with advanced hepatic carcinoma treated with the combination of Licartin and TACE in the Interventional Department of our hospital from March 2014 to December 2020 were collected. This included general characteristics, history of open and interventional surgery, interval between the last interventional surgery and the Licartin treatment, selected arteries in the Licartin perfusion, and 131-I distribution in the liver. Regression analysis was conducted to investigate the factors affecting the distribution of 131I in the liver.ResultsIn 14 cases (34.1%), 131-I was evenly distributed in the liver, and there was no correlation between the cause of even distribution with age(OR=0.961, P = 0.939), previous open surgery history(OR=3.547,P= 0.128), previous history of interventional therapy(OR=0.140,P = 0.072), the interval between the last interventional surgery and the Licartin treatment(OR=0.858,P = 0.883), or the choice of the perfusion artery in the Licartin treatment (OR=1.489,P = 0.419). In 14 cases (34.1%), there was higher aggregation in the tumor than in the normal liver, which was related to previous interventional surgery (OR=7.443,P = 0.043). In 13 cases (31.7%), there was lower aggregation in the tumor than in the normal liver, which was related to the selected vessels in the Licartin perfusion (OR=0.23,P = 0.013).ConclusionThe effective aggregation of 131-I in the liver, even in tumors, the previous history of TACE, and the choice of vessels in the Licartin infusion might be the factors influencing the distribution of 131-I in the liver during hepatic artery infusion of Licartin in combination with TACE therapy.
Collapse
Affiliation(s)
- Ming Tang
- Department of Pathology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wen-Liang Li
- Department of Pathology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jia-Yu Li
- Department of Nuclear Medical, The First People’s Hospital of Zhaotong City, Zhaotong, China
| | - Juan Lv
- Department of Nuclear Medical, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fu-Kun Chen
- Department of Nuclear Medical, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-Lun Zhu
- Department of Nuclear Medical, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng-Jie Liu
- Department of Nuclear Medical, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Peng-Jie Liu,
| |
Collapse
|
4
|
Ye J, Yang W, Xie Z, Yan Y, Li G, Li G, Li X, Ma W, Kang F, Zhang M, Wang J. Safety, Biodistribution, and Dosimetry Study of Meplazumab, a Potential COVID-19 Therapeutic Drug, with 131I-Labeling and SPECT Imaging. Mol Pharm 2023; 20:1750-1757. [PMID: 36668905 PMCID: PMC9885528 DOI: 10.1021/acs.molpharmaceut.2c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a serious threat to public health and is in urgent need of specific drugs. Meplazumab, a humanized monoclonal antibody targeting CD147, was confirmed to competitively block the binding between the spike of syndrome coronavirus 2 (SARS-CoV-2) and CD147, making meplazumab a promising candidate drug for COVID-19. In this study, biodistribution and dosimetry of 131I-labeled meplazumab were performed to further evaluate its potential as a therapeutic drug for COVID-19. 131I-meplazumab was both safe and tolerant in mice and healthy volunteers. A biodistribution study was performed in normal mice, and blood samples were used for pharmacokinetic analysis. Three healthy volunteers were included and subjected to single-photon-emission computed tomography (SPECT) imaging of 131I-meplazumab within 2 weeks. The distribution in mice and humans was consistent with the in vivo distribution of CD147. Biodistribution and SPECT imaging results exhibited that the liver was the organ with the highest uptake for both mice and humans. Deiodination of 131I-meplazumab can be observed in vivo, and taking Lugol's solution can protect the thyroid gland effectively. The pharmacokinetic characteristics of 131I-meplazumab in mice and humans best fit the two-compartment model. The clearance half-life (T1/2β) in mice and humans was 117.4 and 223.5 h, respectively. The results indicated that its pharmacokinetic properties in vivo were ideal. The effective dose calculated from healthy volunteers was 0.811 ± 0.260 mSv·MBq-1, which was twice the value calculated from mice. It was safe and feasible to perform human clinical imaging experiments using a diagnostic dose of 131I-meplazumab after thyroid closure by Lugol's solution. This study will provide more experimental basis for advancing the clinical translation of meplazumab and will be valuable in evaluating therapeutic interventions for patients with COVID-19, as well as providing a reference for clinical translation studies of other antibody drugs.
