1
|
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol 2024; 12:1461278. [PMID: 39239563 PMCID: PMC11374643 DOI: 10.3389/fcell.2024.1461278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer continues to be a deadly disease because of its delayed diagnosis and aggressive tumor biology. Oncogenes and risk factors are being reported to influence the signaling pathways involved in pancreatic embryogenesis leading to pancreatic cancer genesis. Although studies using rodent models have yielded insightful information, the scarcity of human pancreatic tissue has made it difficult to comprehend how the human pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS, Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are directing pancreatic organogenesis. Any derangements in the above pathways may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes, and the mutations in TP53 and somatic loss of CDKN2A are the drivers of pancreatic cancer. This review clarifies the complex signaling mechanism involved in pancreatic cancer, the same signaling pathways in pancreas development, the current therapeutic approach targeting signaling molecules, and the mechanism of action of risk factors in promoting pancreatic cancer.
Collapse
Affiliation(s)
- Sashikanta Swain
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ravi Kant Narayan
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | | |
Collapse
|
2
|
Zhou D, Zheng L. Recent advances in cancer-associated fibroblast: Biomarkers, signaling pathways, and therapeutic opportunities. Chin Med J (Engl) 2024; 137:638-650. [PMID: 38420743 PMCID: PMC10950138 DOI: 10.1097/cm9.0000000000003031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
ABSTRACT Anti-cancer therapies usually focus on tumor cells, but non-tumor stromal components in the tumor microenvironment also play vital roles in tumor initiation and progression, which may be the prognostic factors and potential therapeutic targets. Cancer-associated fibroblasts (CAFs) are the essential component in the tumor environment, exhibiting high heterogeneity in their cell origin and phenotype with diverse functions that influence tumor angiogenesis, immune systems, and metabolism. Single-cell RNA sequencing and genetically engineered mouse models have increased our understanding of CAF diversity, and many subtypes have been defined. However, the precise functions of these subtypes need to be studied and validated. Studies of signaling pathways and epigenetic changes in CAFs facilitate understanding of the phenotypes of CAFs and the crosstalk between tumor cells and CAFs to provide potential therapeutic targets. Some clinical trials, including phase III trials targeting CAFs, have been performed recently. However, few of these trials have generated promising results, which indicates that the complexity of CAFs in the tumor microenvironment remains largely unknown, and in-depth investigations of CAFs should be performed. This review summarizes the research on CAFs, focusing on the heterogeneity of their phenotypes and functions, specific signaling pathways, and the therapeutic strategies involving CAFs. Additionally, we briefly discuss the current technologies commonly used in CAF studies and describe the challenges and future perspectives of CAF research.
Collapse
Affiliation(s)
- Donger Zhou
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
4
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Genc D, Ozbek O, Oral B, Yıldırım R, Ileri Ercan N. Phytochemicals in Pancreatic Cancer Treatment: A Machine Learning Study. ACS OMEGA 2024; 9:413-421. [PMID: 38222639 PMCID: PMC10785644 DOI: 10.1021/acsomega.3c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
The discovery of new strategies and novel therapeutic agents is crucial to improving the current treatment methods and increasing the efficacy of cancer therapy. Phytochemicals, naturally occurring bioactive constituents derived from plants, have great potential in preventing and treating various diseases, including cancer. This study reviewed 74 literature studies published between 2006 and 2022 that conducted in vitro cytotoxicity and cell apoptosis analyses of the different concentrations of phytochemicals and their combinations with conventional drugs or supplementary phytochemicals on human pancreatic cell lines. From 34 plant-derived phytochemicals on 20 human pancreatic cancer cell lines, a total of 11 input and 2 output variables have been used to construct the data set that contained 2161 different instances. The machine learning approach has been implemented using random forest for regression, whereas association rule mining has been used to determine the effects of individual phytochemicals. The random forest models developed are generally good, indicating that the phytochemical type, its concentration, and the type of cell line are the most important descriptors for predicting the cell viability. However, for predicting cell apoptosis the primary phytochemical type is the most significant descriptor . Among the studied phytochemicals, catechin and indole-3-carbinol were found to be non-cytotoxic at all concentrations irrespective of the treatment time. On the other hand, berbamine and resveratrol were strongly cytotoxic with cell viabilities of less than 40% at a concentration range between 10 and 100 μM and above 100 μM, respectively, which brings them forward as potential therapeutic agents in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Destina
Ekingen Genc
- Department
of Chemical Engineering, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Ozlem Ozbek
- Department
of Chemical Engineering, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Burcu Oral
- Department
of Chemical Engineering, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Ramazan Yıldırım
- Department
of Chemical Engineering, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nazar Ileri Ercan
- Department
of Chemical Engineering, Middle East Technical
University, Çankaya, Ankara 06800, Turkey
| |
Collapse
|
6
|
Sharma R, Malviya R. Cancer Stem Cells in Carcinogenesis and Potential Role in Pancreatic Cancer. Curr Stem Cell Res Ther 2024; 19:1185-1194. [PMID: 37711007 DOI: 10.2174/1574888x19666230914103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
A poor prognosis is associated with pancreatic cancer because of resistance during treatment and early distant metastases. The discovery of cancer stem cells has opened up novel avenues for research into the biology and treatment of cancer. Many investigations have pointed out the role of these types of stem cells in the oncogenesis and progression of hematologic and solid malignancies, specifically. Due to the existence of cancer stem cells in the proliferation and preservation of pancreatic tumors, such malignancies could be difficult to eradicate using conventional treatment techniques like chemotherapy and radiotherapy. It is hypothesized that pancreatic malignancies originate from a limited population of aberrant cancer stem cells to promote carcinogenesis, tumour metastasis, and therapeutic resistance. This review examines the role of pancreatic cancer stem cells in this disease and their significance in carcinogenesis, as well as the signals which modulate them, and also examines the ongoing clinical studies that are now being conducted with pancreatic stem cells.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Hassan AHE, Wang CY, Lee HJ, Jung SJ, Kim YJ, Cho SB, Lee CH, Ham G, Oh T, Lee SK, Lee YS. Scaffold hopping of N-benzyl-3,4,5-trimethoxyaniline: 5,6,7-Trimethoxyflavan derivatives as novel potential anticancer agents modulating hippo signaling pathway. Eur J Med Chem 2023; 256:115421. [PMID: 37163949 DOI: 10.1016/j.ejmech.2023.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Scaffold hopping of N-benzyl-3,4,5-trimethoxyaniline afforded 5,6,7-trimethoxyflavan derivatives that were efficiently synthesized in four linear steps. As lung cancer is the most lethal cancer, twenty-three synthesized compounds were evaluated against a panel of lung cancer cells. Amongst, compounds 8q and 8e showed interesting activity. Hence, compounds 8q and 8e were evaluated against panels of diverse cancers. Compounds 8q and 8e showed broad spectrum anticancer activity. However, compound 8q was more effective and, hence, was advanced for potency evaluation and characterization. Compound 8q showed comparable potencies to gefitinib, and oxaliplatin against lung and colorectal cancers, respectively, and superior potencies to temozolomide, dacarbazine, cisplatin, enzalutamide, methotrexate, imatinib against brain, skin, ovary, prostate, breast, and blood cancers, respectively. Compound 8q increased cleaved PARP, caspase 3, and 7 inducing apoptosis. In addition, it inhibited cyclins A, B1, H and cdc25c, and increased p53 triggering cell cycle arrest in G2/M phase. Moreover, it decreased YAP and increased LATS1 and p-mob1/mob1 activating hippo signaling. Furthermore, it decreased p-PI3K/PI3k, p-mTOR/mTOR and p-P70S6K/P70S6K inhibiting PI3k pathway. Together, these findings present compound 8q as a potential anticancer lead compound for further development of potential agents.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo Jong Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Su Jin Jung
