1
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
2
|
Bao QR, Crimì F, Valotto G, Chiminazzo V, Bergamo F, Prete AA, Galuppo S, El Khouzai B, Quaia E, Pucciarelli S, Urso EDL. Obesity may not be related to pathologic response in locally advanced rectal cancer following neoadjuvant chemoradiotherapy. Front Oncol 2022; 12:994444. [PMID: 36249024 PMCID: PMC9556820 DOI: 10.3389/fonc.2022.994444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The aim of this study is to evaluate the correlation between body mass index (BMI) and body fat composition (measured with radiological fat parameters (RFP)) and pathological response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer patients. The secondary aim of the study was to assess the role of BMI and RFP on major surgical complications, overall survival (OS), and disease-free survival (DFS). Methods All patients who underwent surgical resection following nCRT between 2005 and 2017 for mid-low rectal cancer were retrospectively collected. Visceral fat area (VFA), superficial fat area (SFA), visceral/superficial fat area ratio (V/S), perinephric fat thickness (PNF), and waist circumference (WC) were estimated by baseline CT scan. Predictors of pathologic response and postoperative complications were investigated using logistic regression analysis. The correlations between BMI and radiologic fat parameters and survival were investigated using the Kaplan-Meier method and log-rank test. Results Out of 144 patients included, a complete (TRG1) and major (TRG1+2) pathologic response was reported in 32 (22%) and 60 (45.5%) cases, respectively. A statistically significant correlation between BMI and all the RFP was found. At a median follow-up of 60 (35-103) months, no differences in terms of OS and DFS were found considering BMI and radiologic fat parameters. At univariable analysis, neither BMI nor radiologic fat parameters were predictors of complete or major pathologic response; nevertheless, VFA, V/S>1, and BMI were predictors of postoperative major complications. Conclusions We found no associations between BMI and body fat composition and pathological response to nCRT, although VFA, V/S, and BMI were predictors of major complications. BMI and RFP are not related to worse long-term OS and DFS.
Collapse
Affiliation(s)
- Quoc Riccardo Bao
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy,*Correspondence: Quoc Riccardo Bao,
| | - Filippo Crimì
- Institute of Radiology - Department of Medicine, University of Padova, Padova, Italy
| | - Giovanni Valotto
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy
| | - Valentina Chiminazzo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Francesca Bergamo
- Unit of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Sara Galuppo
- Radiotherapy Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Badr El Khouzai
- Radiotherapy Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilio Quaia
- Institute of Radiology - Department of Medicine, University of Padova, Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy
| | - Emanuele Damiano Luca Urso
- General Surgery 3, Department of Surgical- Oncological and Gastroenterological Sciences DiSCOG, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
4
|
Koo H, Byun S, Seo J, Jung Y, Lee DC, Cho JH, Park YS, Yeom YI, Park KC. PKM2 Regulates HSP90-Mediated Stability of the IGF-1R Precursor Protein and Promotes Cancer Cell Survival during Hypoxia. Cancers (Basel) 2021; 13:cancers13153850. [PMID: 34359752 PMCID: PMC8345735 DOI: 10.3390/cancers13153850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Generally, IGF-1R is overexpressed in most solid tumors, and its expression is significantly associated with poor prognosis in cancer patients. However, IGF-1R gene amplification events are extremely rare in tumors. It is, therefore, necessary to define the mechanism underlying IGR-1R overexpression to elucidate potential therapeutic targets. Our study, specifically, aimed to define the potential mechanisms associated with PKM2 function in regulating IGF-1R protein expression. PKM2 was found to be a non-metabolic protein that regulates HSP90 binding to and stabilizing the precursor IGF-1R protein, thereby promoting the basal level of mature IGF-1R protein. Consequently, PKM2 knockdown inhibits the activation of AKT, a downstream effector of IGF-1R signaling, and increases apoptosis during hypoxia. Our findings reveal a novel mechanism for regulating IGF-1R protein expression, thus suggesting PKM2 as a potential therapeutic target in cancers associated with aberrant IGF signaling. Abstract Insulin-like growth factor-1 receptor (IGF-1R), an important factor in promoting cancer cell growth and survival, is commonly upregulated in cancer cells. However, amplification of the IGF1R gene is extremely rare in tumors. Here, we have provided insights into the mechanisms underlying the regulation of IGF-1R protein expression. We found that PKM2 serves as a non-metabolic protein that binds to and increases IGF-1R protein expression by promoting the interaction between IGF-1R and heat-shock protein 90 (HSP90). PKM2 depletion decreases HSP90 binding to IGF-1R precursor, thereby reducing IGF-1R precursor stability and the basal level of mature IGF-1R. Consequently, PKM2 knockdown inhibits the activation of AKT, the key downstream effector of IGF-1R signaling, and increases apoptotic cancer cell death during hypoxia. Notably, we clinically verified the PKM2-regulated expression of IGF-1R through immunohistochemical staining in a tissue microarray of 112 lung cancer patients, demonstrating a significant positive correlation (r = 0.5208, p < 0.0001) between PKM2 and IGF-1R expression. Together, the results of a previous report demonstrated that AKT mediates PKM2 phosphorylation at serine-202; these results suggest that IGF-1R signaling and PKM2 mutually regulate each other to facilitate cell growth and survival, particularly under hypoxic conditions, in solid tumors with dysregulated IGF-1R expression.