Collapse
Affiliation(s)
| | | | - Zhaojuan Xie
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Yuhao Yan
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Xiang Li
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital,
Fourth Military Medical University, Xi’an,
Shaanxi710032, China
| |
Collapse
|
5
|
Liu R, Li H, Qiu Y, Liu H, Cheng Z. Recent Advances in Hepatocellular Carcinoma Treatment with Radionuclides. Pharmaceuticals (Basel) 2022; 15:1339. [PMID: 36355512 PMCID: PMC9694760 DOI: 10.3390/ph15111339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/20/2024] Open
Abstract
As the third leading cause of cancer death worldwide, hepatocellular carcinoma (HCC) is characterized by late detection, difficult diagnosis and treatment, rapid progression, and poor prognosis. Current treatments for liver cancer include surgical resection, radiofrequency ablation, liver transplantation, chemotherapy, external radiation therapy, and internal radionuclide therapy. Radionuclide therapy is the use of high-energy radiation emitted by radionuclides to eradicate tumor cells, thus achieving the therapeutic effect. Recently, with the continuous development of biomedical technology, the application of radionuclides in treatment of HCC has progressed steadily. This review focuses on three types of radionuclide-based treatment regimens, including transarterial radioembolization (TARE), radioactive seed implantation, and radioimmunotherapy. Their research progress and clinical applications are summarized. The advantages, limitations, and clinical potential of radionuclide treatment of HCC are discussed.
Collapse
Affiliation(s)
- Ruiqi Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Hong Li
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Yihua Qiu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
6
|
Rahat MA. Mini-Review: Can the Metastatic Cascade Be Inhibited by Targeting CD147/EMMPRIN to Prevent Tumor Recurrence? Front Immunol 2022; 13:855978. [PMID: 35418981 PMCID: PMC8995701 DOI: 10.3389/fimmu.2022.855978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Solid tumors metastasize very early in their development, and once the metastatic cell is lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain dormant for long periods. Dormant cells represent a real risk for future tumor recurrence, but because they are typically undetectable and insensitive to current modalities of treatment, it is difficult to treat them in time. We describe the metastatic cascade, which is the process that allows tumor cells to detach from the primary tumor, migrate in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a remote tissue and eventually outgrow. We focus on the critical enabling role of the interactions between tumor cells and immune cells, especially macrophages, in driving the metastatic cascade, and on those stages that can potentially be targeted. In order to prevent the metastatic cascade and tumor recurrence, we would need to target a molecule that is involved in all of the steps of the process, and evidence is brought to suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis and prevents tumor recurrence.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Parakh S, Lee ST, Gan HK, Scott AM. Radiolabeled Antibodies for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:1454. [PMID: 35326605 PMCID: PMC8946248 DOI: 10.3390/cancers14061454] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Radioimmunoconjugates consist of a monoclonal antibody (mAb) linked to a radionuclide. Radioimmunoconjugates as theranostics tools have been in development with success, particularly in hematological malignancies, leading to approval by the US Food and Drug Administration (FDA) for the treatment of non-Hodgkin's lymphoma. Radioimmunotherapy (RIT) allows for reduced toxicity compared to conventional radiation therapy and enhances the efficacy of mAbs. In addition, using radiolabeled mAbs with imaging methods provides critical information on the pharmacokinetics and pharmacodynamics of therapeutic agents with direct relevance to the optimization of the dose and dosing schedule, real-time antigen quantitation, antigen heterogeneity, and