1
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2024:e202400232. [PMID: 39434498 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Tamil Nadu, Chennai, 600116, India
| | - Natarajan Chandrasekaran
- Senior Professor & Former Director, Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam road, Tamil Nadu, Katpadi, Vellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Tamil Nadu, Chennai, 600116, India
| |
Collapse
|
2
|
Abraham T, Armold M, McGovern C, Harms JF, Darok MC, Gigliotti C, Adair B, Gray JL, Kelly DF, Adair JH, Matters GL. CCK Receptor Inhibition Reduces Pancreatic Tumor Fibrosis and Promotes Nanoparticle Delivery. Biomedicines 2024; 12:1024. [PMID: 38790986 PMCID: PMC11118934 DOI: 10.3390/biomedicines12051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The poor prognosis for pancreatic ductal adenocarcinoma (PDAC) patients is due in part to the highly fibrotic nature of the tumors that impedes delivery of therapeutics, including nanoparticles (NPs). Our prior studies demonstrated that proglumide, a cholecystokinin receptor (CCKR) antagonist, reduced fibrosis pervading PanIN lesions in mice. Here, we further detail how the reduced fibrosis elicited by proglumide achieves the normalization of the desmoplastic tumor microenvironment (TME) and improves nanoparticle uptake. One week following the orthotopic injection of PDAC cells, mice were randomized to normal or proglumide-treated water for 3-6 weeks. Tumors were analyzed ex vivo for fibrosis, vascularity, stellate cell activation, vascular patency, and nanoparticle distribution. The histological staining and three-dimensional imaging of tumors each indicated a reduction in stromal collagen in proglumide-treated mice. Proglumide treatment increased tumor vascularity and decreased the activation of cancer-associated fibroblasts (CAFs). Additionally, PANC-1 cells with the shRNA-mediated knockdown of the CCK2 receptor showed an even greater reduction in collagen, indicating the CCK2 receptors on tumor cells contribute to the desmoplastic TME. Proglumide-mediated reduction in fibrosis also led to functional changes in the TME as evidenced by the enhanced intra-tumoral distribution of small (<12 nm) Rhodamine-loaded nanoparticles. The documented in vivo, tumor cell-intrinsic anti-fibrotic effects of CCK2R blockade in both an immunocompetent syngeneic murine PDAC model as well as a human PDAC xenograft model demonstrates that CCK2R antagonists, such as proglumide, can improve the delivery of nano-encapsulated therapeutics or imaging agents to pancreatic tumors.
Collapse
Affiliation(s)
- Thomas Abraham
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - Michael Armold
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - Christopher McGovern
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - John F. Harms
- Department of Biological Sciences, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Matthew C. Darok
- Department of Biological Sciences, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Christopher Gigliotti
- Department of Materials Science & Engineering, Pennsylvania State University, 407 Steidle Building, University Park, PA 16802, USA
| | - Bernadette Adair
- Department of Materials Science & Engineering, Pennsylvania State University, 407 Steidle Building, University Park, PA 16802, USA
| | - Jennifer L. Gray
- N-022 Millennium Science Complex, Materials Research Institute, Pollock Road, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, The Center for Structural Oncology, 506 Chemical and Biomedical Engineering, Pennsylvania State University, University Park, PA 16803, USA
| | - James H. Adair
- Departments of Materials Science & Engineering, Biomedical Engineering, and Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gail L. Matters
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| |
Collapse
|
3
|
Esmaeili H, Nasrollahzadeh Sabet M, Mosaed R, Chamanara M, Hadi S, Hazrati E, Farhadi A, Heidari MF, Behroozi J. Oleanolic acid increases the anticancer potency of doxorubicin in pancreatic cancer cells. J Biochem Mol Toxicol 2023; 37:e23426. [PMID: 37345903 DOI: 10.1002/jbt.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Combination therapy is a novel cancer therapy approach that combines two or more chemotherapy drugs. This treatment modality enhances the efficacy of chemotherapy by targeting key pathways in an additive or synergistic manner. Therefore, we investigated the efficacy of combination therapy by widely used chemotherapy drug doxorubicin (DOX) and oleanolic acid (OA) to induction of apoptosis for pancreatic cancer (PC) therapy. The effects of DOX, OA, and their combination (DOX-OA) were investigated on proliferation and viability of PC cell line (PANC-1) by MTT assay. Moreover, migration and invasion of the cancer cells were evaluated by trans-well migration assay and wound healing assay. Flow cytometry and DAPI (4',6-diamidino-2-phenylindole) staining were employed to investigate apoptosis quantification and qualification of the treated cancer cells. Finally, mRNA expression of apoptosis-related genes was assessed by quantitative real-time polymerase chain reaction. Our results demonstrated that the proliferation and metastasis potential of PC cells significantly decreased after treatment by DOX, OA, and DOX-OA. Moreover, we observed an increase in apoptosis percentage in the treated cancer cells. The apoptosis-related gene expression was modified to increase the apoptosis rate in all of the treatment groups. However, the anticancer potency of DOX-OA combination was significantly more than that of DOX and OA treatments alone. Our study suggested that DOX-OA combination exerts more profound anticancer effects against PC cell lines than DOX or OA monotherapy. This approach may increase the efficiency of chemotherapy and reduce unintended side effects by lowering the prescribed dose of DOX.