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Gyeongpyo Ham
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Taegeun Oh
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Ardalan Khales S, Forghanifard MM, Abbaszadegan MR, Hosseini SE. EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma. Adv Med Sci 2023; 68:21-30. [PMID: 36403545 DOI: 10.1016/j.advms.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. MATERIALS AND METHODS EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. RESULTS EZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. CONCLUSIONS These results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Seyed Ebrahim Hosseini
- Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
9
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
10
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama Y, Fujimura A, Ozono K, Yamasaki A. Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncol Rep 2022; 47:93. [DOI: 10.3892/or.2022.8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuya Nakamura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kosuke Yanai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shuntaro Nagai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Keigo Ozono
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
13
|
Cortesi M, Zanoni M, Pirini F, Tumedei MM, Ravaioli S, Rapposelli IG, Frassineti GL, Bravaccini S. Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. Int J Mol Sci 2021; 23:ijms23010254. [PMID: 35008679 PMCID: PMC8745092 DOI: 10.3390/ijms23010254] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
- Correspondence:
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Maria Maddalena Tumedei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Sara Ravaioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| |
Collapse
|
14
|
Vetvicka D, Sivak L, Jogdeo CM, Kumar R, Khan R, Hang Y, Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J Control Release 2021; 331:246-259. [PMID: 33482273 DOI: 10.1016/j.jconrel.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Despite intensive research efforts and development of numerous new anticancer drugs and treatment strategies over the past decades, there has been only very limited improvement in overall patient survival and in effective treatment options for pancreatic cancer. Current chemotherapy improves survival in terms of months and death rates in pancreatic cancer patients are almost equivalent to incidence rates. It is imperative to develop new therapeutic approaches. Among them, gene silencing shows promise of effectiveness in both tumor cells and stromal cells by inhibiting tumor-promoting genes. This review summarizes potential targets for gene silencing in both pancreatic cancer cells and abundant stromal cells focusing on non-viral delivery systems for small RNAs and discusses the potential immunological implications. The review concludes with the importance of multifactorial therapy of pancreatic cancer.
Collapse
Affiliation(s)
- David Vetvicka
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, Prague 2 12000, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-61300, Czech Republic
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
15
|
Jiang B, Zhou L, Lu J, Wang Y, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020; 10:576399. [PMID: 33178608 PMCID: PMC7593693 DOI: 10.3389/fonc.2020.576399] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with one of the worst prognoses worldwide and has an overall 5-year survival rate of only 9%. Although chemotherapy is the recommended treatment for patients with advanced PDAC, its efficacy is not satisfactory. The dense dysplastic stroma of PDAC is a major obstacle to the delivery of chemotherapy drugs and plays an important role in the progression of PDAC. Therefore, stroma-targeting therapy is considered a potential treatment strategy to improve the efficacy of chemotherapy and patient survival. While several preclinical studies have shown encouraging results, the anti-tumor potential of the PDAC stroma has also been revealed, and the extreme depletion might promote tumor progression and undermine patient survival. Therefore, achieving a balance between stromal abundance and depletion might be the further of stroma-targeting therapy. This review summarized the current progress of stroma-targeting therapy in PDAC and discussed the double-edged sword of its therapeutic effects.
Collapse
Affiliation(s)
- Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Safa AR. Epithelial-mesenchymal transition: a hallmark in pancreatic cancer stem cell migration, metastasis formation, and drug resistance. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:36. [PMID: 34841087 PMCID: PMC8623975 DOI: 10.20517/2394-4722.2020.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis, tumor progression, and chemoresistance are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). Tumor dissemination is associated with the activation of an epithelial-to-mesenchymal transition (EMT) process, a program by which epithelial cells lose their cell polarity and cell-to-cell adhesion, and acquire migratory and invasive abilities to become mesenchymal stem cells (MSC). These MSCs are multipotent stromal cells capable of differentiating into various cell types and trigger the phenotypic transition from an epithelial to a mesenchymal state. Therefore, EMT promotes migration and survival during cancer metastasis and confers stemness features to particular subsets of cells. Furthermore, a major problem limiting our ability to treat PDAC is the existence of rare populations of pancreatic cancer stem cells (PCSCs) or cancer-initiating cells in pancreatic tumors. PCSCs may represent sub-populations of tumor cells resistant to therapy which are most crucial for driving invasive tumor growth. These cells are capable of regenerating the cellular heterogeneity associated with the primary tumor when xenografted into mice. Therefore, the presence of PCSCs has prognostic relevance and influences the therapeutic response of tumors. PCSCs express markers of cancer stem cells (CSCs) including CD24, CD133, CD44, and epithelial specific antigen as well as the drug transporter ABCG2 grow as spheroids in a defined growth medium. A major difficulty in studying tumor cell dissemination and metastasis has been the identification of markers that distinguish metastatic cancer cells from cells that are normally circulating in the bloodstream or at sites where these cells metastasize. Evidence highlights a linkage between CSC and EMT. In this review, The current understanding of the PCSCs, signaling pathways regulating these cells, PDAC heterogeneity, EMT mechanism, and links between EMT and metastasis in PCSCs are summarised. This information may provide potential therapeutic strategies to prevent EMT and trigger CSC growth inhibition and cell death.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
17
|