Collapse
Affiliation(s)
- Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Sangwon Byun
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Jieun Seo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Jung
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Jung Hee Cho
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Young Soo Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.I.Y.); (K.C.P.); Tel.: +82-42-879-8115 (K.C.P.); Fax: +82-42-879-8119 (Y.I.Y.)
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.I.Y.); (K.C.P.); Tel.: +82-42-879-8115 (K.C.P.); Fax: +82-42-879-8119 (Y.I.Y.)
| |
Collapse
|
5
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
6
|
Development of the 'PREDICT' score through a systematic review and meta-analysis of the predictive parameters for locoregional recurrence after total mesorectal excision. Updates Surg 2020; 73:35-46. [PMID: 32734579 DOI: 10.1007/s13304-020-00853-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite robust management techniques, locoregional recurrence rates of rectal cancer are still significant. Although offering intensive follow-up has been shown to be beneficial in the early detection, it can be resource consuming. Having a robust knowledge of risk factors of locoregional recurrence will help in identification of patients who actually need intensive follow-up programs. This review aimed to identify the factors that can predict locoregional recurrence after Total mesorectal excision (TME). METHODS We systematically reviewed PubMed, Scopus and Cochrane for relevant articles with no date restrictions while language was restricted to English. We only included articles that had either provided Hazards ratio (HR)/odds ratio (OR) or provided enough data that allowed calculation of HR/OR specifically for rectal cancer. Articles were deemed eligible if they included patients undergoing (TME). RESULTS Seventeen studies (18,605 patients) published between 2002 and 2019 were included. A total of 699 patients developed locoregional recurrence at a median time of 25.2 months after surgery. There were eight significant predictors evaluated by more than one study; T3-T4 stage, circumferential resection margin, lymphovascular invasion, mucinous histology, N1-N2 stage, positive distal resection margin, Tumor < 5 cm from anal verge, and lack of neoadjuvant radiotherapy. A scoring system was developed based on the weight and pooled OR/HR of each predictor. CONCLUSION Using predictive factors identified in our review in context of scoring system may help in the early detection of locoregional recurrence after TME. This may help in tailoring the application of intensive follow-up programs.
Collapse
|
7
|
Robajac D, Križáková M, Masnikosa R, Miljuš G, Šunderić M, Nedić O, Katrlík J. Sensitive glycoprofiling of insulin-like growth factor receptors isolated from colon tissue of patients with colorectal carcinoma using lectin-based protein microarray. Int J Biol Macromol 2019; 144:932-937. [PMID: 31669471 DOI: 10.1016/j.ijbiomac.2019.09.170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Glycosylation of cell receptors influences their function and development of tumour induces changes in glycosylation. Cell growth depends on the activation of receptors which bind growth factors and the insulin-like growth factor (IGF) receptors are among the most important ones. Usually, only small quantities of isolated receptors are available thus there is a need of suitable assay to study receptors glycosylation. Therefore, we developed a lectin-based reverse-phase protein microarray method for screening the glycosylation pattern of receptors in picomolar (pM) concentrations. The method was applied to glycoprofile IGF1 and IGF2 receptors and the solubilised membrane proteins isolated from tumour and non-tumour colon tissue of patients with colorectal cancer. We found that common to both receptors was partial overlapping of the major glycan structures with those present in the entire glycome of membrane proteins. In contrast, receptors possess higher level of α2,3 sialic acid residues and lower level of tri-/tetra-antennary complex type N-glycans and terminal mannose in high-mannose structures. Increased levels of fucosylation and branched mannose structures were observed in both receptors derived from tumour tissue compared to non-tumour tissue. The described method enabling glycan analysis of receptors has a big application potential in e.g. biomarker research, biology and diagnostics.