Collapse
Affiliation(s)
- Hosein Esmaeili
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehrdad Nasrollahzadeh Sabet
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Department of Anesthesiology and Critical Care, AJA University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Biotechnology, Faculty of Life Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mohammad Foad Heidari
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Javad Behroozi
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tempero M, Oh DY, Tabernero J, Reni M, Van Cutsem E, Hendifar A, Waldschmidt DT, Starling N, Bachet JB, Chang HM, Maurel J, Garcia-Carbonero R, Lonardi S, Coussens LM, Fong L, Tsao LC, Cole G, James D, Macarulla T. Ibrutinib in combination with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma: phase III RESOLVE study. Ann Oncol 2021; 32:600-608. [PMID: 33539945 DOI: 10.1016/j.annonc.2021.01.070] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND First-line treatment of metastatic pancreatic ductal adenocarcinoma (PDAC) includes nab-paclitaxel/gemcitabine. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumor activity through tumor microenvironment modulation. The safety and efficacy of first-line ibrutinib plus nab-paclitaxel/gemcitabine treatment in patients with PDAC were evaluated. PATIENTS AND METHODS RESOLVE (NCT02436668) was a phase III, randomized, double-blind, placebo-controlled study. Patients (histologically-confirmed PDAC; stage IV diagnosis ≥6 weeks of randomization; Karnofsky performance score ≥70) were randomized to once-daily oral ibrutinib (560 mg) or placebo plus nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2). Primary endpoints were overall survival (OS) and investigator-assessed progression-free survival (PFS); overall response rate and safety were assessed. RESULTS In total, 424 patients were randomized (ibrutinib arm, n = 211; placebo arm, n = 213). Baseline characteristics were balanced across arms. After a median follow-up of 25 months, there was no significant difference in OS between ibrutinib plus nab-paclitaxel/gemcitabine versus placebo plus nab-paclitaxel/gemcitabine (median of 9.7 versus 10.8 months; P = 0.3225). PFS was shorter for ibrutinib plus nab-paclitaxel/gemcitabine compared with placebo plus nab-paclitaxel/gemcitabine (median 5.3 versus 6.0 months; P < 0.0001). Overall response rates were 29% and 42%, respectively (P = 0.0058). Patients in the ibrutinib arm had less time on treatment and received lower cumulative doses for all agents compared with the placebo arm. The most common grade ≥3 adverse events for ibrutinib versus placebo arms included neutropenia (24% versus 35%), peripheral sensory neuropathy (17% versus 8%), and anemia (16% versus 17%). Primary reasons for any treatment discontinuation were disease progression and adverse events. CONCLUSIONS Ibrutinib plus nab-paclitaxel/gemcitabine did not improve OS or PFS for patients with PDAC. Safety was consistent with known profiles for these agents.