Ramachandran S, Srivastava SK. Repurposing Pimavanserin, an Anti-Parkinson Drug for Pancreatic Cancer Therapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:19-32. [PMID: 33024816 PMCID: PMC7527685 DOI: 10.1016/j.omto.2020.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Despite major advances in cancer treatment, pancreatic cancer is still incurable and the treatment outcomes are limited. The aggressive and therapy-resistant nature of pancreatic cancer warrants the need for novel treatment options for pancreatic cancer management. Drug repurposing is emerging as an effectual strategy in the treatment of various diseases, including cancer. In the present study, we evaluated the anticancer effects of pimavanserin tartrate (PVT), an antipsychotic drug used for the treatment of Parkinson disease psychosis. PVT significantly suppressed the proliferation and induced apoptosis in various pancreatic cancer cells and gemcitabine-resistant cells with minimal effects on normal pancreatic epithelial cells and lung fibroblasts. Growth-suppressive and apoptotic effects of PVT were mediated by the inhibition of the Akt/Gli1 signaling axis. The oral administration of PVT suppressed subcutaneous and orthotopic pancreatic tumor xenografts by 51%–77%. The chronic administration of PVT did not demonstrate any general signs of toxicity or change in behavioral activity of mice. Our results indicate that pancreatic tumor growth suppression by PVT was orchestrated by the inhibition of Akt/Gli1 signaling. Since PVT is already available in the clinic with an established safety profile, our results will accelerate its clinical development for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
18
|
Immunodetection of Epithelial-Mesenchymal Transition and Tumor Proliferation Markers in GLi-1-positive Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2020; 29:335-344. [PMID: 32769440 DOI: 10.1097/pai.0000000000000866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
In oral squamous cell carcinoma (OSCC), involvement and activation of the Hedgehog pathway (HH) may be related to epithelial-mesenchymal transition and cell proliferation. The present study aimed to evaluate epithelial-mesenchymal transition and proliferative potential in OSCC cases demonstrating activation of the HH pathway. Twenty-three GLi-1-positive OSCC cases were submitted to immunohistochemical detection of Snail, Slug, N-cadherin, E-cadherin, β-catenin, and MCM3 proteins. Clinical-pathologic immunoexpression data were obtained from the invasion front and tumor islets, and then compared. At the invasion front, OSCC cases presented positive Snail, Slug, and MCM3 expression in the nuclei of tumor cells. Loss of membrane and cytoplasmic expression of E-cadherin and β-catenin was also observed. Positive N-cadherin expression was observed in 31.78% of the cases. GLi-1 immunoexpression was associated with loss of membrane E-cadherin (P<0.001), membrane β-catenin (P<0.001), and cytoplasmic β-catenin (P=0.02) expression. In the tumor islets, we observed nuclear expression of GLi-1, Snail, Slug, and MCM3. E-cadherin and β-catenin showed positivity in tumor cell membranes. Statistically significant positive correlations between GLi-1 and Snail (P=0.05), E-cadherin (P=0.01), and cytoplasmic β-catenin (P=0.04) were found. GLi-1 was associated with clinical staging, while membrane β-catenin expression was related to the presence of metastasis in lymph nodes and to clinical staging. The HH pathway may be involved in regulating the expression of the mesenchymal phenotype. The loss of membrane E-cadherin and β-catenin expression was observed at the tumor front region, whereas cell adhesion protein expression was detected in tumor islets regardless of MCM3.
Collapse
|
19
|
Guo J, Zeng H, Chen Y. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Mol Pharm 2020; 17:1028-1048. [PMID: 32150417 DOI: 10.1021/acs.molpharmaceut.0c00014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jian Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huating Zeng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
20
|
Liu C, Wang R. The Roles of Hedgehog Signaling Pathway in Radioresistance of Cervical Cancer. Dose Response 2019; 17:1559325819885293. [PMID: 31695582 PMCID: PMC6820189 DOI: 10.1177/1559325819885293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy is an important treatment of cervical cancer, especially for advanced cervical cancer. According to research reports, Hedgehog signaling pathway plays an essential role in the growth, invasion, metastasis, recurrence, drug resistance, and radioresistance of cervical cancer. The components of Hedgehog signaling pathway could be biomarkers, related to progression and prognosis of cervical cancer. In addition, targeted therapy for Hedgehog signaling pathway is expected to become a new strategy for the treatment of radioresistant cervical cancer. This review summarizes the research status and progress of the relationship between radiation resistance and activation of Hedgehog signaling pathway in cervical cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
22
|
Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152762. [PMID: 31005717 DOI: 10.1016/j.phymed.2018.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We have previously reported the functional anti-cancer effects of the products of enzymatic hydrolysis of Citrus unshiu peel (εCUP) and fermented extraction of Citrus unshiu peel (ƒCUP) in human pancreatic cancer. Despite their different characteristics and effects, the underlying mechanism remains elusive. PURPOSE In this study, we further demonstrate the impact of ingredient contents of Citrus unshiu peel on the cancer's natural features. METHODS Anti-pancreatic cancer activities following combined treatment of naringenin and hesperetin were demonstrated in vitro and in vivo experiments. RESULTS Combined treatment with naringenin and hesperetin inhibited the growth of human pancreatic cancer cells (εCUP mimic condition, p < 0.001 for Miapaca-2 cells) through induction of caspase-3 cleavage compared to separate treatment with naringenin or hesperetin. Combined treatment with naringenin and hesperetin also inhibited the migration (εCUP mimic condition, p < 0.001 for Panc-1 cells) of human pancreatic cancer cells. The εCUP mimic condition had the most effective anti-cancer features; in contrast, which had no inhibitory effect on growth and migration of normal cells (HUVECs and Detroit551 cells). In addition, εCUP mimic condition inhibited the phosphorylation of focal adhesion kinase (FAK) and p38 signaling compared with separate treatment with naringenin or hesperetin. Of note, εCUP mimic condition showed a prominent anti-growth effect (p < 0.001) compared with control or ƒCUP mimic condition in vivo xenograft models. CONCLUSION These results suggest that combined treatment with naringenin and hesperetin might be a promising anti-cancer strategy for pancreatic cancers without eliciting toxicity on normal cells.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Da-Hye Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
23
|
Lee HJ, Jeong JH, Ryu JH. Anti-pancreatic cancer activity of Z-ajoene from garlic: An inhibitor of the Hedgehog/Gli/FoxM1 axis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
BRM270 Inhibits the Proliferation of CD44 Positive Pancreatic Ductal Adenocarcinoma Cells via Downregulation of Sonic Hedgehog Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8620469. [PMID: 31049070 PMCID: PMC6462339 DOI: 10.1155/2019/8620469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/26/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer has a poor survival rate as compared to other types of cancer. Surface marker CD44 plays important role in epithelial-mesenchymal transition and cancer stem cell phenotype. Therefore, targeting CD44 positive pancreatic cancer cells might enhance therapies effectiveness. Our previous studies indicated the antitumorigenesis effect of BRM270 in osteosarcoma, lung cancer, and glioblastoma; however there is no evidence on BRM270 impacts on pancreatic cancer growth. In this study, we investigated the effect of BRM270 on the isolated CD44 positive pancreatic ductal adenocarcinoma cells (CD44+ PDAC). Results showed that CD44 positive cells undergo apoptosis induced by BRM270. Moreover, BRM270 also inhibits stemness and metastasis traits in CD44+ PDAC via Sonic hedgehog signaling pathway and SALL4 expression. In vivo study indicated that tumor growth derived from CD44+ PDAC was suppressed as daily uptake by BRM270 5 mg/kg. These data suggest the alternative approach in antipancreatic tumorigenesis via herbal plants extract and selectively targeting CD44+ PDAC cells in tumor.