dynamic antigen changes. All of these parameters are critical in predicting treatment responses and identifying patients who are most likely to benefit from treatment. Historically, RITs have been less effective in solid tumors; however, several strategies are being investigated to improve their therapeutic index, including targeting patients with minimal disease burden; using pre-targeting strategies, newer radionuclides, and improved labeling techniques; and using combined modalities and locoregional application. This review provides an overview of the radiolabeled intact antibodies currently in clinical use and those in development.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Hui K. Gan
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| |
Collapse
|
8
|
Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J. Nanocarrier-Based Tumor-Targeting Drug Delivery Systems for Hepatocellular Carcinoma Treatments: Enhanced Therapeutic Efficacy and Reduced Drug Toxicity. J Biomed Nanotechnol 2022; 18:660-676. [PMID: 35715919 DOI: 10.1166/jbn.2022.3297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC), due to the lack of efficient diagnostic methods and short of available treatments, becomes the third main cause of cancer deaths. Novel treatments for HCCs are thus in great need. The fast-growing area of drug delivery provides intriguing possibility to design nanocarriers with unique properties. The nanocarriers performanced as drug deliver vehicles enable the design of diverse drug delivery systems, which could serve multiple purposes, including improved bioavailability, controlled or triggered release and targeted delivery, leading to enhanced drug efficacy and lowered drug toxicity. This paper provides an overview on the types of delivery vehicles, functions of drug nanocarriers and types of ligand-based targeting systems and highlights the advances made towards better HCC treatments.
Collapse
Affiliation(s)
- Tian Tian
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jia Zhang
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, Zhejiang Province, People's Republic of China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
9
|
Chen H, Teng M, Zhang H, Liang X, Cheng H, Liu G. Advanced radionuclides in diagnosis and therapy for hepatocellular carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Oliveira MC, Correia JDG. Clinical application of radioiodinated antibodies: where are we? Clin Transl Imaging 2022. [DOI: 10.1007/s40336-021-00477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Chen H, Nan G, Wei D, Zhai RY, Huang M, Yang WW, Xing BC, Zhu X, Xu HF, Wang XD, Zhang XY, Zhu BR, Liu P, Cao G, Gao S, Hao CY, Yang RJ, Guo JH, Zhang X, Gao K, Wang K, Wang JF, Li ZY, Zhu LZ, Ding R, Li J, Zhao L, Shao YJ, Liu HC, Xia JL, Wang L, Kong LM, Chen ZN, Bian H. Hepatic artery injection of 131I-metuximab combined with transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a prospective non-randomized, multicenter clinical trial. J Nucl Med 2021; 63:556-559. [PMID: 34475235 PMCID: PMC8973296 DOI: 10.2967/jnumed.121.262136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
This prospective non-randomized, multicenter clinical trial was performed to investigate efficacy and safety of 131I-labeled metuximab in adjuvant treatment of unresectable hepatocellular carcinoma. Methods: Patients were assigned to treatment with transcatheter arterial chemoembolization (TACE) combined with 131I-metuximab or TACE alone. The primary outcome was overall tumor recurrence. The secondary outcomes were safety and overall survival. Results: The median time to tumor recurrence was 6 months in the TACE+131I-metuximab group (n = 160) and 3 months in the TACE group (n = 160) (hazard ratio, 0.55; 95% confidence interval, 0.43 to 0.70; P < 0.001). The median overall survival was 28 months in the TACE+131I-metuximab group and 19 months in the TACE group (hazard ratio, 0.62; 95% confidence interval, 0.47 to 0.82; P = 0.001). Conclusion: TACE+131I-metuximab showed a greater anti-recurrence benefit, significantly improved the 5-year survival of patients with advanced hepatocellular carcinoma, and was well tolerated by patients.