Collapse
Affiliation(s)
- Dragana Robajac
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Martina Križáková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Romana Masnikosa
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Miloš Šunderić
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
8
|
Qureishi A, Rieunier G, Shah KA, Aleksic T, Winter SC, Møller H, Macaulay VM. Radioresistant laryngeal cancers upregulate type 1 IGF receptor and exhibit increased cellular dependence on IGF and EGF signalling. Clin Otolaryngol 2019; 44:1026-1036. [PMID: 31536667 DOI: 10.1111/coa.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patients failing radiotherapy for laryngeal squamous cell carcinoma (LSCC) often require salvage total laryngectomy which has major functional consequences, highlighting a need for biomarkers of radiotherapy resistance. In other tumour types, radioresistance has been linked to epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R). Here, we evaluated IGF-1R and EGFR as predictors and mediators of LSCC radioresistance. DESIGN We compared IGF-1R and EGFR immunohistochemical scores in patients with LSCC achieving long-term remission post-radiotherapy (n = 23), patients treated with primary laryngectomy (n = 22) or salvage laryngectomy following radiotherapy recurrence (n = 18). To model radioresistance in vitro, two LSCC cell lines underwent clinically relevant irradiation to 55 Gy in 2.75 Gy fractions. RESULTS Type 1 insulin-like growth factor receptor expression was higher in pre-treatment biopsies of radiotherapy failures compared with those in long-term remission and was upregulated post-radiotherapy. Patients undergoing primary laryngectomy had more advanced T/N stage and greater tumour IGF-1R content than those achieving long-term remission. Pre-treatment EGFR did not associate with radiotherapy outcomes but showed a trend to upregulation post-irradiation. In vitro, radiosensitivity was enhanced by inhibition of EGFR but not IGF. Repeated irradiation upregulated IGF-1R in BICR18 and SQ20B cells and EGFR in SQ20B, and enhanced SQ20B radioresistance. Repeatedly irradiated SQ20B_55 cells were not radiosensitised by inhibition of IGF and/or EGFR, but IGF-1R:EGFR co-inhibition suppressed baseline cell survival more effectively than blockade of either pathway alone, and more effectively than in parental cells. CONCLUSIONS Radiation upregulates IGF-1R and may enhance IGF/EGFR dependence, suggesting that IGF/EGFR blockade may have activity in LSCCs that recur post-radiotherapy.
Collapse
Affiliation(s)
- Ali Qureishi
- Department of Oncology, University of Oxford, Oxford, UK.,Nuffield Department of Surgery, University of Oxford and Department of Head and Neck Surgery, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | - Ketan A Shah
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, UK
| | - Stuart C Winter
- Nuffield Department of Surgery, University of Oxford and Department of Head and Neck Surgery, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - Henrik Møller
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, UK.,Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| |
Collapse
|
9
|
EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway. Biosci Rep 2019; 39:BSR20190415. [PMID: 31471531 PMCID: PMC6744588 DOI: 10.1042/bsr20190415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/17/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Resistance to radiotherapy is one of the main causes of treatment failure in patients with nasopharyngeal carcinoma (NPC). Epstein-Barr virus (EBV) infection is an important factor in the pathogenesis of NPC, and EBV-encoded microRNAs (miRNAs) promote NPC progression. However, the role of EBV-encoded miRNAs in the radiosensitivity of NPC remains unclear. Here, we investigated the effects of EBV-miR-BART8-3p on radiotherapy resistance in NPC cells in vitro and in vivo, and explored the underlying molecular mechanisms. Inhibitors of ataxia telangiectasia mutated (ATM)/ataxia telangiectasia mutated and Rad3-related (ATR) (KU60019 and AZD6738, respectively) were used to examine radiotherapy resistance. We proved that EBV-miR-BART8-3p promoted NPC cell proliferation in response to irradiation in vitro and associated with the induction of cell cycle arrest at the G2/M phase, which was a positive factor for the DNA repair after radiation treatment. Besides, EBV-miR-BART8-3p could increase the size of xenograft tumors significantly in nude mice. Treatment with KU60019 or AZD6738 increased the radiosensitivity of NPC by suppressing the expression of p-ATM and p-ATR. The present results indicate that EBV-miR-BART8-3p promotes radioresistance in NPC by modulating the activity of ATM/ATR signaling pathway.
