1
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
3
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Parizad EG, Imani Fooladi AA, Sedighian H, Behzadi E, Amani J, Khosravi A. Immune response induced by recombinant pres2/S-protein and a pres2-S-protein fused with a core 18-27 antigen fragment of hepatitis B virus compared to conventional HBV vaccine. Virus Genes 2023:10.1007/s11262-023-01995-z. [PMID: 37140777 DOI: 10.1007/s11262-023-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Although comprehensive vaccination is the cornerstone of public health programs to control hepatitis B virus (HBV) infections, 5% of people who receive the existing vaccine do not develop proper immunity against HBV. To overcome this challenge, researchers have tried using various protein fragments encoded by the virus genome to achieve better immunization rates. An important antigenic component of HBsAg called the preS2/S or M protein has also received much attention in this area. The gene sequences of preS2/S and Core18-27 peptide were extracted from the GenBank (NCBI). Final gene synthesis was conducted with pET28. Groups of BALB/c mice were immunized with 10 μg/ml of recombinant proteins and 1 μg/ml CPG7909 adjuvant. Serum levels of IF-γ, TNF-α, IL-2, IL-4, and IL-10 were measured by ELISA assay method on spleen cell cultures on day 45, and IgG1, IgG2a, and total IgG titers obtained from mice serum were quantified on days 14 and 45. Statistical analysis did not show any significant difference between the groups regarding IF-γ level. There were, however, significant differences in terms of IL-2 and IL-4 levels between the groups receiving preS2/S-C18-27 with and without adjuvant and the groups receiving both preS2/S and preS2/S-C18-27 (Plus Recomb-Plus Recomb: the group of mice that received both preS2/S and preS2/S-C18-27 simultaneously). The strongest total antibody production was induced by immunization with both recombinant proteins without CPG adjuvant. The groups that received both preS2/S and preS2/S-C18-27, whether with or without adjuvant, were significantly different from those that received the conventional vaccine considering most abundant interleukins. This difference suggested that higher levels of efficacy can be achieved by the use of multiple virus antigen fragments rather than using a single fragment.
Collapse
Affiliation(s)
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
5
|
Elois MA, da Silva R, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as Biotechnological Tools. Viruses 2023; 15:349. [PMID: 36851563 PMCID: PMC9963553 DOI: 10.3390/v15020349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
6
|
Kulkarni AV, Premkumar M, Arab JP, Kumar K, Sharma M, Reddy ND, Padaki NR, Reddy RK. Early Diagnosis and Prevention of Infections in Cirrhosis. Semin Liver Dis 2022; 42:293-312. [PMID: 35672014 DOI: 10.1055/a-1869-7607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strategies to prevent infection and improve outcomes in patients with cirrhosis. HAV, hepatitis A virus; HBV, hepatitis B virus; COVID-19, novel coronavirus disease 2019; NSBB, nonselective β-blocker; PPI, proton pump inhibitors.Cirrhosis is a risk factor for infections. Majority of hospital admissions in patients with cirrhosis are due to infections. Sepsis is an immunological response to an infectious process that leads to end-organ dysfunction and death. Preventing infections may avoid the downstream complications, and early diagnosis of infections may improve the outcomes. In this review, we discuss the pathogenesis, diagnosis, and biomarkers of infection; the incremental preventive strategies for infections and sepsi; and the consequent organ failures in cirrhosis. Strategies for primary prevention include reducing gut translocation by selective intestinal decontamination, avoiding unnecessary proton pump inhibitors' use, appropriate use of β-blockers, and vaccinations for viral diseases including novel coronavirus disease 2019. Secondary prevention includes early diagnosis and a timely and judicious use of antibiotics to prevent organ dysfunction. Organ failure support constitutes tertiary intervention in cirrhosis. In conclusion, infections in cirrhosis are potentially preventable with appropriate care strategies to then enable improved outcomes.