Collapse
Affiliation(s)
- Hui Chen
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University,
| | - Ding Wei
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University,
| | - Ren-You Zhai
- Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Ming Huang
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, China
| | - Wu-Wei Yang
- The Fifth Medical Center, Chinese PLA General Hospital, China
| | - Bao-Cai Xing
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research, China
| | - Xu Zhu
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research, China
| | - Hai-Feng Xu
- 2 Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Xiao-Dong Wang
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | | | - Bao-Rang Zhu
- The Fifth Medical Center, Chinese PLA General Hospital, China
| | - Peng Liu
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Guang Cao
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Song Gao
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Chun-Yi Hao
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Ren-Jie Yang
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Jian-Hai Guo
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Xin Zhang
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Kun Gao
- Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Kun Wang
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Jian-Feng Wang
- Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Zi-Yu Li
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Lin-Zhong Zhu
- Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research,, China
| | - Rong Ding
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, China
| | - Jing Li
- The Fifth Medical Center, Chinese PLA General Hospital, China
| | - Ling Zhao
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, China
| | - Yu-Jun Shao
- China Nuclear Industry Beijing 401 Hospital, China
| | - Hai-Chun Liu
- China Nuclear Industry Beijing 401 Hospital, China
| | - Jie-Lai Xia
- College of Military Preventive Medicine, Fourth Military Medical University,, China
| | - Ling Wang
- College of Military Preventive Medicine, Fourth Military Medical University,, China
| | - Ling-Ming Kong
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University,
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University,
| | | |
Collapse
|
12
|
Zhang Y, Liu J, Sun Y, Yu X, Wang J, Dai D, Zhu Y, Song X, Zhu L, Li X, Xu W. Enhanced glucose metabolism mediated by CD147 is associated with 18 F-FDG PET/CT imaging in lung adenocarcinoma. Thorac Cancer 2020; 11:1245-1257. [PMID: 32162491 PMCID: PMC7180588 DOI: 10.1111/1759-7714.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most deadly thoracic tumors. Reprogrammed glycolytic metabolism is a hallmark of cancer cells and significantly affects several cellular functions. In the current study, we aimed to investigate cluster of differentiation 147 (CD147)‐mediated glucose metabolic regulation in LUAD and its association with 18F‐FDG PET/CT imaging. Methods The expression profile and prognostic potential of CD147 in LUAD were analyzed using UALCAN and a Kaplan‐Meier plotter. Tissue immunohistochemical analyses and PET metabolic parameters were used to identify the relationship between CD147 expression and reprogrammed glycolysis. The role of CD147 in glucose metabolic reprogramming was assessed by radioactive uptake of 18F‐FDG through γ‐radioimmunoassays in vitro and micro‐PET/CT imaging in vivo. Western blotting assays were used to determine the expression level of monocarboxylate transporter 1 (MCT1) and MCT4 in established human LUAD cell lines (ie, HCC827 and H1975) with different CD147 expression levels via lentiviral transduction. Results CD147 was highly expressed in LUAD. A significant positive correlation existed between CD147 expression and PET metabolic parameters(SUVmax,SUVmean, SUVpeak). CD147 could promote radioactive uptake of 18F‐FDG in vitro and in vivo, suggesting the ability of CD147 to enhance glycolytic metabolism. Furthermore, as an obligate chaperone for MCT1 and MCT4, CD147 positively correlated with MCT1 and MCT4 expression in LUAD tissues and established cell lines with different CD147 expression. Conclusions Our study revealed that CD147 is a promising novel target for LUAD treatment and CD147‐mediated glucose metabolism demonstrated its contribution to the predictive role of 18F‐FDG PET/CT imaging for targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yunchuan Sun