Collapse
Affiliation(s)
- M Tempero
- Department of Medicine, University of California San Francisco, San Francisco, USA.
| | - D-Y Oh
- Department of Internal Medicine, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - J Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), IOB-Quiron, UVic-UICC, CIBERONC, Barcelona, Spain
| | - M Reni
- Department of Radiochemotherapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - E Van Cutsem
- Department of Digestive Oncology, University Hospitals Gasthuisberg/Leuven & KU Leuven, Leuven, Belgium
| | - A Hendifar
- Department of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - D-T Waldschmidt
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany
| | - N Starling
- Section of GI and Lymphoma Units, Department of Medicine, The Royal Marsden, London, UK
| | - J-B Bachet
- Department of Hepatogastroenterology, UPMC, Sorbonne University, Pitié Salpêtrière Hospital, APHP, Paris, France
| | - H-M Chang
- Division of Oncology, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - J Maurel
- Department of Medical Oncology, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - R Garcia-Carbonero
- Department of Medical Oncology, Hospital Universitario Doce de Octubre, Imas12, UCM, CNIO, CIBERONC, Madrid, Spain
| | - S Lonardi
- Dipartimento di Oncologia Clinical e Sperimentale, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - L M Coussens
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - L Fong
- Department of Medicine, University of California San Francisco, San Francisco, USA
| | - L C Tsao
- Department of Statistics, Pharmacyclics LLC, an AbbVie Company, Sunnyvale, USA
| | - G Cole
- Department of Oncology Development, Pharmacyclics LLC, an AbbVie Company, Sunnyvale, USA
| | - D James
- Department of Clinical Science, Pharmacyclics LLC, an AbbVie Company, Sunnyvale, USA
| | - T Macarulla
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), IOB-Quiron, UVic-UICC, CIBERONC, Barcelona, Spain
| |
Collapse
|
5
|
Takenaga K, Akimoto M, Koshikawa N, Nagase H. Cancer cell-derived interleukin-33 decoy receptor sST2 enhances orthotopic tumor growth in a murine pancreatic cancer model. PLoS One 2020; 15:e0232230. [PMID: 32340025 PMCID: PMC7185704 DOI: 10.1371/journal.pone.0232230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Background Proinflammatory interleukin-33 (IL-33) binds to its receptor ST2L and is involved in inflammation and the malignant behavior of cancer cells. However, the role of IL-33-ST2L and the IL-33 decoy receptor sST2 in the tumor microenvironment of pancreatic cancer is unclear. Because we previously reported that sST2 derived from colon cancer cells profoundly influences malignant tumor growth, we hypothesized that sST2 released from pancreatic cancer cells also modulates IL-33-ST2L signaling in the tumor microenvironment, thereby influencing tumor growth. Methods ST2 (ST2L and sST2) expression in mouse pancreatic cancer Panc02 cells was downregulated by shRNAs. mRNA expression levels of IL-33, ST2, cytokines and chemokines in the cells and tumor tissues were examined using real-time PCR. sST2 secretion and the amount of CXCL3 in tumor tissues were measured using ELISA. Tumor growth was investigated after injection of the cells into the pancreas of C57BL/6 mice. MPO+, F4/80+ and CD20+ cells in tumor tissues were detected using immunohistochemistry. Results Some but not all human and mouse pancreatic cancer cell lines preferentially expressed sST2. Then, we investigated the role of sST2 in orthotopic tumor growth of sST2-expressing mouse pancreatic cancer Panc02 cells in immunocompetent mice. shRNA-mediated knockdown of sST2 expression in the cells suppressed orthotopic tumor growth, which was partially recovered by overexpression of shRNA-resistant sST2 mRNA but was not evident in IL-33 knockout mice. This was associated with decreases in Cxcl3 expression, vessel density and accumulation of cancer-associated neutrophils but not cancer-associated macrophages. Administration of SB225002, an inhibitor of the CXCL3 receptor CXCR2, induced similar effects. Conclusions Cancer cell-derived sST2 enhances tumor growth through upregulation of CXCL3 via inhibition of IL-33-ST2L signaling in the tumor microenvironment of pancreatic cancer. These results suggest that the sST2 and the CXCL3-CXCR2 axis could be therapeutic targets.