Collapse
Affiliation(s)
- Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Juan P Arab
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Karan Kumar
- Department of Hepatology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nageshwar D Reddy
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nagaraja R Padaki
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rajender K Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Paramasivam K, Shen Y, Yuan J, Waheed I, Mao C, Zhou X. Advances in the Development of Phage-Based Probes for Detection of Bio-Species. BIOSENSORS 2022; 12:30. [PMID: 35049658 PMCID: PMC8773867 DOI: 10.3390/bios12010030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 05/10/2023]
Abstract
Bacteriophages, abbreviated as "phages", have been developed as emerging nanoprobes for the detection of a wide variety of biological species, such as biomarker molecules and pathogens. Nanosized phages can display a certain length of exogenous peptides of arbitrary sequence or single-chain variable fragments (scFv) of antibodies that specifically bind to the targets of interest, such as animal cells, bacteria, viruses, and protein molecules. Metal nanoparticles generally have unique plasmon resonance effects. Metal nanoparticles such as gold, silver, and magnetism are widely used in the field of visual detection. A phage can be assembled with metal nanoparticles to form an organic-inorganic hybrid probe due to its nanometer-scale size and excellent modifiability. Due to the unique plasmon resonance effect of this composite probe, this technology can be used to visually detect objects of interest under a dark-field microscope. In summary, this review summarizes the recent advances in the development of phage-based probes for ultra-sensitive detection of various bio-species, outlining the advantages and limitations of detection technology of phage-based assays, and highlighting the commonly used editing technologies of phage genomes such as homologous recombination and clustered regularly interspaced palindromic repeats/CRISPR-associated proteins system (CRISPR-Cas). Finally, we discuss the possible scenarios for clinical application of phage-probe-based detection methods.
Collapse
Affiliation(s)
- Kameshpandian Paramasivam
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuanzhao Shen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Jiasheng Yuan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Chuanbin Mao
- Stephenson Life Sciences Research Center, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5300, USA;
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Zalewska-Piątek B, Piątek R. Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development. Pharmaceuticals (Basel) 2021; 14:331. [PMID: 33916345 PMCID: PMC8066226 DOI: 10.3390/ph14040331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
The constantly growing number of people suffering from bacterial, viral, or fungal infections, parasitic diseases, and cancers prompts the search for innovative methods of disease prevention and treatment, especially based on vaccines and targeted therapy. An additional problem is the global threat to humanity resulting from the increasing resistance of bacteria to commonly used antibiotics. Conventional vaccines based on bacteria or viruses are common and are generally effective in preventing and controlling various infectious diseases in humans. However, there are problems with the stability of these vaccines, their transport, targeted delivery, safe use, and side effects. In this context, experimental phage therapy based on viruses replicating in bacterial cells currently offers a chance for a breakthrough in the treatment of bacterial infections. Phages are not infectious and pathogenic to eukaryotic cells and do not cause diseases in human body. Furthermore, bacterial viruses are sufficient immuno-stimulators with potential adjuvant abilities, easy to transport, and store. They can also be produced on a large scale with cost reduction. In recent years, they have also provided an ideal platform for the design and production of phage-based vaccines to induce protective host immune responses. The most promising in this group are phage-displayed vaccines, allowing for the display of immunogenic peptides or proteins on the phage surfaces, or phage DNA vaccines responsible for expression of target genes (encoding protective antigens) incorporated into the phage genome. Phage vaccines inducing the production of specific antibodies may in the future protect us against infectious diseases and constitute an effective immune tool to fight cancer. Moreover, personalized phage therapy can represent the greatest medical achievement that saves lives. This review demonstrates the latest advances and developments in the use of phage vaccines to prevent human infectious diseases; phage-based therapy, including clinical trials; and personalized treatment adapted to the patient's needs and the type of bacterial infection. It highlights the advantages and disadvantages of experimental phage therapy and, at the same time, indicates its great potential in the treatment of various diseases, especially those resistant to commonly used antibiotics. All the analyses performed look at the rich history and development of phage therapy over the past 100 years.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Rafał Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
- BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
9
|
Sun H, Chang L, Yan Y, Wang L. Hepatitis B virus pre-S region: Clinical implications and applications. Rev Med Virol 2020; 31. [PMID: 33314434 DOI: 10.1002/rmv.2201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection is a major threat to global public health, which can result in many acute and chronic liver diseases. HBV, a member of the family Hepadnaviridae, is a small enveloped DNA virus containing a circular genome of 3.2 kb. Located upstream of the S-open-reading frame of the HBV genome is the pre-S region, which is vital to the viral life cycle. The pre-S region has high variability and many mutations in the pre-S region are associated with several liver diseases, such as fulminant hepatitis (FH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). In addition, the pre-S region has been applied in the development of several pre-S-based materials and systems to prevent or treat HBV infection. In conclusion, the pre-S region plays an essential role in the occurrence, diagnosis, and treatment of HBV-related liver diseases, which may provide a novel perspective for the study of HBV infection and relevant diseases.