- Department of Nuclear Medicine, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjia Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
13
|
Adjuvant 131I-metuximab for hepatocellular carcinoma after liver resection: a randomised, controlled, multicentre, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2020; 5:548-560. [PMID: 32164877 DOI: 10.1016/s2468-1253(19)30422-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Effective adjuvant treatment after hepatectomy for hepatocellular carcinoma (HCC) is an important area of research. Radioactive iodine (131I)-labelled metuximab is a radiolabelled monoclonal antibody against the CD147 (also known as basigin or HAb18G) antigen that is expressed in HCC. We aimed to examine the role of 131I-metuximab as an adjuvant therapy after HCC resection. METHODS This randomised, controlled, multicentre, open-label, phase 2 trial was done at five medical centres in China. Patients aged 18-75 years who underwent curative-intent resection of histologically confirmed HCC expressing CD147 were randomly assigned (1:1) by a computer-generated random sequence, stratified by centre, to receive either adjuvant transarterial injection of one dose of 27·75 MBq/kg 131I-metuximab 4-6 weeks after the hepatectomy (treatment group) or no adjuvant treatment (control group). Patients and physicians were not masked to the study groups. The primary outcome was 5-year recurrence-free survival (RFS) in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT00819650. FINDINGS Between April 1, 2009, and Nov 30, 2012, 485 patients were screened for eligibility. 329 (68%) of these patients were excluded and 156 (32%) were randomly assigned to receive either 131I-metuximab (n=78) or no adjuvant treatment (n=78). The median follow-up was 55·9 months (IQR 18·6-79·4). In the intention-to-treat population, the 5-year RFS was 43·4% (95% CI 33·6-55·9) in the 131I-metuximab group and 21·7% (14·2-33·1) in the control group (hazard ratio 0·49 [95% CI 0·34-0·72]; Z=2·96, p=0·0031). 131I-metuximab-associated adverse events occurred within the first 4 weeks in 34 (45%) of 76 patients, seven (21%) of whom had grade 3 or 4 adverse events. These adverse events were all resolved with appropriate treatment within 2 weeks of being identified. INTERPRETATION Adjuvant 131I-metuximab treatment significantly improved the 5-year RFS of patients after hepatectomy for HCC tumours expressing CD147. This treatment was well tolerated by patients. FUNDING State Key Project on Infectious Diseases of China.
Collapse
|
14
|
Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019; 14:581-594. [PMID: 32104485 PMCID: PMC7032247 DOI: 10.1016/j.ajps.2019.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/06/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. In addition to sorafenib and lenvatinib for the treatment of HCC approved by FDA, various strategies including transarterial chemoembolization, radiotherapy, locoregional therapy and chemotherapy have been investigated in clinics. Recently, cancer nanotechnology has got great attention for the treatment of various cancers including HCC. Both passive and active targetings are progressing at a steady rate. Herein, we describe the lessons learned from pathogenesis of HCC and the understanding of targeted and non-targeted nanoparticles used for the delivery of small molecules, monoclonal antibodies, miRNAs and peptides. Exploring current efficacy is to enhance tumor cell response of chemotherapy. It highlights the opportunities and challenges faced by nanotechnologies in contemporary hepatocellular carcinoma therapy, where personalized medicine is increasingly becoming the mainstay. Overall objective of this review is to enhance our understanding in the design and development of nanotechnology for treatment of HCC.
Collapse
Affiliation(s)
- Yongbing Sun
- National Engineering Research Center for solid preparation technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Nanchang 330006, China
| | - Wen Ma
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengxue He
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Lei Bai
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown 26506, USA
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2019; 69:91-99. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.
