1
|
Zhang D, Chen Y, Sun Y, Xu H, Wei R, Zhou Y, Li F, Li J, Wang J, Chen P, Xi L. Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells. Biochem Pharmacol 2025; 232:116695. [PMID: 39643123 DOI: 10.1016/j.bcp.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/27/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Gambogic acid (GA) is a naturally active compound extracted from the Garcinia hanburyi with various anticancer activities. However, whether GA induces pyroptosis (a newly discovered inflammation-mediated programmed cell death mechanism) in ovarian cancer (OC) has not yet been reported. This study revealed that GA treatment reduced cell viability by inducing pyroptosis in OC cell lines. Typical pyroptosis morphological manifestations such as cell swelling with large bubbles and loss of cell membrane integrity, were observed. Cleaved caspase-3 and GSDME-N levels increased after GA treatment, and knocking out GSDME or using a caspase-3 inhibitor could switch GA-induced cell death from pyroptosis to apoptosis, indicating GA induced caspase-3/GSDME-dependent pyroptosis. Furthermore, this research indicated that GA significantly increased reactive oxygen species (ROS) and p53 phosphorylation. OC cells pretreated with ROS inhibitor N-Acetylcysteine (NAC) and the specific p53 inhibitor pifithrin-μ could completely reverse the pyroptosis post-treatment. Elevated p53 and phosphorylated p53 reduced mitochondrial membrane potential (MMP) and Bcl-2, increase the expression of Bax, and damage mitochondria by releasing cytochrome c to activate the downstream pyroptosis pathway. Different doses of GA inhibited tumor growth in ID8 tumor-bearing mice, and high-dose GA increased in tumor-infiltrating lymphocytes CD3, CD4, and CD8 were detected in tumor tissues. Notably, the expressions of GSDME-N, cleaved caspase-3 and other proteins were increased in tumor tissues with high-dose GA groups. These findings demonstrate that GA-treated OC cells could induce GSDME-mediated pyroptosis through the ROS/p53/mitochondria signaling pathway and caspase-3/-9 activation. Thus, GA is a promising therapeutic agent for OC treatment.
Collapse
Affiliation(s)
- Danya Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxin Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yue Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hanjie Xu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Obstetrics and Gynecology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rui Wei
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fei Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jie Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pingbo Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Ling Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Kong JC, Zhou F, Shi L, Wei Y, Wu C. A novel nanodrug for the sensitization of photothermal chemotherapy for breast cancer in vitro. RSC Adv 2024; 14:21292-21299. [PMID: 38974230 PMCID: PMC11225340 DOI: 10.1039/d4ra01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Owing to the complexity of tumor treatment, clinical tumor treatment has evolved from a single treatment mode to multiple combined treatment modes. Reducing the tolerance of tumors to heat and the toxicity of chemotherapy drugs to the body, as well as increasing the sensitivity of tumors to photothermal therapy and chemotherapy drugs, are key issues that urgently need to be addressed in the current cancer treatment. In this work, polylactic acid-based drug nanoparticles (PLA@DOX/GA/ICG) were synthesized with good photothermal conversion ability by encapsulating the water-soluble anticancer drug doxorubicin (DOX), photothermal conversion agent indocyanine green (ICG) and liposoluble drug gambogic acid (GA) using a double emulsion method. The preparation process of PLA@DOX/GA/ICG was examined. Gambogic acid entrapped in PLA@DOX/GA/ICG nanoparticles could act as an HSP90 protein inhibitor to achieve bidirectional sensitization to chemotherapy and photothermal therapy under 808 nm laser irradiation for the first time, effectively ablating breast cancer cells in vitro. This nanodrug was expected to be used for the efficient treatment of tumors.
Collapse
Affiliation(s)
- Ji Chuan Kong
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Feng Zhou
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Liting Shi
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Yihui Wei
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Chunhong Wu
- Henan Polytechinc University Jiaozuo Henan 45400 China
| |
Collapse
|
3
|
Zhang Q, Zhang Y, Wang C, Tang H, Ma A, Gao P, Shi Q, Wang G, Shen S, Zhang J, Xia F, Zhu Y, Wang J. Gambogic acid exhibits promising anticancer activity by inhibiting the pentose phosphate pathway in lung cancer mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155657. [PMID: 38692076 DOI: 10.1016/j.phymed.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.