Collapse
|
25
|
Super-enhancers: novel target for pancreatic ductal adenocarcinoma. Oncotarget 2019; 10:1554-1571. [PMID: 30899425 PMCID: PMC6422180 DOI: 10.18632/oncotarget.26704] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
Super-enhancers (SEs) are unique areas of the genome which drive high-level of transcription and play a pivotal role in the cell physiology. Previous studies have established several important genes in cancer as SE-driven oncogenes. It is likely that oncogenes may hack the resident tissue regenerative program and interfere with SE-driven repair networks, leading to the specific pancreatic ductal adenocarcinoma (PDAC) phenotype. Here, we used ChIP-Seq to identify the presence of SE in PDAC cell lines. Differential H3K27AC marks were identified at enhancer regions of genes including c-MYC, MED1, OCT-4, NANOG, and SOX2 that can act as SE in non-cancerous, cancerous and metastatic PDAC cell lines. GZ17-6.02 affects acetylation of the genes, reduces transcription of major transcription factors, sonic hedgehog pathway proteins, and stem cell markers. In accordance with the decrease in Oct-4 expression, ChIP-Seq revealed a significant decrease in the occupancy of OCT-4 in the entire genome after GZ17-6.02 treatment suggesting the possible inhibitory effect of GZ17-6.02 on PDAC. Hence, SE genes are associated with PDAC and targeting their regulation with GZ17-6.02 offers a novel approach for treatment.
Collapse
|
26
|
Wei M, Ma R, Huang S, Liao Y, Ding Y, Li Z, Guo Q, Tan R, Zhang L, Zhao L. Oroxylin A increases the sensitivity of temozolomide on glioma cells by hypoxia-inducible factor 1α/hedgehog pathway under hypoxia. J Cell Physiol 2019; 234:17392-17404. [PMID: 30790292 DOI: 10.1002/jcp.28361] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Microenvironmental hypoxia-mediated drug resistance is responsible for the failure of cancer therapy. To date, the role of the hedgehog pathway in resistance to temozolomide (TMZ) under hypoxia has not been investigated. In this study, we discovered that the increasing hypoxia-inducible factor 1α (HIF-1α) activated the hedgehog pathway in hypoxic microenvironment by promoting autocrine secretion of sonic hedgehog protein (Shh), and then upregulating transfer of Gli1 to the nucleus, finally contributed to TMZ resistance in glioma cells. Oroxylin A (C16H12O5), a bioactive flavonoid, could induce HIF-1α degradation via prolyl-hydroxylases-VHL signaling pathway, resulting in the inactivation of the hedgehog. Besides, oroxylin A increased the expression of Sufu, which is a negative regulator of Gli1. By this mechanism, oroxylin A sensitized TMZ on glioma cells. U251 intracranial transplantation model and GL261 xenograft model were used to confirm the reversal effects of oroxylin A in vivo. In conclusion, our results demonstrated that HIF-1α/hedgehog pathway conferred TMZ resistance under hypoxia, and oroxylin A was capable of increasing the sensitivity of TMZ on glioma cells in vitro and in vivo by inhibiting HIF-1α/hedgehog pathway and depressing the activation of Gli1 directly.
Collapse
Affiliation(s)
- Mian Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Rong Ma
- Department of Anesthesiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Yan Liao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Youxiang Ding
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Zhaohe Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Xianlin, Nanjing, China
| | - Lulu Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| |
Collapse
|
27
|
Niyaz M, Khan MS, Wani RA, Shah OJ, Mudassar S. Sonic Hedgehog Protein is Frequently Up-Regulated in Pancreatic Cancer Compared to Colorectal Cancer. Pathol Oncol Res 2018; 26:551-557. [PMID: 30539521 DOI: 10.1007/s12253-018-00564-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (SHH) is a secreted protein which functions in autocrine or paracrine fashion on target cells to activate hedgehog (HH) signalling cascade responsible for growth and proliferation. This study is an attempt to understand the expression dynamics of SHH protein in colon, rectal and pancreatic cancers. Protein expression of SHH was studied by Western Blotting in the histologically confirmed colon, rectum and pancreatic cancer tissue samples along with their adjacent normal tissues. Only 31.4% (11 of 35) and 26.9% (7 of 26) of colon and rectal cancer cases respectively showed an increase in SHH expression in tumours compared to 72.7% (24 of 33) of the pancreatic cancer cases when compared with their adjacent normal tissues. Our results suggest that SHH may have a strong role in the predisposition of Pancreatic cancer and could possibly be used as a diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Madiha Niyaz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| | - Mosin S Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| | - Rauf A Wani
- Department of General and Minimal Invasive Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Omar J Shah
- Department of Surgical Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India.
