1
|
Zhou W, Anakk S. Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism. Mol Cell Endocrinol 2022; 549:111616. [PMID: 35304191 PMCID: PMC9245558 DOI: 10.1016/j.mce.2022.111616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates bile acid homeostasis along with nutrient metabolism. In addition to the gastrointestinal (GI) tract, FXR expression has been widely noted in kidney, adrenal gland, pancreas, adipose, skeletal muscle, heart, and brain. Except for the liver and gut, the relevance of FXR signaling in metabolism in other tissues remains poorly understood. This review examines the classical and non-canonical tissue-specific roles of FXR in regulating, lipids, and glucose homeostasis under normal and diseased states. FXR activation has been reported to be protective against cholestasis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), type 2 diabetes, cardiovascular and kidney diseases. Several ongoing clinical trials are investigating FXR ligands as a therapeutic target for primary biliary cholangitis (PBC) and NASH, which substantiate the significance of FXR signaling in modulating metabolic processes. This review highlights that FXR ligands, albeit an attractive therapeutic target for treating metabolic diseases, tissue-specific modulation of FXR may be the key to overcoming some of the adverse clinical effects.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Steiner J, Dobrowolny H, Guest PC, Bernstein HG, Fuchs D, Roeser J, Summergrad P, Oxenkrug GF. Plasma Anthranilic Acid and Leptin Levels Predict HAM-D Scores in Depressed Women. Int J Tryptophan Res 2021; 14:11786469211016474. [PMID: 34045868 PMCID: PMC8138296 DOI: 10.1177/11786469211016474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Major depressive disorder (MDD) is associated with dysregulations of leptin
and tryptophan–kynurenine (Trp–Kyn) (TKP) pathways. Leptin, a
pro-inflammatory cytokine, activates Trp conversion into Kyn. However,
leptin association with down-stream Kyn metabolites in MDD is unknown. Methods: Fasting plasma samples from 29 acutely ill drug-naïve (n = 16) or currently
non-medicated (⩾6 weeks; n = 13) MDD patients were analyzed for leptin, Trp,
Kyn, its down-stream metabolites (anthranilic [AA], kynurenic [KYNA],
xanthurenic [XA] acids and 3-hydroxykynurenine [3HK]), C-reactive protein
(CRP), neopterin, body mass index (BMI), and insulin resistance (HOMA-IR).
Depression severity was assessed by HAM-D-21. Results: In female (n = 14) (but not in male) patients HAM-D-21 scores correlated with
plasma levels of AA (but not other Kyn metabolites) (rho = −0.644,
P = .009) and leptin (Spearman’s rho = −0.775,
P = .001). Inclusion of AA into regression analysis
improved leptin prediction of HAM-D from 48.5% to 65.9%. Actual HAM-D scores
highly correlated with that calculated by formula: HAM-D = 34.8518−(0.5660 ×
leptin [ng/ml] + 0.4159 × AA [nmol/l]) (Rho = 0.84, P =
.00015). In male (n = 15) (but not in female) patients leptin correlated
with BMI, waist circumference/hip ratio, CRP, and HOMA-IR. Conclusions: Present findings of gender specific AA/Leptin correlations with HAM-D are
important considering that AA and leptin are transported from plasma into
brain, and that AA formation is catalyzed by
kynureninase—the only TKP gene associated with depression
according to genome-wide analysis. High correlation between predicted and
actual HAM-D warrants further evaluation of plasma AA and leptin as an
objective laboratory test for the assessment of depression severity in
female MDD patients
Collapse
Affiliation(s)
- Johann Steiner
- Laboratory of Translational Psychiatry, University of Magdeburg, Magdeburg, Saxony-Anhalt, Germany.,Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Dobrowolny
- Laboratory of Translational Psychiatry, University of Magdeburg, Magdeburg, Saxony-Anhalt, Germany.,Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Hans-Gert Bernstein
- Laboratory of Translational Psychiatry, University of Magdeburg, Magdeburg, Saxony-Anhalt, Germany.,Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter of the Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Julien Roeser
- Charles River Laboratories, South San Francisco, CA, USA
| | - Paul Summergrad
- Department of Psychiatry, Psychiatry and Inflammation Program, Tufts University School of Medicine, Boston, MA, USA
| | - Gregory F Oxenkrug