Collapse
Affiliation(s)
- Huizhen Sun
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
10
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J Clin Med 2020; 9:jcm9082488. [PMID: 32756323 PMCID: PMC7464500 DOI: 10.3390/jcm9082488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background and aims: The gut microbiota is a complex ecosystem containing bacteria, viruses, fungi, yeasts and other single-celled organisms. It is involved in the development and maintenance of both innate and systemic immunity of the body. Emerging evidence has shown its role in liver diseases through the immune system cross-talk. We review herein literature data regarding the triangular interaction between gut microbiota, immune system and liver in health and disease. Methods: We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: gut microbiota, microbiome, gut virome, immunity, gastrointestinal-associated lymphoid tissue (GALT), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steato-hepatitis (NASH), alcoholic liver disease, liver cirrhosis, hepatocellular carcinoma. Results: The gut microbiota consists of microorganisms that educate our systemic immunity through GALT and non-GALT interactions. The latter maintain health but are also involved in the pathophysiology and in the outcome of several liver diseases, particularly those with metabolic, toxic or immune-mediated etiology. In this context, gut virome has an emerging role in liver diseases and needs to be further investigated, especially due to the link reported between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and hepatic dysfunctions. Conclusions: Changes in gut microbiota composition and alterations in the immune system response are involved in the pathogenesis of metabolic and immune-mediated liver diseases.
Collapse
|
12
|
Machado JM, Costa LE, Dias DS, Ribeiro PAF, Martins VT, Lage DP, Carvalho GB, Franklin ML, Tavares GSV, Oliveira-da-Silva JA, Machado AS, Ramos LS, Nogueira LM, Mariano RMS, Moura HB, Silva ES, Teixeira-Neto RG, Campos-da-Paz M, Galdino AS, Coelho EAF. Diagnostic markers selected by immunoproteomics and phage display applied for the serodiagnosis of canine leishmaniosis. Res Vet Sci 2019; 126:4-8. [PMID: 31415928 DOI: 10.1016/j.rvsc.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 11/24/2022]
Abstract
Canine leishmaniosis (CanL) is one of the most important parasitic diseases found in several countries worldwide. Dogs are considered important domestic reservoirs of the parasites, being relevant in the maintenance of transmission cycle of the disease between sandflies and humans. However, the prevalence of asymptomatic infection is considerably higher than that of apparent clinical illness in the infected animals; thus making promptly necessary to diagnose the infection in these animals, which could help to allow to the adoption of more efficient control measures against disease. Parasitological tests, which are considered as gold standard to demonstrate the infection and diagnose the disease, present problems related with their sensitivity. Also, the sample´s collect is considered invasive. As consequence, serological tests could be applied as an additional tool to detect the asymptomatic and symptomatic CanL. For this purpose, distinct recombinant antigens have been studied; however, problems in their sensitivity and/or specificity have been still registered. The present review focus in advances in the identification of new diagnostic targets applied for the CanL diagnose, represented here by recombinant single, combined or chimeric proteins, as well as by peptides that mimic epitopes (mimotopes); which were selected by means of immunoproteomics and phage display.
Collapse
Affiliation(s)
- Juliana M Machado
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Patricia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Gerusa B Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Michelle L Franklin
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Luana S Ramos
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Lais M Nogueira
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Reysla M S Mariano
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Henrique B Moura
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Eduardo S Silva
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Rafael G Teixeira-Neto
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Mariana Campos-da-Paz
- Nanobiotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Alexsandro S Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage-based vaccines. Adv Drug Deliv Rev 2019; 145:40-56. [PMID: 30594492 DOI: 10.1016/j.addr.2018.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Bacteriophages, or more colloquially as phages, are viruses that possess the ability to infect and replicate with bacterial cells. They are assembled from two major types of biomolecules, the nucleic acids and the proteins, with the latter forming a capsid and the former being encapsulated. In the eukaryotic hosts, phages are inert particulate antigens and cannot trigger pathogenesis. In recent years, many studies have been explored about using phages as nanomedicine platforms for developing vaccines due to their unique biological characteristics. The whole phage particles can be used for vaccine design in the form of phage-displayed vaccines or phage DNA vaccines. Phage-displayed vaccines are the phages with peptide or protein antigens genetically displayed on their surfaces as well as those with antigens chemically conjugated or biologically bound on their surfaces. The phages can then deliver the immunogenic peptides or proteins to the target cells or tissues. Phage DNA vaccines are the eukaryotic promoter-driven vaccine genes inserted in the phage genomes, which are carried by phages to the target cells to generate antigens. The antigens, either as the immunogenic peptides or proteins displayed on the phages, or as the products expressed from the vaccine genes, can serve as vaccines to elicit immune responses for disease prevention and treatment. Both phage-displayed vaccines and phage DNA vaccines promise a brilliant future for developing vaccines. This review presents the recent advancements in the field of phage-based vaccines and their applications in both the prevention and treatment of various diseases. It also discusses the challenges and perspectives in moving this field forwards.