| |
Collapse
|
28
|
Liang C, Shi S, Meng Q, Liang D, Hua J, Qin Y, Zhang B, Xu J, Ni Q, Yu X. MiR‐29a, targeting caveolin 2 expression, is responsible for limitation of pancreatic cancer metastasis in patients with normal level of serum CA125. Int J Cancer 2018; 143:2919-2931. [DOI: 10.1002/ijc.31654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/29/2018] [Indexed: 08/29/2023]
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Si Shi
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Qingcai Meng
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Dingkong Liang
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Jie Hua
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Yi Qin
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Bo Zhang
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Jin Xu
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Quanxing Ni
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery Fudan University Shanghai Cancer Center Shanghai 200032 China
- Department of Oncology, Shanghai Medical College Fudan University Shanghai 200032 China
- Shanghai Pancreatic Cancer Institute Shanghai 200032 China
- Pancreatic Cancer Institute Fudan University Shanghai 200032 China
| |
Collapse
|
29
|
Wang HC, Hung WC, Chen LT, Pan MR. From Friend to Enemy: Dissecting the Functional Alteration of Immunoregulatory Components during Pancreatic Tumorigenesis. Int J Mol Sci 2018; 19:E3584. [PMID: 30428588 PMCID: PMC6274888 DOI: 10.3390/ijms19113584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of approximately 8%. More than 80% of patients are diagnosed at an unresectable stage due to metastases or local extension. Immune system reactivation in patients by immunotherapy may eliminate tumor cells and is a new strategy for cancer treatment. The anti-CTLA-4 antibody ipilimumab and anti-PD-1 antibodies pembrolizumab and nivolumab have been approved for cancer therapy in different countries. However, the results of immunotherapy on PDAC are unsatisfactory. The low response rate may be due to poor immunogenicity with low tumor mutational burden in pancreatic cancer cells and desmoplasia that prevents the accumulation of immune cells in tumors. The immunosuppressive tumor microenvironment in PDAC is important in tumor progression and treatment resistance. Switching from an immune tolerance to immune activation status is crucial to overcome the inability of self-defense in cancer. Therefore, thoroughly elucidation of the roles of various immune-related factors, tumor microenvironment, and tumor cells in the development of PDAC may provide appropriate direction to target inflammatory pathway activation as a new therapeutic strategy for preventing and treating this cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
30
|
Zhao J, Xiao Z, Li T, Chen H, Yuan Y, Wang YA, Hsiao CH, Chow DSL, Overwijk WW, Li C. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in Pancreatic Cancer. ACS NANO 2018; 12:9881-9893. [PMID: 30231203 DOI: 10.1021/acsnano.8b02481] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult cancers to treat. It is refractory to most existing therapies, including immunotherapies, due to the presence of an excessive desmoplastic stroma, which restricts penetration of drugs and cytotoxic CD8+ T cells. Stromal modulation has shown promising results in the enhancement of immune checkpoint blockade treatment in PDAC. We demonstrate here effective stromal modulation by a polymeric micelle-based nanoformulation to codeliver a sonic hedgehog inhibitor (cyclopamine, abbreviated as CPA) and a cytotoxic chemotherapy drug (paclitaxel, abbreviated as PTX). The formulation, M-CPA/PTX, modulated the PDAC stroma by increasing the intratumoral vasculature density, which then promoted the tumor infiltration by cytotoxic CD8+ T cells without depletion of tumor-restraining α-smooth muscle action-positive fibroblasts and type I collage in the stroma. The combination of M-CPA/PTX and the PD-1 checkpoint blockade significantly prolonged animal survival in an orthotopic murine PDAC model as well as a genetically engineered mouse model of PDAC. The superior antitumor efficacy was mediated by enhanced tumor infiltration of CD8+ T cells without concomitant infiltration of suppressive regulatory T cells or myeloid-derived suppressor cells and by the coordinated action of PTX and interferon-gamma. Our results demonstrate that stroma-modulating nanoformulations are a promising approach to potentiate immune checkpoint blockade therapy of pancreatic cancer.
Collapse
Affiliation(s)
| | - Zhilan Xiao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingting Li
- Department of Biophysics, School of Life Science & Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan China
| | | | | | | | - Cheng-Hui Hsiao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | - Diana S-L. Chow
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | | | | |
Collapse
|
31
|
Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer 2018; 17:108. [PMID: 30060755 PMCID: PMC6065152 DOI: 10.1186/s12943-018-0858-1] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a deadly disease with high mortality due to difficulties in its early diagnosis and metastasis. The tumor microenvironment induced by interactions between pancreatic epithelial/cancer cells and stromal cells is critical for pancreatic cancer progression and has been implicated in the failure of chemotherapy, radiation therapy and immunotherapy. Microenvironment formation requires interactions between pancreatic cancer cells and stromal cells. Components of the pancreatic cancer microenvironment that contribute to desmoplasia and immunosuppression are associated with poor patient prognosis. These components can facilitate desmoplasia and immunosuppression in primary and metastatic sites or can promote metastasis by stimulating angiogenesis/lymphangiogenesis, epithelial-mesenchymal transition, invasion/migration, and pre-metastatic niche formation. Some molecules participate in both microenvironment formation and metastasis. In this review, we focus on the mechanisms of pancreatic cancer microenvironment formation and discuss how the pancreatic cancer microenvironment participates in metastasis, representing a potential target for combination therapy to enhance overall survival.
Collapse
Affiliation(s)
- Bo Ren
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Ming Cui
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Mengyu Feng
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
32
|
Lee J, Lee J, Kim M, Kim JH. Fermented Extraction of Citrus unshiu Peel Inhibits Viability and Migration of Human Pancreatic Cancers. J Med Food 2018; 21:5-12. [PMID: 29346059 DOI: 10.1089/jmf.2017.3984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the most dangerous cancers with high mortality rates. Despite continuous efforts, there has been limited improvement in its prognosis. In this study, we prepared fermented extract of Citrus unshiu peel (fCUP) from the by-product after juice processing and then examined the anticancer effects of fCUP on human pancreatic cancer cells. Treatment with fCUP inhibited the growth of human pancreatic cancer cells through induction of caspase-3 cleavage both in vitro and in vivo. Treatment with fCUP also blocked the migration of human pancreatic cancer cells through activation of intracellular signaling pathways such as MKK3/6 and P38. In contrast, treatment with fCUP did not inhibit growth and migration of human umbilical vein endothelial cells. In addition, we found that fCUP mainly consisted of aboriginal compounds, narirutin and hesperidin, as well as newly generated compounds, naringenin and hesperetin. In silico analysis showed that naringenin and hesperetin were the unique modules related to anticancer effect. Furthermore, fCUP exhibited the anticancer effects in in vivo xenograft models. Collectively, these results suggest that fCUP might have the potential to be developed into an effective anticancer drug for pancreatic cancers without causing adverse side-effects.
Collapse
Affiliation(s)
- Jungwhoi Lee
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Jungsul Lee
- 2 Department of Bio and Brain Engineering, KAIST , Daejeon, Korea
| | - Myungseung Kim
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Jae Hoon Kim
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea.,3 Subtropical/Tropical Organism Gene Bank, Jeju National University , Jeju-do, Korea
| |
Collapse
|
33
|
Song L, Chen X, Wang P, Gao S, Qu C, Liu L. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:586-596. [PMID: 29697746 DOI: 10.1093/abbs/gmy045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 12/27/2022] Open
Abstract
Recent studies have suggested that sonic Hedgehog (Shh) signaling pathway is aberrantly activated in cancer stem cells (CSCs). A seven-herb Chinese medicinal formula composed of Amorphophallus rivieri Durieu, Oldenlandia diffusa (Wild) Roxb, Scutellaria barbata D. Don, Gynostemma pentaphyllum (Thunb.) Mak and Amomum cardamomum L, i.e. Qingyihuaji (QYHJ) formula, has been shown to inhibit proliferation of pancreatic CSCs by inhibiting Shh signaling pathway and thereby prolong the overall survival of pancreatic cancer patients. Mass spectrometry analysis revealed that baicalein is one of the major compounds of QYHJ formula. The objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms of baicalein involved in pancreatic cancer treatment. We examined the effects of baicalein on pancreatic CSCs both in vivo and in vitro. The results indicated that baicalein attenuated the pluripotency of pancreatic CSCs. Then, we investigated the underlying mechanism and found that nuclear transcription factors, such as Sox-2 and Oct-4 as well as members in Shh signaling pathway, e.g. SHH, SMO, and Gli-2, were downregulated after baicalein treatment. Furthermore, silencing Gli-2 expression by small interfering RNA decreased Sox-2 expression and blocked the inhibitory effects of baicalein, suggesting that the effects of baicalein may be mediated through inhibition of Shh pathway. Our results suggested that baicalein, an active compound in QYHJ formula, could suppress the self-renewal of pancreatic CSCs through inhibition of Shh signaling pathway.