Collapse
|
10
|
Oberthür R, Seemann H, Gehrig J, Rave-Fränk M, Bremmer F, Halpape R, Conradi LC, Scharf JG, Burfeind P, Kaulfuß S. Simultaneous inhibition of IGF1R and EGFR enhances the efficacy of standard treatment for colorectal cancer by the impairment of DNA repair and the induction of cell death. Cancer Lett 2017; 407:93-105. [PMID: 28823963 DOI: 10.1016/j.canlet.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of receptor tyrosine kinases (RTKs), such as the insulin-like growth factor 1 receptor (IGF1R) and the epidermal growth factor receptor (EGFR), are frequent phenomena in colorectal cancer (CRC). Here, we evaluated the effect and the cellular mechanisms of the simultaneous inhibition of these two RTKs both in vitro and in vivo in addition to a 5-fluoruracil (5-FU)-based radiochemotherapy (RCT), which is a standard treatment scheme for CRC. Using the small molecule inhibitors AEW541 and erlotinib, specific against IGF1R and EGFR, respectively, different CRC cell lines exhibited a reduced survival fraction after RCT, with the highest effect after the simultaneous inhibition of IGF1R/EGFR. In vivo, xenograft mice simultaneously treated with low dose AEW541/erlotinib plus RCT revealed a significant reduction in tumour volume and weight compared with the tumours of mice treated with either AEW541 or erlotinib alone. In vitro, the combined inhibition of IGF1R/EGFR resulted in a stronger reduction of downstream signalling, an increase in DNA double strand breaks (DSBs), apoptosis and mitotic catastrophe after RCT depending on the cell line. Moreover, the existence of IGF1R/EGFR heterodimers in CRC cells and human rectal cancer samples was proven. The heterodimerisation of these RTKs was dependent on the presence of both ligands, IGF-1 and EGF, and functional receptors. In conclusion, these results demonstrate that the strategy of targeting both IGF1R and EGFR, in addition to basic RCT, could be of intriguing importance in CRC therapy.
Collapse
Affiliation(s)
- Rabea Oberthür
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Henning Seemann
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Julia Gehrig
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radio Oncology, University Medical Centre Göttingen, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Centre Göttingen, Germany
| | - Rovena Halpape
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Paediatric Surgery, University Medical Centre Göttingen, Germany
| | - Jens-Gerd Scharf
- 2nd Department of Internal Medicine, HELIOS Hospital Erfurt, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.
| |
Collapse
|
11
|
Kim SE, Choo J, Yoon J, Chu JR, Bae YJ, Lee S, Park T, Sung MK. Genome-wide analysis identifies colonic genes differentially associated with serum leptin and insulin concentrations in C57BL/6J mice fed a high-fat diet. PLoS One 2017; 12:e0171664. [PMID: 28170448 PMCID: PMC5295695 DOI: 10.1371/journal.pone.0171664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn's disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P < 0.001) and insulin (P < 0.01) than those in the ND group, whereas serum IGF-1 and adiponectin concentrations did not differ between the two dietary groups. Among differentially expressed genes affected by HFD, 135, 128, 110, and 341 genes were associated with serum levels of leptin, insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed for the prevention, early detection, and treatment of colon diseases.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jinsil Choo
- Department of Life Systems, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Jae Ryang Chu
- Department of Life Systems, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Yun Jung Bae
- Division of Food Science and Culinary Arts, Shinhan University, Gyeonggi-do, Republic of Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Insulin-like growth factor (IGF) axis in cancerogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:78-104. [PMID: 28528692 DOI: 10.1016/j.mrrev.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, viruses, and other GFs) and the style of life (nutrition, physical activity). From the clinical point of view, components of IGF system are first of all considered as diagnostic serous and/or tissue biomarkers of a given cancer, prognostic factors and attractive target of modern anti-tumor therapies. Several mechanisms in which IGF system components act in the process of carcinogenesis need to be clarified, mainly due to multifactorial etiology of the neoplasms. Pin-pointing of the role played in carcinogenesis by any single signaling pathway remains particularly difficult. The aim of this review is to summarize the current data of several epidemiological studies, experiments in vitro and on animal models, to increase our understanding of the complex role of IGF family components in the most common human cancers.
Collapse
|
13
|
Devin JL, Bolam KA, Jenkins DG, Skinner TL. The Influence of Exercise on the Insulin-like Growth Factor Axis in Oncology: Physiological Basis, Current, and Future Perspectives. Cancer Epidemiol Biomarkers Prev 2015; 25:239-49. [PMID: 26677213 DOI: 10.1158/1055-9965.epi-15-0406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Exercise and physical activity have been shown to reduce the risk of many common cancers and strongly influence tumor biology. A cause-effect mechanism explaining this relationship is dependent on cellular pathways that can influence tumor growth and are exercise responsive. The insulin-like growth factor (IGF) axis is reported to promote the development and progression of carcinomas through cellular signaling in cancerous tissues. This review summarizes the physiologic basis of the role of the IGF axis in oncology and the influence of exercise on this process. We examined the effects of exercise prescription on the IGF axis in cancer survivors by evaluating the current scope of the literature. The current research demonstrates a remarkable heterogeneity and inconsistency in the responses of the IGF axis to exercise in breast, prostate, and colorectal cancer survivors. Finally, this review presents an in-depth exploration of the physiologic basis and mechanistic underpinnings of the seemingly disparate relationship between exercise and the IGF axis in oncology. Although there is currently insufficient evidence to categorize the effects of exercise prescription on the IGF axis in cancer survivors, the inconsistency of results suggests a multifaceted relationship, the complexities of which are considered in this review.
Collapse
Affiliation(s)
- James L Devin
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Kate A Bolam
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia. The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Stockholm, Sweden
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|