Collapse
|
14
|
Górski A, Jończyk‐Matysiak E, Łusiak‐Szelachowska M, Weber‐Dąbrowska B, Międzybrodzki R, Borysowski J. Therapeutic potential of phages in autoimmune liver diseases. Clin Exp Immunol 2018; 192:1-6. [PMID: 29266228 PMCID: PMC5842411 DOI: 10.1111/cei.13092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Autoimmune liver disease (ALD) poses a difficult medical challenge, as there is a significant number of patients in whom current therapy offers questionable or no benefit, yet its side effects may be serious, including the development of malignancy. Bacterial viruses (phages) have been recognized increasingly as immunomodulators contributing to immune homeostasis and curbing inflammation. Accumulating data suggest that phages may be useful in immunotherapy of ALD. Phages have been shown to down-regulate the expression and/or production and activity of factors associated with hepatic injury [reactive oxygen species, Toll-like receptor (TLR)-4 activation, nuclear factor kappa B (NF-κB) activation, proinflammatory and procoagulant activities of platelets] and up-regulate the expression and/or production of factors demonstrated as playing a protective role [interleukin (IL)-10, IL-1 receptor antagonist].
Collapse
Affiliation(s)
- A. Górski
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
- Department of Clinical Immunology, the Medical University of WarsawWarsawPoland
| | - E. Jończyk‐Matysiak
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - M. Łusiak‐Szelachowska
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - B. Weber‐Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - R. Międzybrodzki
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
- Department of Clinical Immunology, the Medical University of WarsawWarsawPoland
| | - J. Borysowski
- Department of Clinical Immunology, the Medical University of WarsawWarsawPoland
| |
Collapse
|
15
|
Eraclio G, Fortina MG, Labrie SJ, Tremblay DM, Moineau S. Characterization of prophages of Lactococcus garvieae. Sci Rep 2017; 7:1856. [PMID: 28500301 PMCID: PMC5431838 DOI: 10.1038/s41598-017-02038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
This report describes the morphological characterization and genome analysis of an induced prophage (PLg-TB25) from a dairy strain of Lactococcus garvieae. The phage belongs to the Siphoviridae family and its morphology is typical of other lactococcal phages. A general analysis of its genome did not reveal similarities with other lactococcal phage genomes, confirming its novelty. However, similarities were found between genes of its morphogenesis cluster and genes of Gram-positive bacteria, suggesting that this phage genome resulted from recombination events that took place in a heterogeneous microbial environment. An in silico search for other prophages in 16 L. garvieae genomes available in public databases, uncovered eight seemingly complete prophages in strains isolated from dairy and fish niches. Genome analyses of these prophages revealed three novel L. garvieae phages. The remaining prophages had homology to phages of Lactococcus lactis (P335 group) suggesting a close relationship between these lactococcal species. The similarity in GC content of L. garvieae prophages to the genomes of L. lactis phages further supports the hypothesis that these phages likely originated from the same ancestor.
Collapse
Affiliation(s)
- Giovanni Eraclio
- Department of Food, Environmental and Nutritional Sciences, Division of Food Microbiology and Bioprocesses, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Maria G Fortina
- Department of Food, Environmental and Nutritional Sciences, Division of Food Microbiology and Bioprocesses, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Simon J Labrie
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Denise M Tremblay
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Sylvain Moineau
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada. .,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
16
|
Phage-displayed peptides that mimic epitopes of hepatitis E virus capsid. Med Microbiol Immunol 2017; 206:301-309. [PMID: 28434129 DOI: 10.1007/s00430-017-0507-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Hepatitis E is an emerging zoonotic infection of increasing public health threat for the UK, especially for immunosuppressed individuals. A human recombinant vaccine has been licensed only in China and is not clear whether it protects against hepatitis E virus (HEV) genotype 3, the most prevalent in Europe. The aim of this study was to use phage display technology as a tool to identify peptides that mimic epitopes of HEV capsid (mimotopes). We identified putative linear and conformational mimotopes using sera from Scottish blood donors that have the immunological imprint of past HEV infection. Four mimotopes did not have homology with the primary sequence of HEV ORF2 capsid but competed effectively with a commercial HEV antigen for binding to anti-HEV reference serum. When the reactivity profile of each mimotope was compared with Wantai HEV-IgG ELISA, the most sensitive HEV immunoassay, mimotopes showed 95.2-100% sensitivity while the specificity ranged from 81.5 to 95.8%. PepSurf algorithm was used to map affinity-selected peptides onto the ORF2 crystal structure of HEV genotype 3, which predicted that these four mimototopes are clustered in the P domain of ORF2 capsid, near conformational epitopes of anti-HEV neutralising monoclonal antibodies. These HEV mimotopes may have potential applications in the design of structural vaccines and the development of new diagnostic tests.