- Department of Psychiatry, Psychiatry and Inflammation Program, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Gu M, Song H, Li Y, Jiang Y, Zhang Y, Tang Z, Ji G, Huang C. Extract of Schisandra chinensis fruit protects against metabolic dysfunction in high-fat diet induced obese mice via FXR activation. Phytother Res 2020; 34:3063-3077. [PMID: 32583938 DOI: 10.1002/ptr.6743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Schisandra chinensis fruit has been shown to restore carbohydrate- and lipid-metabolic disorders and has anti-hepatotoxicity and anti-hepatitis activities. However, the molecular targets mediating the pharmacological properties of S. chinensis fruit have not been clarified. Here, we assayed the effects of S. chinensis fruit ethanol extract (SCE) on farnesoid X receptor (FXR) transactivity. The pharmacological effects of SCE (1 g/100 g diet) were assessed in high-fat diet (HFD)-fed C57BL/6 mice and ob/ob mice. The FXR and Fgf15 signalling pathways were evaluated by FXR silencing, ELISA, Western blot and RT-PCR analyses. The results showed that SCE treatment increased FXR transcription activity and improved obesity, hypercholesteremia and fatty liver in HFD-fed mice, while it had limited effects on ob/ob mice. Our study suggests that SCE treatment may improve HFD-induced metabolic disorders through pharmacological activation of FXR/Fgf15 signalling, and such beneficial effects of SCE may require leptin participation.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Jiang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yali Zhang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Tang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
T MM, T A, P BK, Fathima A, Khanum F. In-silico therapeutic investigations of arjunic acid and arjungenin as an FXR agonist and validation in 3T3-L1 adipocytes. Comput Biol Chem 2019; 84:107163. [PMID: 31767507 DOI: 10.1016/j.compbiolchem.2019.107163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
The present study was to illustrate the agonistic property of arjungenin and arjunic acid towards farnesoid X receptor protein (FXR).The pharmacokinetic properties like molecular interactions, absorption, distribution, metabolism, elimination and toxicity (ADMET) of the ligands were checked through in-silico studies. Protein-ligand docking was carried out using autodock software. Molecular docking analysis confirmed strong binding energy and interaction of arjungenin and arjunic acid with the target protein and the ADMET profiles identified for both compounds were promising.Further in vitro studies were performed in 3T3-L1 adipocyte to verify the agonistic property of arjungenin and arjunic acid. Oil red O staining was done to check differentiation induction. Adiponectin, leptin, triglycerides and total cholesterol levels were quantified. The mRNA expression of FXR, Cyp7a1, PPAR-γ and SREBP-1c were quantified using fluorescent real-time PCR. Cytotoxicity assay was confirmed that up to 150 μM concentration there is no significant cell death on treatment with arjunic acid and arjungenin. Treatment with arjungenin and arjunic acid confirms increased differentiation of the cells with significant (P < 0.05) increase in adiponectin (118.07% and 132.92%) and leptin (133.52% and 149.74%) protein levels compared to the negative control group. After treatment with arjungenin and arjunic acid in 3T3-L1 preadipocytes the mRNA expression of FXR, PPAR-γ and SREBP-1c were significantly (P < 0.01) increased and cyp7a1 was significantly (P < 0.01) decreased when compared with the negative control group. Overall, our results suggest that arjungenin and arjunic acid acts as an FXR agonist and may be useful for rational therapeutic strategies as a novel drug to treat cholesterol mediated metabolic syndrome and insulin resistance.
Collapse
Affiliation(s)
- Mohan Manu T
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| | - Anand T
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India.
| | - Bhuvanesh Kumar P
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| | - Asra Fathima
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| |
Collapse
|
5
|
Chenodeoxycholic Acid Ameliorates AlCl 3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules 2019; 24:molecules24101992. [PMID: 31137621 PMCID: PMC6571973 DOI: 10.3390/molecules24101992] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.