Collapse
Affiliation(s)
- Keizo Takenaga
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba, Japan
- * E-mail:
| | - Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Nobuko Koshikawa
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba, Japan
| |
Collapse
|
6
|
Bai L, Liang J, Li L, Li E. Downregulation of MiD49 contributes to tumor growth and metastasis of human pancreatic cancer. Oncol Rep 2020; 43:1208-1220. [PMID: 32323835 PMCID: PMC7057927 DOI: 10.3892/or.2020.7499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in mitochondrial morphology by dysregulated mitochondrial fission‑fusion proteins have been increasingly recognized as a hallmark of cancer. MiD49 (mitochondrial dynamics protein of 49 kDa) is a newly identified mitochondrial fission protein involved in the dynamic regulation of mitochondrial morphology. However, the expression pattern and biological functions of MiD49 in human cancers remain largely unexplored, especially in pancreatic cancer (PC). In the present study, the expression and clinical significance of MiD49 was firstly determined by RT‑qPCR and western blot analyses in PC cell lines and tumor tissues. In addition, the biologic functions of MiD49 in PC cell growth and metastasis were investigated using gain‑ and loss‑of‑function assays both in vitro and in vivo. Moreover, the underlying mechanisms by which MiD49 regulates PC cell growth and metastasis were further explored. Our results showed that MiD49 was markedly downregulated in both PC cell lines and human PC specimens. Forced expression of MiD49 suppressed PC cell growth and metastasis both in vitro and in vivo, while knockdown of MiD49 exhibited the opposite effect. Mechanistic exploration demonstrated that the tumor‑suppressive effect of MiD49 was mediated by decreased mitochondrial fission and subsequent reduced ROS production in PC cells. Our findings suggest a critical tumor‑suppressive role played by MiD49 in pancreatic cancer.
Collapse
Affiliation(s)
- Lu Bai
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lihong Li
- Department of Geriatric Respiration, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1617-1627. [PMID: 31014134 DOI: 10.1080/21691401.2019.1594862] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanotechnology has been materialized as a proficient technology for the development of anticancer nanoparticles all the way through an environment-friendly approach. Conventionally, nanoparticles have been assembled by dissimilar methods, but regrettably rely on the negative impact on the natural environment. Amalgamation of nanoparticles by means of plant extract is alternate conservative methods. Scutellaria barbata species was used majorly as food or as medicines against various diseases, and extensive research was conducted for their therapeutic properties. The present research was mainly focused on the synthesis of gold nanoparticles from the Scutellaria barbata by green route method and evaluation of its anticancer activity against pancreatic cancer cell lines (PANC-1). The gold nanoparticles have been characterized by UV-visible spectroscopy, TEM, SAED, AFM, and FTIR analysis. The synthesized gold nanoparticles (AuNPs) possessed effective anticancer activity against pancreatic cancer cell lines (PANC-1). Hence, further research on this plant may lead to the development of novel anticancer drugs which can be used to combat pancreatic cancer.
Collapse
Affiliation(s)
- Lei Wang
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Jianwei Xu
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Ye Yan
- b Department of Ultrasound and Radiology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong Province , China
| | - Han Liu
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | | | - Feng Li
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| |
Collapse
|
8
|
Barbosa IR, Santos CAD, Souza DLBD. PANCREATIC CANCER IN BRAZIL: MORTALITY TRENDS AND PROJECTIONS UNTIL 2029. ARQUIVOS DE GASTROENTEROLOGIA 2019; 55:230-236. [PMID: 30540083 DOI: 10.1590/s0004-2803.201800000-59] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the main cancer-related causes of death in developed countries, and one of the most lethal malignant neoplasms. This type of cancer is classified as the ninth most frequent in the world. OBJECTIVE Analyze temporal trends for pancreatic cancer in Brazil in the period 2000-2014 and calculate mortality projections for the period 2015-2029. METHODS Ecological study, with temporal series, based on information provided by the Brazilian Mortality Information System. Analysis included deaths due to pancreatic malignant neoplasms in Brazil in the period 2000-2014, and analyzed according to sex, age group and Brazilian geographic regions. Projections were made until 2029 in five-year periods, calculated in Nordpred (within the R software). Mortality trends were analyzed by Joinpoint regression. RESULTS Between 2000 and 2014, there were 112,533 deaths due to pancreatic cancer in Brazil. Age-standardised rates was 5.1 deaths/100,000 men and 3.81 deaths/100,000 women. The highest rates were registered for the Midwest region, for both genders. Projections indicated that for the five-year period 2025-2029 there will be increased mortality rates for men in the Northeast and Midwest regions. Joinpoint analysis for Brazil did not reveal significant increases for women (APC=0.4%; 95% CI: -0.2; 1.0), however, there was a significant increasing mortality trend for men (APC= 3.7%; 95% CI: 0.6-7.0) in the period 2000-2004, followed by a stable period, an then another period of significant increases after 2010. These figures are mostly explained by variations in the Brazilian demographic structure. CONCLUSION Pancreatic cancer mortality is unequally distributed across Brazilian regions and genders, and during the next two decades the differences will be accentuated.