Collapse
|
17
|
Zheng G, Lu Q, Wang F, Jin Q, Teng M, Zhang N, Ren T, Ding P, Zhang G. Selection of affinity peptides for the purification potential of porcine circovirus type 2 (PCV2) Cap virus-like particles (VLPs). RSC Adv 2017. [DOI: 10.1039/c7ra05790c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we describe the use of a M13 phage-displayed random peptide library for screening novel peptide motifs that specifically recognize recombinant PCV2 Cap protein for the first time.
Collapse
Affiliation(s)
- Guanmin Zheng
- College of Animal Husbandry and Veterinary Science
- Henan Agricultural University
- Zhengzhou 450002
- People's Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Fangyu Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Nana Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Tingting Ren
- College of Animal Husbandry and Veterinary Science
- Henan Agricultural University
- Zhengzhou 450002
- People's Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
| | - Peiyang Ding
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Gaiping Zhang
- College of Animal Husbandry and Veterinary Science
- Henan Agricultural University
- Zhengzhou 450002
- People's Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
| |
Collapse
|
18
|
Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 939:117-137. [PMID: 27807746 DOI: 10.1007/978-981-10-1503-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbes are ubiquitous on our planet, and it is well known that the total number of microbial cells on earth is huge. These organisms usually live in communities, and each of these communities has a different taxonomical structure. As such, microbial communities would serve as the largest reservoir of genes and genetic functions for a vast number of applications in "bio"-related disciplines, especially in biomedicine. Human microbiome is the area in which the relationships between ourselves as hosts and our microbiomes have been examined.In this chapter, we have first reviewed the researches in microbes on community, population and single-cell levels in general. Then we have focused on the effects of recent metagenomics and single-cell advances on human microbiome research, as well as their effects on translational biomedical research. We have also foreseen that with the advancement of big-data analysis techniques, deeper understanding of human microbiome, as well as its broader applications, could be realized.
Collapse
|
19
|
Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J. Phage display as a promising approach for vaccine development. J Biomed Sci 2016; 23:66. [PMID: 27680328 PMCID: PMC5041315 DOI: 10.1186/s12929-016-0285-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Hamid Nickho
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Fernandes CSM, Barbosa I, Castro R, Pina AS, Coroadinha AS, Barbas A, Roque ACA. Retroviral particles are effectively purified on an affinity matrix containing peptides selected by phage-display. Biotechnol J 2016; 11:1513-1524. [DOI: 10.1002/biot.201600025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Cláudia S. M. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| | - Inês Barbosa
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Instituto de Tecnológia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | - Ana Sofia Pina
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Instituto de Tecnológia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Bayer Portugal, S.A.; Carnaxide Portugal
| | - A. Cecília A. Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| |
Collapse
|
21
|
Coelho EAF, Chávez-Fumagalli MA, Costa LE, Tavares CAP, Soto M, Goulart LR. Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy. Rev Soc Bras Med Trop 2015; 48:370-9. [DOI: 10.1590/0037-8682-0096-2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 02/02/2023] Open
Affiliation(s)
| | | | | | | | | | - Luiz Ricardo Goulart
- Universidade Federal de Uberlândia, Brazil; University of California-Davis, United States
| |
Collapse
|
22
|
Toita R, Kawano T, Kang JH, Murata M. Applications of human hepatitis B virus preS domain in bio- and nanotechnology. World J Gastroenterol 2015; 21:7400-7411. [PMID: 26139986 PMCID: PMC4481435 DOI: 10.3748/wjg.v21.i24.7400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/24/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.
Collapse
|