Collapse
|
16
|
Fan W, Wu Y, Lu M, Yao W, Cui W, Zhao Y, Wang Y, Li J. A meta-analysis of the efficacy and safety of iodine [ 131I] metuximab infusion combined with TACE for treatment of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2019; 43:451-459. [PMID: 30348520 DOI: 10.1016/j.clinre.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To compare the efficacy and safety of combination iodine [131I] metuximab infusion and transcathether arterial chemoembolization (TACE) with those of TACE-alone for hepatocellular carcinoma (HCC). MATERIALS AND METHODS PubMed, Cochrane Library, Embase, Web of Science, China Biology Medicine, China Science and Technology Journal Database, Wan Fang Data, and Chinese knowledge resource integrated databases were used for the literature search regarding controlled clinical trials comparing combination TACE and iodine [131I] metuximab infusion with TACE-alone for HCC treatment before February 1, 2016. The Jadad system evaluation method for research quality and RevMan 5.0 software were used for the meta-analysis. RESULTS In total, 1302 patients from 10 studies were included. The meta-analysis showed that the combination TACE and iodine [131I] metuximab infusion treatment for HCC was more effective than TACE alone, including 6-month survival (odds ratio [OR] = 2.05, 95% confidence interval [CI]: 1.41-2.98, P = 0.0002), 1-year survival (OR = 1.90, 95% CI: 1.41-2.55, P < 0.00001), and the total response rate (OR = 2.91, 95% CI: 2.08-4.07, P < 0.00001). Nine studies reported adverse reactions, mainly comprising poor appetite, nausea, vomiting, and abdominal discomfort. Fever, chills, and bone marrow suppression were more common in the combined treatment group, but abnormal liver function was not different between the two treatment groups. There was no report on serious complications or death directly related to either treatment. CONCLUSIONS Compared with TACE alone, the combination of TACE with iodine [131I] metuximab infusion for treating unresectable HCC may improve local efficacy and overall survival in these types of patients.
Collapse
Affiliation(s)
- Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Yanqin Wu
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Mingjian Lu
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Wei Cui
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China.
| |
Collapse
|
17
|
Sun S, Li H, Chen J, Qian Q. Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology (Bethesda) 2018; 32:453-463. [PMID: 29021365 DOI: 10.1152/physiol.00016.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
For decades, lactic acid has been considered a dead-end product of glycolysis. Research in the last 20+ years has shown otherwise. Through its transporters (MCTs) and receptor (GPR81), lactic acid plays a key role in multiple cellular processes, including energy regulation, immune tolerance, memory formation, wound healing, ischemic tissue injury, and cancer growth and metastasis. We summarize key findings of lactic acid signaling, functions, and many remaining questions.
Collapse
Affiliation(s)
- Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xian, China
| | - Heng Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
18
|
Zhang H. Will cancer cells be defeated by sodium bicarbonate? SCIENCE CHINA-LIFE SCIENCES 2017; 60:326-328. [PMID: 28083722 DOI: 10.1007/s11427-016-0373-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine 2016; 11:5645-5669. [PMID: 27920520 PMCID: PMC5127222 DOI: 10.2147/ijn.s115727] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC.
Collapse
Affiliation(s)
- Min Li
- Department of Hepatobiliary Surgery, Union Hospital
| | - Weiyue Zhang
- The First Clinic Institute, Tongji Medical College, Huazhong University of Science and Technology
| | - Birong Wang
- Department of Breast and Thyroid Surgery, Puai Hospital, Wuhan, The People’s Republic of China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital
| | | |
Collapse
|
20
|
Zhu ZX, Liao MH, Wang XX, Huang JW. Transcatheter Arterial Chemoembolization Plus 131I-Labelled Metuximab versus Transcatheter Arterial Chemoembolization Alone in Intermediate/Advanced Stage Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Korean J Radiol 2016; 17:882-892. [PMID: 27833404 PMCID: PMC5102916 DOI: 10.3348/kjr.2016.17.6.882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/07/2016] [Indexed: 02/05/2023] Open
Abstract
Objective The aim of the study was to compare transcatheter arterial chemoembolization (TACE) plus 131I-labelled metuximab with TACE alone for hepatocellular carcinoma (HCC). Materials and Methods A comprehensive search was conducted in PubMed, Embase, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Chinese BioMedical Literature Database with published date from the earliest to February 29th, 2016. No language restrictions were applied, but only prospective randomized controlled trials (RCTs) or non-RCTs were eligible for a full-text review. The primary outcome was the overall survival (OS) and effective rate (the rate of partial atrophy or complete clearance of the tumor lesion). The odds ratios (ORs) were combined using either the fixed-effects model or random-effects model. Results Eight trials (3 RCTs and 5 non-RCTs) were included, involving a total of 1121 patients. Patients receiving combined therapy of TACE plus 131I-labelled metuximab showed significant improvement in effective rate {OR = 4.00, (95% confidence interval [CI]: 2.40–6.66), p < 0.001}, 1-year OS (OR = 2.03 [95% CI: 1.55–2.67], p < 0.001) and 2-year OS (OR = 2.57 [95% CI: 1.41–4.66], p = 0.002]. Conclusion TACE plus 131I-labelled metuximab is more beneficial for treating advanced HCCs than TACE alone in terms of tumor response and OS. Large, multi-center, and blinded randomized trials are required to confirm these findings.