Collapse
Affiliation(s)
- Isabelle Ribeiro Barbosa
- Universidade Federal do Rio Grande do Norte, Departamento de Saúde Coletiva, Programa de Pós-Graduação em Saúde Coletiva, Natal, RN, Brasil
| | - Camila Alves Dos Santos
- Universidade Federal do Rio Grande do Norte, Departamento de Saúde Coletiva, Programa de Pós-Graduação em Saúde Coletiva, Natal, RN, Brasil
| | - Dyego Leandro Bezerra de Souza
- Universidade Federal do Rio Grande do Norte, Departamento de Saúde Coletiva, Programa de Pós-Graduação em Saúde Coletiva, Natal, RN, Brasil
| |
Collapse
|
9
|
Pothuraju R, Rachagani S, Junker WM, Chaudhary S, Saraswathi V, Kaur S, Batra SK. Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:319. [PMID: 30567565 PMCID: PMC6299603 DOI: 10.1186/s13046-018-0963-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is among foremost causes of cancer related deaths worldwide due to generic symptoms, lack of effective screening strategies and resistance to chemo- and radiotherapies. The risk factors associated with PC include several metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (T2DM). Studies have shown that obesity and T2DM are associated with PC pathogenesis; however, their role in PC initiation and development remains obscure. MAIN BODY Several biochemical and physiological factors associated with obesity and/or T2DM including adipokines, inflammatory mediators, and altered microbiome are involved in PC progression and metastasis albeit by different molecular mechanisms. Deep understanding of these factors and causal relationship between factors and altered signaling pathways will facilitate deconvolution of disease complexity as well as lead to development of novel therapies. In the present review, we focuses on the interplay between adipocytokines, gut microbiota, adrenomedullin, hyaluronan, vanin and matrix metalloproteinase affected by metabolic alteration and pancreatic tumor progression. CONCLUSIONS Metabolic diseases, such as obesity and T2DM, contribute PC development through altered metabolic pathways. Delineating key players in oncogenic development in pancreas due to metabolic disorder could be a beneficial strategy to combat cancers associated with metabolic diseases in particular, PC.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Sanguine Diagnostics and Therapeutics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Viswanathan Saraswathi
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Akimoto M, Maruyama R, Kawabata Y, Tajima Y, Takenaga K. Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death Dis 2018; 9:804. [PMID: 30038429 PMCID: PMC6056513 DOI: 10.1038/s41419-018-0851-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/21/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
The association between lower circulating adiponectin (APN) levels and the development of pancreatic cancer has been reported. However, the effect of APN on the growth and survival of pancreatic cancer cells remains elusive. Here, we investigate the effects of the anti-diabetic APN receptor (AdipoR) agonist AdipoRon and APN on human pancreatic cancer cells. We found that AdipoRon, but not APN, induces MIAPaCa-2 cell death, mainly through necroptosis. Mechanistically, although both AdipoRon and APN activate AMPK and p38 MAPK in an AdipoR-dependent manner that elicits survival signals, only AdipoRon induces rapid mitochondrial dysfunction through mitochondrial Ca2+ overload, followed by superoxide production via RIPK1 and ERK1/2 activation. Oral administration of AdipoRon suppresses MIAPaCa-2 tumour growth without severe adverse effects and kills cancer cells isolated from patients with pancreatic cancer. Thus, AdipoRon could be a therapeutic agent against pancreatic cancer as well as diabetes.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Ennya, Izumo, Shimane, 693-8501, Japan.,Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Riruke Maruyama
- Department of Pathology, Shimane University Faculty of Medicine, 89-1 Ennya, Izumo, Shimane, 693-8501, Japan
| | - Yasunari Kawabata
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Ennya, Izumo, Shimane, 693-8501, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Ennya, Izumo, Shimane, 693-8501, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Ennya, Izumo, Shimane, 693-8501, Japan. .,Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba, 260-8717, Japan.