Collapse
Affiliation(s)
- Libin Song
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Anesthesiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Song Gao
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Stroma - A Double-Edged Sword in Pancreatic Cancer: A Lesson From Targeting Stroma in Pancreatic Cancer With Hedgehog Signaling Inhibitors. Pancreas 2018. [PMID: 29521941 DOI: 10.1097/mpa.0000000000001023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a uniformly lethal malignancy with an abundant dense desmoplastic stroma. Because of its dense stroma, conventional drugs were considered to not penetrate this physical barrier, and this caused a systemic drug resistance. Thus, abolishing this barrier with targeted agents is considered to improve the efficiency of chemotherapeutic treatment. The Hedgehog (Hh) signaling pathway is a critical regulator of pancreas development and plays diversified roles in pancreatic cancer stroma and neoplastic cells. Increasing Hh expression in neoplastic cells added desmoplastic stroma accumulation in orthotopic tumors, and Hh inhibitors that target the stroma have an ability to prolong the overall survival of Pdx-1-Cre/KrasG12D/p53R172H mice models via deleting the stromal components and increasing vascularity in pancreatic tumor. However, the failure of translation from bench to bedside indicate the complexity of the relationship between Hh signaling and desmoplastic stroma, and more insights into the complex relationships between Hh signaling pathway and stroma, even tumor cells, might help redesign Hh-targeted therapy. In this review, we discuss the possible mechanism of translation of Hh inhibitor in the clinic from pathology to molecular mechanism.
Collapse
|
35
|
Zhao J, Wang H, Hsiao CH, Chow DSL, Koay EJ, Kang Y, Wen X, Huang Q, Ma Y, Bankson JA, Ullrich SE, Overwijk W, Maitra A, Piwnica-Worms D, Fleming JB, Li C. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials 2018; 159:215-228. [PMID: 29331808 PMCID: PMC6203960 DOI: 10.1016/j.biomaterials.2018.01.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. It has an excessive desmoplastic stroma that can limit the intratumoral delivery of chemotherapy drugs, and protect tumor cells against radiotherapy. Therefore, both stromal and tumor compartments need to be addressed in order to effectively treat PDAC. We hereby co-deliver a sonic hedgehog inhibitor, cyclopamine (CPA), and a cytotoxic chemotherapy drug paclitaxel (PTX) with a polymeric micelle formulation (M-CPA/PTX). CPA can deplete the stroma-producing cancer-associated fibroblasts (CAFs), while PTX can inhibit tumor proliferation. Here we show that in clinically relevant PDAC models, M-CPA effectively modulates stroma by increasing microvessel density, alleviating hypoxia, reducing matrix stiffness while maintaining the tumor-restraining function of extracellular matrix. M-CPA/PTX also significantly extends animal survival by suppressing tumor growth and lowering the percentages of poorly to moderately differentiated tumor phenotypes. Our study suggests that using multifunctional nanoparticles to simultaneously target stromal and tumor compartments is a promising strategy for PDAC therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cheng-Hui Hsiao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | - Diana S-L Chow
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yaan Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Stephen E Ullrich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Willem Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
36
|
Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA, Wang XM, Yu FJ. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway. J Cell Biochem 2017; 119:3829-3842. [PMID: 28941302 DOI: 10.1002/jcb.26414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The study aimed to investigate the mechanism by which the sonic Hedgehog (SHH) gene silencing acts upon epithelial-mesenchymal transition (EMT), proliferation, invasion, and migration of cervical cancer (CC) cells via the Hedgehog signaling pathway. RT-qPCR and Western blotting were all employed to detect the SHH mRNA and protein expressions. HeLa and CasKi cells were cultured and subsequently divided into the blank, negative control (NC), and SHH-RNAi groups. A cell counting kit-8 (CCK-8) assay was utilized for cell proliferation. Cell migration and invasion ability were evaluated through scratching test and Transwell assay. The mRNA and protein expressions of the Hedgehog signaling pathway-related factors were detected using RT-qPCR and Western blotting, respectively. After tumor xenograft in nude mice, tumor growth was subsequently observed. SHH mRNA and protein expressions were greater in the SHH-RNAi group than in the blank and NC groups. Compared with the blank group and NC groups, the SHH-RNAi group displayed inhibited levels of proliferation, migration, invasion abilities, as well as a decreased in the Hh signaling pathway-related factors, as well as a reduction in the mRNA and protein expressions of N-cadherin and Vimentin, however, on the contrary increased expressions of E-cadherin were observed. Following tumor xenograft in nude mice, tumor growth was exhibited vast levels of inhibition, particularly in the SHH-RNAi group in comparison to the blank and the NC groups. During the study it was well established that SHH gene silencing suppresses EMT, proliferation, invasion, and migration of CC cells through the repression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-Ming Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| | - Feng-Jing Yu
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
37
|
Rucki AA, Xiao Q, Muth S, Chen J, Che X, Kleponis J, Sharma R, Anders RA, Jaffee EM, Zheng L. Dual Inhibition of Hedgehog and c-Met Pathways for Pancreatic Cancer Treatment. Mol Cancer Ther 2017; 16:2399-2409. [PMID: 28864680 DOI: 10.1158/1535-7163.mct-16-0452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most chemotherapy- and radiotherapy-resistant tumors. The c-Met and Hedgehog (Hh) pathways have been shown previously by our group to be key regulatory pathways in the primary tumor growth and metastases formation. Targeting both the HGF/c-Met and Hh pathways has shown promising results in preclinical studies; however, the benefits were not readily translated into clinical trials with PDAC patients. In this study, utilizing mouse models of PDAC, we showed that inhibition of either HGF/c-Met or Hh pathways sensitize the PDAC tumors to gemcitabine, resulting in decreased primary tumor volume as well as significant reduction of metastatic tumor burden. However, prolonged treatment of single HGF/c-Met or Hh inhibitor leads to resistance to these single inhibitors, likely because the single c-Met treatment leads to enhanced expression of Shh, and vice versa. Targeting both the HGF/c-Met and Hh pathways simultaneously overcame the resistance to the single-inhibitor treatment and led to a more potent antitumor effect in combination with the chemotherapy treatment. Mol Cancer Ther; 16(11); 2399-409. ©2017 AACR.