Collapse
Affiliation(s)
- Ze-Xin Zhu
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming-Heng Liao
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Xue Wang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji-Wei Huang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Ju HL, Ro SW. Making cancer fat: reprogramming of lipid metabolism by CD147 in hepatocellular carcinoma. Chin J Cancer Res 2016; 28:380-2. [PMID: 27478325 PMCID: PMC4949285 DOI: 10.21147/j.issn.1000-9604.2016.03.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hye-Lim Ju
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Simon Weonsang Ro
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| |
Collapse
|
22
|
Prognostic Indications of Elevated MCT4 and CD147 across Cancer Types: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:242437. [PMID: 26779534 PMCID: PMC4686628 DOI: 10.1155/2015/242437] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 01/15/2023]
Abstract
Background. Metabolism in the tumor microenvironment can play a critical role in tumorigenesis and tumor aggression. Metabolic coupling may occur between tumor compartments; this phenomenon can be prognostically significant and may be conserved across tumor types. Monocarboxylate transporters (MCTs) play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. The transporters MCT1 and MCT4 are regulated via expression of their chaperone, CD147. Methods. We conducted a meta-analysis of existing publications on the relationship between MCT1, MCT4, and CD147 expression and overall survival and disease-free survival in cancer, using hazard ratios derived via multivariate Cox regression analyses. Results. Increased MCT4 expressions in the tumor microenvironment, cancer cells, or stromal cells were all associated with decreased overall survival and decreased disease-free survival (p < 0.001 for all analyses). Increased CD147 expression in cancer cells was associated with decreased overall survival and disease-free survival (p < 0.0001 for both analyses). Few studies were available on MCT1 expression; MCT1 expression was not clearly associated with overall or disease-free survival. Conclusion. MCT4 and CD147 expression correlate with worse prognosis across many cancer types. These results warrant further investigation of these associations.
Collapse
|
23
|
Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 2015; 15:845-63. [PMID: 25294374 DOI: 10.1631/jzus.b1400131] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.
Collapse
Affiliation(s)
- Chai-Hong Yeong
- Department of Biomedical Imaging & University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | | | | |
Collapse
|
24
|
|
25
|
Ni JY, Xu LF, Wang WD, Sun HL, Chen YT. Conventional transarterial chemoembolization vs microsphere embolization in hepatocellular carcinoma: A meta-analysis. World J Gastroenterol 2014; 20:17206-17217. [PMID: 25493037 PMCID: PMC4258593 DOI: 10.3748/wjg.v20.i45.17206] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/19/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare conventional transarterial chemoembolization (c-TACE) with microsphere embolization in hepatocellular carcinoma (HCC).
METHODS: We searched PubMed, Medline, Embase and the Cochrane Library for trials assessing the efficacy and safety of c-TACE in comparison with those of yttrium-90 microsphere or drug-eluting bead embolization from January 2004 to December 2013. Overall survival rate (OSR), tumor response [complete response, partial response (PR), stable disease (SD), progressive disease (PD)], α-fetoprotein (AFP) response, progression rate and complications were compared and analyzed. Pooled ORs with 95%CI were calculated using either the fixed-effects model or random-effects model. All statistical analyses were conducted using the Review Manager (version 5.1.) from the Cochrane collaboration.