Collapse
|
6
|
Sun X, Zhang Y, Xie M. Review. The role of peroxisome proliferator-activated receptor in the treatment of non-alcoholic fatty liver disease. ACTA PHARMACEUTICA 2017; 67:1-13. [PMID: 28231052 DOI: 10.1515/acph-2017-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been defined as a spectrum of histological abnormalities and is characterized by significant and excessive accumulation of triglycerides in the hepatocytes in patients without alcohol consumption or other diseases. Current studies are targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. Many therapeutic targets have been found and used in clinical studies. Peroxisome proliferator-activated receptors (PPARs) are among the potential targets and have been demonstrated to exert a pivotal role in modulation of NAFLD. Many drugs developed so far are targeted at PPARs. Thus, the aim of this paper is to summarize the roles of PPARs in the treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pharmacy Wuxi No. 2 People´s Hospital The Affiliated Hospital of Nanjing Medical University , Wuxi , Jiangsu 214002, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, The Affiliated Hospital of Nanjing Medical University , Wuxi , Jiangsu, 214002, China
- Department of Pharmacology College of Pharmaceutical Sciences Soochow University , Suzhou , Jiangsu 215123, China
| | - Meilin Xie
- Department of Pharmacology College of Pharmaceutical Sciences Soochow University , Suzhou , Jiangsu 215123, China
| |
Collapse
|
7
|
Guo F, Xu Z, Zhang Y, Jiang P, Huang G, Chen S, Lyu X, Zheng P, Zhao X, Zeng Y, Wang S, He F. FXR induces SOCS3 and suppresses hepatocellular carcinoma. Oncotarget 2016; 6:34606-16. [PMID: 26416445 PMCID: PMC4741476 DOI: 10.18632/oncotarget.5314] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is regarded as a vital repressor in the liver carcinogenesis mainly by inhibiting signal transducer and activator of transcription 3 (STAT3) activity. Farnesoid X Receptor (FXR), highly expressed in liver, has an important role in protecting against hepatocellular carcinoma (HCC). However, it is unclear whether the tumor suppressive activity of FXR involves the regulation of SOCS3. In the present study, we found that activation of FXR by its specific agonist GW4064 in HCC cells inhibited cell growth, induced cell cycle arrest at G1 phase, elevated p21 expression and repressed STAT3 activity. The above anti-tumor effects of FXR were dramatically alleviated by knockdown of SOCS3 with siRNA. Reporter assay revealed that FXR activation enhanced the transcriptional activity of SOCS3 promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay displayed that FXR directly bound to IR9 DNA motif within SOCS3 promoter region. The in vivo study in nude mice showed that treatment with FXR ligand GW4064 could decelerate the growth of HCC xenografts, up-regulate SOCS3 and p21 expression and inhibit STAT3 phosphorylation in the xenografts. These results suggest that induction of SOCS3 may be a novel mechanism by which FXR exerts its anti-HCC effects, and the FXR-SOCS3 signaling may serve as a new potential target for the prevention/treatment of HCC.
Collapse
Affiliation(s)
- Fei Guo
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Jiang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Ping Zheng
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shuguang Wang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 2016; 15:249-74. [PMID: 26794269 DOI: 10.1038/nrd.2015.3] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease - the most common chronic liver disease - encompasses a histological spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Over the next decade, NASH is projected to be the most common indication for liver transplantation. The absence of an effective pharmacological therapy for NASH is a major incentive for research into novel therapeutic approaches for this condition. The current focus areas for research include the modulation of nuclear transcription factors; agents that target lipotoxicity and oxidative stress; and the modulation of cellular energy homeostasis, metabolism and the inflammatory response. Strategies to enhance resolution of inflammation and fibrosis also show promise to reverse the advanced stages of liver disease.
Collapse
Affiliation(s)
- Giovanni Musso
- Gradenigo Hospital, Corso Regina Margherita 8, 10132 Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|