Collapse
Affiliation(s)
- Agnieszka A Rucki
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qian Xiao
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgical Oncology, the Second Affiliated Hospital of the Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, University School of Medicine, Hangzhou, China
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianlin Chen
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xu Che
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pancreatic and Gastric Surgery Department, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer Kleponis
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajni Sharma
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Amar D, Izraeli S, Shamir R. Utilizing somatic mutation data from numerous studies for cancer research: proof of concept and applications. Oncogene 2017; 36:3375-3383. [PMID: 28092680 PMCID: PMC5485176 DOI: 10.1038/onc.2016.489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Large cancer projects measure somatic mutations in thousands of samples, gradually assembling a catalog of recurring mutations in cancer. Many methods analyze these data jointly with auxiliary information with the aim of identifying subtype-specific results. Here, we show that somatic gene mutations alone can reliably and specifically predict cancer subtypes. Interpretation of the classifiers provides useful insights for several biomedical applications. We analyze the COSMIC database, which collects somatic mutations from The Cancer Genome Atlas (TCGA) as well as from many smaller scale studies. We use multi-label classification techniques and the Disease Ontology hierarchy in order to identify cancer subtype-specific biomarkers. Cancer subtype classifiers based on TCGA and the smaller studies have comparable performance, and the smaller studies add a substantial value in terms of validation, coverage of additional subtypes, and improved classification. The gene sets of the classifiers are used for threefold contribution. First, we refine the associations of genes to cancer subtypes and identify novel compelling candidate driver genes. Second, using our classifiers we successfully predict the primary site of metastatic samples. Third, we provide novel hypotheses regarding detection of subtype-specific synthetic lethality interactions. From the cancer research community perspective, our results suggest that curation efforts, such as COSMIC, have great added and complementary value even in the era of large international cancer projects.
Collapse
Affiliation(s)
- D Amar
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - S Izraeli
- Department of Pediatric Hematology-Oncology, Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - R Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Giovannetti E, van der Borden CL, Frampton AE, Ali A, Firuzi O, Peters GJ. Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin Cancer Biol 2017; 44:43-59. [PMID: 28438662 DOI: 10.1016/j.semcancer.2017.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive neoplasm, predicted to become the second leading cause of cancer-related deaths before 2030. This dismal trend is mainly due to lack of effective treatments against its metastatic behavior. Therefore, a better understanding of the key mechanisms underlying metastasis should provide new opportunities for therapeutic purposes. Genomic analyses revealed that aberrations that fuel PDAC tumorigenesis and progression, such as SMAD4 loss, are also implicated in metastasis. Recently, microRNAs have been shown to play a regulatory role in the metastatic behavior of many tumors, including PDAC. In particular, miR-10 and miR-21 have appeared as master regulators of the metastatic program, while members of the miR-200 family are involved in the epithelial-to-mesenchymal switch, favoring cell migration and invasiveness. Several studies have also found a close relationship between cancer stem cells (CSCs) and biological features of metastasis, and the CSC markers ALDH1, ABCG2 and c-Met are expressed at high levels in metastatic PDAC cells. Emerging evidence reveals that exosomes are involved in the modulation of the tumor microenvironment and can initiate PDAC pre-metastatic niche formation in the liver and lungs. In this review, we provide an overview of the role of all these pivotal factors in the metastatic behavior of PDAC, and discuss their potential exploitation in the clinic to improve current therapeutics and identify new drug targets.
Collapse
Affiliation(s)
- E Giovannetti
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - C L van der Borden
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - A E Frampton
- HPB Surgical Unit, Dept. of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - A Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KP, Pakistan; Institute of Cancer Sciences, University of Glasgow, UK
| | - O Firuzi
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G J Peters
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Ma H, Tian Y, Yu X. Targeting Smoothened Sensitizes Gastric Cancer to Chemotherapy in Experimental Models. Med Sci Monit 2017; 23:1493-1500. [PMID: 28350784 PMCID: PMC5381338 DOI: 10.12659/msm.903012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The Hedgehog pathway receptor smoothened (SMO) has critical roles in tumor progression. However, whether SMO is a key factor regulating gastric cancer chemotherapy resistance is unknown. MATERIAL AND METHODS We investigated the potential functions of SMO in inducing gastric cancer paclitaxel resistance in clinical samples, gastric cancer cell lines (424GC and AGS), and subcutaneous syngeneic mouse models. RESULTS We found high SMO expression in paclitaxel-resistant gastric cancer clinical samples. Paclitaxel gastric cancer cells had higher SMO expression than in drug-sensitive cells. Upregulating SMO expression induced paclitaxel resistance in gastric cells lines via enhancing cell proliferation and inhibiting apoptosis. The combination of IPI-926, an inhibitor of SMO, with paclitaxel decreased cell viability of paclitaxel-resistant gastric cancer cells in vitro and controlled tumor growth in animal models. CONCLUSIONS The Hedgehog pathway receptor SMO is an important regulator of gastric cancer paclitaxel resistance and could be a target for sensitizing paclitaxel-resistant tumors.
Collapse
Affiliation(s)
- Huifa Ma
- Department of General Surgery, Tianjin Hospital, Tianjin, China (mainland)
| | - Yongsheng Tian
- Department of General Surgery, Tianjin Hospital, Tianjin, China (mainland)
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Nankai Hospital, Tianjin, China (mainland)
| |
Collapse
|
41
|
Lee J, Lee J, Kim M, Kim JH. Dietary approach to attenuate human pancreatic cancer growth and migration with innoxiousness. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Kota J, Hancock J, Kwon J, Korc M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett 2017; 391:38-49. [PMID: 28093284 DOI: 10.1016/j.canlet.2016.12.035] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies with a 5-year survival rate of 8%. Dense, fibrotic stroma associated with pancreatic tumors is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Targeting stroma is considered as a potential therapeutic strategy to improve anti-cancer drug efficacy and patient survival. Although numerous stromal depletion therapies have reached the clinic, they add little to overall survival and are often associated with toxicity. Furthermore, increasing evidence suggests the anti-tumor properties of stroma. Its complete ablation enhanced tumor progression and reduced survival. Consequently, efforts are now focused on developing stromal-targeted therapies that normalize the reactive stroma and avoid the extremes: stromal abundance vs. complete depletion. In this review, we summarized the state of current and emerging anti-stromal targeted therapies, with major emphasis on the role of miRNAs in PDAC stroma and their potential use as novel therapeutic agents to modulate PDAC tumor-stromal interactions.