| |
Collapse
|
11
|
Yu J, Ding Z, Yang Y, Liu S. Increased platelet-to-lymphocytes ratio is associated with poor long-term prognosis in patients with pancreatic cancer after surgery. Medicine (Baltimore) 2018; 97:e11002. [PMID: 29923983 PMCID: PMC6023787 DOI: 10.1097/md.0000000000011002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several studies reported platelet-to-lymphocytes ratio (PLR), neutrophil-to-lymphocyte ratio (NLR) and red blood cell distribution width (RDW) were associated with the mid-term survival or cancer stage in pancreatic cancer. However, the relationship between these markers and the long-term prognosis of pancreatic cancer is still unknown. We investigated the relationship between PLR, NLR, RDW, and the long-term prognosis of pancreatic cancer.We included 182 pancreatic cancer patients who received operation at Linzi District People 's Hospital between August 2010 and January 2017. PLR, NLR, and RDW control data was obtained from 150 health volunteers from January 2011 to January 2017. Blood biochemical data before operation, preoperative computed tomography information, and pathological data of the pancreatic cancer patients were retrospectively collected for further analysis. Independent long-term prognostic significance of PLR, NLR, and RDW were analyzed in pancreatic cancer patients.PLR, NLR, and RDW were significantly increased in pancreatic cancer group compared with the control. Receiver operating characteristic (ROC) curve analysis showed the optimal cut-off values of PLR, NLR, and RDW were 150, 1.73, and 13.2 respectively. Overall survival (OS) analysis showed pancreatic cancer patients with PLR≥150 (median time, 24 vs 37.5 months, P = .005) or RDW≥13.2 (median time, 27 months vs 37.5 months, P = .018) had lower postoperative 5 year OS compared with pancreatic cancer patients with PLR<150 or RDW<13.2. Univariate and multivariable Cox regression analysis for postoperative 5 year OS data showed PLR≥150 (HR = 2.451, 95% CI 1.215-4.947; P = .012) was still associated with the OS independently. Disease free survival (DFS) analysis showed pancreatic cancer patients with PLR≥150 (median time, 24 months vs 38 months, P = .002) or RDW≥13.2 (median time, 24 months vs 37.5 months, P = .006) had lower postoperative 5 year DFS compared with pancreatic cancer patients with PLR<150 or RDW<13.2. Univariate and multivariable Cox regression analysis for postoperative 5 year DFS data showed PLR≥150 (HR = 2.712, 95% CI 1.367-5.379; P = .004) was independently associated with the DFS.In the present study, we find hematological biomarkers PLR≥150 is an independently predictive risk factor for the postoperative long-term prognosis in pancreatic cancer patients. Our study may provide a convenient way for the prognostic assessment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Jinming Yu
- Department of Laboratory, Linzi District People's Hospital, Zibo
| | | | - Yuanming Yang
- Department of Blood Transfusion, Affiliated Hospital of Medical College, Qingdao University, Qingdao
| | - Shanli Liu
- Department of Laboratory, Changle People's Hospital, Changle, China
| |
Collapse
|
12
|
Juo YY, Gibbons MAM, Dutson E, Lin AY, Yanagawa J, Hines OJ, Eibl G, Chen Y. Obesity Is Associated with Early Onset of Gastrointestinal Cancers in California. J Obes 2018; 2018:7014073. [PMID: 30327727 PMCID: PMC6169206 DOI: 10.1155/2018/7014073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/30/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although it is well known that obesity is a risk factor for gastrointestinal (GI) cancer, it is not well established if obesity can cause earlier GI cancer onset. METHODS A cross-sectional study examining the linked 2004-2008 California Cancer Registry Patient Discharge Database was performed to evaluate the association between obesity and onset age among four gastrointestinal cancers, including esophageal, gastric, pancreatic, and colorectal cancers. Regression models were constructed to adjust for other carcinogenic factors. RESULTS The diagnosis of obesity (BMI > 30) was associated with a reduction in diagnosis age across all four cancer types: 3.25 ± 0.53 years for gastric cancer, 4.56 ± 0.18 years for colorectal cancer, 4.73 ± 0.73 years for esophageal cancer, and 5.35 ± 0.72 for pancreatic cancer. The diagnosis of morbid obesity (BMI > 40) was associated with a more pronounced reduction in the age of diagnosis: 5.48 ± 0.96 years for gastric cancer, 7.75 ± 0.30 years for colorectal cancer, 7.67 ± 1.26 years for esophageal cancer, and 8.19 ± 1.25 years for pancreatic cancer. Both morbid obesity and obesity remained strongly associated with earlier cancer diagnosis for all four cancer types even after adjusting for other available cancer risk factors. CONCLUSIONS The diagnosis of obesity, especially morbid obesity, was associated with a significantly earlier gastrointestinal cancer onset in California. Further research with prospective cohort data may be required to establish the causal relationship between obesity and cancer onset age.