RESULTS: Thirteen trials were identified, including a total of 1834 patients; 1233 were treated with c-TACE, 377 underwent yttrium-90 microsphere embolization and 224 underwent drug-eluting bead embolization. The meta-analysis with either the random-effects model or fixed-effects model indicated that microsphere embolization was associated with significantly higher OSRs compared with those of c-TACE (OR1-year = 1.38, 95%CI1-year: 1.05-1.82; OR2-year = 2.88, 95%CI2-year: 1.18-7.05; OR3-year = 2.15, 95%CI3-year: 1.18-3.91). The complete tumor response rates of patients who underwent microspheres embolization were significantly higher than those of patients treated with c-TACE (OR = 2.19, 95%CI: 1.31-3.64). The tumor progression rate after microsphere embolization was markedly lower than that after c-TACE (OR = 0.56, 95%CI: 0.39-0.81). There was no significant difference between microsphere embolization and c-TACE in PR (OR = 0.73, 95%CI: 0.47-1.15), SD (OR = 1.07, 95%CI: 0.79-1.44), PD (OR = 0.75, 95%CI: 0.33-1.68), AFP response (OR = 1.38, 95%CI: 0.64-2.94) and complications (OR = 0.68, 95%CI: 0.46-1.00).
CONCLUSION: Our analysis indicated that microsphere embolization was associated with superior survival and treatment response in comparison with c-TACE in the treatment of patients with HCC.
Collapse
|
26
|
Wang Y, Yuan L, Yang XM, Wei D, Wang B, Sun XX, Feng F, Nan G, Wang Y, Chen ZN, Bian H. A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK-PI3K-Akt-Girdin signaling pathway. Clin Exp Metastasis 2014; 32:39-53. [PMID: 25424030 DOI: 10.1007/s10585-014-9689-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/19/2014] [Indexed: 01/11/2023]
Abstract
CD147 is expressed at low levels in normal tissues but frequently highly expressed in a wide range of tumor types such as lung, breast, and liver and therefore it is a potentially unique therapeutic target for these diverse tumor types. We previously generated a murine antibody HAb18 which suppresses matrix met al.loproteinase-2 and matrix metalloproteinase-9 secretion, attenuates cell invasion by blocking the CD147 molecule in tumor cells. Here, we generated a chimeric antibody containing the variable heavy and variable light chains of murine HAb18 and the constant regions of human IgG1γ1 and human κ chain as a potential therapeutic agent (designated cHAb18). Quantitative measurement of cHAb18 antibody affinity for antigen CD147 with surface plasmon resonance showed the equilibrium dissociation constant KD was 2.66 × 10(-10) mol/L, similar to that of KD 2.73 × 10(-10) mol/L for murine HAb18. cHAb18 induced antibody-dependent cell-mediated cytotoxicity in two hepatocellular carcinoma cell lines, SMMC-7721 and Huh-7 cells. It inhibited cancer invasion and migration in hepatocellular carcinoma cells by specifically blocking CD147. Except for the depression of matrix metalloproteinase-2 and matrix metalloproteinase-9 expressions, cHAb18 antibody suppressed cell motility by rearrangement of actin cytoskeleton, which was probably induced by decreasing the phosphorylation of focal adhesion kinase, phosphatidylinositide-3 kinase (PI3K), Akt, and Girdin in the integrin signaling pathway. In an orthotopic model of hepatocellular carcinoma in BALB/c nude mice, cHAb18 treatment effectively reduced the tumor metastasis in liver and prolonged the survival. These findings reveal new therapeutic potential for cHAb18 antibody targeting CD147 on tumor therapy.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Cancer Biology, Department of Cell Biology and Cell Engineering Research Center, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|