Collapse
Affiliation(s)
- Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA; The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA.
| | - Julie Hancock
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Jason Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA; Department of Medicine, IUSM, Indianapolis, IN, USA
| |
Collapse
|
43
|
Rajabpour A, Rajaei F, Teimoori-Toolabi L. Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology 2016; 17:310-320. [PMID: 28065383 DOI: 10.1016/j.pan.2016.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related death all over the world. This disease is difficult to treat and patients have an overall 5-year survival rate of less than 5%. Although two drugs, gemcitabine (GEM) and 5-fluorouracil (5-FU) have been shown to improve the survival rate of patients systematically, they do not increase general survival to a clinically acceptable degree. Lack of ideal clinical response of pancreatic cancer patients to chemotherapy is likely to be due to intrinsic and acquired chemoresistance of tumor cells. Various mechanisms of drug resistance have been investigated in pancreatic cancer, including genetic and epigenetic changes in particular genes or signaling pathways. In addition, evidence suggests that microRNAs (miRNAs) play significant roles as key regulators of gene expression in many cellular processes, including drug resistance. Understanding underlying genes and mechanisms of drug resistance in pancreatic cancer is critical to develop new effective treatments for this deadly disease. This review illustrates the genes and miRNAs involved in resistance to gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Azam Rajabpour
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
44
|
Xu Z, Huang C, Hao D. MicroRNA-1271 inhibits proliferation and promotes apoptosis of multiple myeloma cells through inhibiting smoothened-mediated Hedgehog signaling pathway. Oncol Rep 2016; 37:1261-1269. [DOI: 10.3892/or.2016.5304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/16/2016] [Indexed: 11/05/2022] Open
|
45
|
Chaudary N, Pintilie M, Hedley D, Hill RP, Milosevic M, Mackay H. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts. Br J Cancer 2016; 116:50-57. [PMID: 27875522 PMCID: PMC5220149 DOI: 10.1038/bjc.2016.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Hedgehog (Hh) pathway is upregulated in cervical cancer and associated with poor outcome. We explored the effects of Hh pathway inhibition in combination with RTCT in a patient derived orthotopic cervical cancer xenograft model (OCICx). METHODS 5E1, a monoclonal antibody for SHH, or Sonidegib (LDE225), a clinical SMO inhibitor (Novartis) were added to RTCT. We investigated tumour growth delay, metastasis and GI toxicity using orthotopic cervical cancer xenografts models. The xenografts were treated with radiotherapy (15 × 2 Gy daily fractions over 3 weeks) and weekly cisplatin 4 mg kg-1 concurrently, with or without 5E1 or Sonidegib (LDE225). The Hh inhibitors were administered by subcutaneous injection (5E1; 20 mg kg-1 weekly for 3 weeks), or by oral gavage (Sonidegib; 60 mg kg-1 daily for 3 weeks). RESULTS We observed that both Hh inhibitors administered with RTCT were well tolerated and showed increased tumour growth delay, and reduced metastasis, with no increase in acute GI-toxicity relative to RTCT alone. CONCLUSIONS Our data suggest Hh can be a valid therapeutic target in cervical cancer and supports data suggesting a potential therapeutic role for targeting Hh in patients undergoing RTCT. This warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Naz Chaudary
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada
| | - Melania Pintilie
- Biostatistics Department, Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - David Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario MG5 2M9, Canada
| | - Richard P Hill
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario MG5 2M9, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario MG5 2M9, Canada
| | - Michael Milosevic
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario MG5 2M9, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada
| | - Helen Mackay
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada
| |
Collapse
|
46
|
Song L, Chen X, Gao S, Zhang C, Qu C, Wang P, Liu L. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway. Tumour Biol 2016; 37:10.1007/s13277-016-5461-8. [PMID: 27734340 DOI: 10.1007/s13277-016-5461-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.
Collapse
Affiliation(s)
- Libin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Li W, Miao S, Miao M, Li R, Cao X, Zhang K, Huang G, Fu B. Hedgehog Signaling Activation in Hepatic Stellate Cells Promotes Angiogenesis and Vascular Mimicry in Hepatocellular Carcinoma. Cancer Invest 2016; 34:424-430. [PMID: 27657189 DOI: 10.1080/07357907.2016.1227442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have established that hedgehog (Hh) signaling mediates tumor-stroma interaction and promotes hepatocellular carcinoma progression. Here, we demonstrated that activation of Hh signaling in hepatic stellate cell (HSC) line LX-2 by Huh-7-derived sonic Hh led to increased secretion of angiogenic factors and promoted angiogenesis in vitro. The activated LX-2 also enhanced vascular mimicry of hepatoma cells. Furthermore, co-injection of Huh-7 and LX-2 significantly accelerated tumor growth with enhanced angiogenesis compared with Huh-7 alone, which could be partly abrogated by Hh signaling inhibitor. Collectively, our data showed that paracrine Hh signaling mediated pro-angiogenic function of HSC and enhanced hepatoma growth.
Collapse
Affiliation(s)
- Wei Li
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Shuanlin Miao
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Manyuan Miao
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Renshuan Li
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Xiaopeng Cao
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Kun Zhang
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Genzuan Huang
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| | - Bin Fu
- a Department of Surgical Oncology , Xianyang Hospital of Yan'an University , Xianyang, Shannxi , China
| |
Collapse
|
48
|
Liu X, Pitarresi JR, Cuitiño MC, Kladney RD, Woelke SA, Sizemore GM, Nayak SG, Egriboz O, Schweickert PG, Yu L, Trela S, Schilling DJ, Halloran SK, Li M, Dutta S, Fernandez SA, Rosol TJ, Lesinski GB, Shakya R, Ludwig T, Konieczny SF, Leone G, Wu J, Ostrowski MC. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev 2016; 30:1943-55. [PMID: 27633013 PMCID: PMC5066238 DOI: 10.1101/gad.283499.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
Liu et al. show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased acinar-to-ductal metaplasia (ADM). Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfα) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo. Additionally, Smo-deleted fibroblasts stimulated the growth of KrasG12D/Tp53R172H pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating KrasG12D-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.
Collapse
Affiliation(s)
- Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gina M Sizemore
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick G Schweickert
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel J Schilling
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon K Halloran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maokun Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shourik Dutta
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
49
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
50
|
Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 2016; 13:750-765. [PMID: 27531700 DOI: 10.1038/nrclinonc.2016.119] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer- related deaths. PDAC remains one of the most difficult-to-treat cancers, owing to its unique pathobiological features: a nearly impenetrable desmoplastic stroma, and hypovascular and hypoperfused tumour vessels render most treatment options largely ineffective. Progress in understanding the pathobiology and signalling pathways involved in disease progression is helping researchers to develop novel ways to fight PDAC, including improved nanotechnology-based drug-delivery platforms that have the potential to overcome the biological barriers of the disease that underlie persistent drug resistance. So-called 'nanomedicine' strategies have the potential to enable targeting of the Hedgehog-signalling pathway, the autophagy pathway, and specific RAS-mutant phenotypes, among other pathological processes of the disease. These novel therapies, alone or in combination with agents designed to disrupt the pathobiological barriers of the disease, could result in superior treatments, with increased efficacy and reduced off-target toxicities compared with the current standard-of-care regimens. By overcoming drug-delivery challenges, advances can be made in the treatment of PDAC, a disease for which limited improvement in overall survival has been achieved over the past several decades. We discuss the approaches to nanomedicine that have been pursued to date and those that are the focus of ongoing research, and outline their potential, as well as the key challenges that must be overcome.
Collapse
|