Collapse
Affiliation(s)
- Yen-Yi Juo
- Center for Advanced Surgical and Interventional Technology (CASIT), University of California, 757 Westwood Plaza, Suite B-792, Los Angeles, CA 90095, USA
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
- Department of Surgery, George Washington University, 2150 Pennsylvania Ave, NW, Suite 6B, Washington, DC 20037, USA
| | - Melinda A. Maggard Gibbons
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Erik Dutson
- Center for Advanced Surgical and Interventional Technology (CASIT), University of California, 757 Westwood Plaza, Suite B-792, Los Angeles, CA 90095, USA
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Anne Y. Lin
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Jane Yanagawa
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| | - O. Joe Hines
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Guido Eibl
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Yijun Chen
- Department of Surgery, University of California, Box 956904, 72-251 Center for Health Sciences, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Trichodermin induces c-Jun N-terminal kinase-dependent apoptosis caused by mitotic arrest and DNA damage in human p53-mutated pancreatic cancer cells and xenografts. Cancer Lett 2016; 388:249-261. [PMID: 27965041 DOI: 10.1016/j.canlet.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is an aggressive malignancy, which generally responds poorly to chemotherapy. In this study, trichodermin, an endophytic fungal metabolite from Nalanthamala psidii, was identified as a potent and selective antitumor agent in human pancreatic cancer. Trichodermin exhibited antiproliferative effects against pancreatic cancer cells, especially p53-mutated cells (MIA PaCa-2 and BxPC-3) rather than normal pancreatic epithelial cells. We found that trichodermin induced caspase-dependent and mitochondrial intrinsic apoptosis. Trichodermin also increased apoptosis through mitotic arrest by activating Cdc2/cyclin B1 complex activity. Moreover, trichodermin promoted the activation of c-Jun N-terminal kinase (JNK), and inhibition of JNK by its inhibitor, shRNA, or siRNA significantly reversed trichodermin-mediated caspase-dependent apoptosis. Trichodermin triggered DNA damage stress to activate p53 function for executing apoptosis in p53-mutated cells. Importantly, we demonstrated that trichodermin with efficacy similar to gemcitabine, profoundly suppressed tumor growth through inducing intratumoral DNA damage and JNK activation in orthotopic pancreatic cancer model. Based on these findings, trichodermin is a potential therapeutic agent worthy of further development into a clinical trial candidate for treating cancer, especially the mutant p53 pancreatic cancer.
Collapse
|
14
|
Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death. PLoS One 2015. [PMID: 25961833 DOI: 10.1371/journal.pone.0126605,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.
Collapse
Affiliation(s)
- Miho Akimoto
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mari Iizuka
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Rie Kanematsu
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masato Yoshida
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Keizo Takenaga
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
15
|
Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death. PLoS One 2015; 10:e0126605. [PMID: 25961833 PMCID: PMC4427290 DOI: 10.1371/journal.pone.0126605] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/05/2015] [Indexed: 12/13/2022] Open
Abstract
The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.
Collapse
Affiliation(s)
- Miho Akimoto
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mari Iizuka
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Rie Kanematsu
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masato Yoshida
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Keizo Takenaga
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|