Collapse
Affiliation(s)
- Qianyu Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guohua Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yinhua Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China; Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
4
|
Li Y, Liao W, Huang W, Liu F, Ma L, Qian X. Mechanism of gambogic acid repressing invasion and metastasis of colorectal cancer by regulating macrophage polarization via tumor cell-derived extracellular vesicle-shuttled miR-21. Drug Dev Res 2024; 85:e22141. [PMID: 38349264 DOI: 10.1002/ddr.22141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 02/15/2024]
Abstract
Colorectal cancer (CRC) is a major cause of mortality and morbidity. Gambogic acid (GA) is a promising antitumor drug for treating CRC. We aimed to elucidate its mechanism in CRC invasion/metastasis via tumor cell-derived extracellular vesicle (EV)-carried miR-21. Nude mice peritoneal carcinomatosis (PC) model was subjected to GA treatment liver collection, followed by observation/counting of metastatic liver tissues/liver metastatic nodules by hematoxylin and eosin staining. miR-21 expression in metastatic liver tissues/CD68 + CD86, CD68 + CD206 cell percentages and M2 macrophage marker CD206 level in tumor tissues/interleukin (IL)-12 and IL-10 levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR)/flow cytometry/enzyme-linked immunosorbent assay. HT-29 cells were treated with GA/miR-21 mimics/negative control for 48 h. miR-21 expression/cell proliferation/migration/invasion/apoptosis were assessed by RT-qPCR/cell counting kit-8/scratch assay/transwell assay/flow cytometry. EVs were extracted from HT-29 cells and identified by transmission electron microscope/nanoparticle tracking analysis/Western blot. IL-4/IL-13-induced macrophages/PC nude mice were treated with GA and EVs, with the internalization of EVs by macrophages assessed through the uptake test. After intraperitoneal injection of GA, PC nude mice exhibited decreased tumor cell density/irregular cell number/liver metastatic nodule number/miR-21 expression, and CRC cells manifested reduced CD68 + CD206 cells/IL-10/miR-21/proliferation/migration/invasion and increased CD68 + CD86 cells/IL-12/apoptosis, while these trends were opposite after miR-21 overexpression, implying that GA curbed CRC/cell invasion/metastasis and macrophage polarization by diminishing miR-21 levels. miR-21 was encapsulated in HT-29 cell-derived EVs. M2 polarization elevated CD206 cells/IL-10, which were decreased by simultaneous GA treatment. EVs could be uptaken by macrophages. CRC cell-EV-miR-21 annulled the suppression effects of GA on macrophage M2 polarization. GA suppressed macrophage M2 polarization by lessening tumor cell derived-EV-shuttled miR-21, thereby weakening CRC invasion/metastasis.
Collapse
Affiliation(s)
- You Li
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Xuzhou Citiy Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wenqi Liao
- Department of Cardiology, Xuzhou City Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wei Huang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fenglin Liu
- Department of Oncology, Xuzhou Citiy Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Lin Ma
- Department of Oncology, Xuzhou Citiy Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Xiaoping Qian
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
5
|
Shen M, Zhang Y, Wu F, Shen M, Zhang S, Guo Y, Gan J, Wang R. Knockdown of hCINAP sensitizes colorectal cancer cells to ionizing radiation. Cell Cycle 2024; 23:233-247. [PMID: 38551450 PMCID: PMC11057657 DOI: 10.1080/15384101.2024.2309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/08/2023] [Indexed: 05/01/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP's precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Meizhu Shen
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Zhang
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Wu
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meizhen Shen
- Department of Radiotheraphy, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sen Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jialiang Gan
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Fahmy SA, Elghanam R, Rashid G, Youness RA, Sedky NK. Emerging tendencies for the nano-delivery of gambogic acid: a promising approach in oncotherapy. RSC Adv 2024; 14:4666-4691. [PMID: 38318629 PMCID: PMC10840092 DOI: 10.1039/d3ra08042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Despite the advancements in cancer therapies during the past few years, chemo/photo resistance, severe toxic effects, recurrence of metastatic tumors, and non-selective targeting remain incomprehensible. Thus, much effort has been spent exploring natural anticancer compounds endowed with biosafety and high effectiveness in cancer prevention and therapy. Gambogic acid (GA) is a promising natural compound in cancer therapy. It is the major xanthone component of the dry resin extracted from the Garcinia hanburyi Hook. f. tree. GA has significant antiproliferative effects on different types of cancer, and it exerts its anticancer activities through various pathways. Nonetheless, the clinical translation of GA has been hampered, partly due to its water insolubility, low bioavailability, poor pharmacokinetics, rapid plasma clearance, early degradation in blood circulation, and detrimental vascular irritation. Lately, procedures have been invented demonstrating the ability of nanoparticles to overcome the challenges associated with the clinical use of natural compounds both in vitro and in vivo. This review sheds light on the recent emerging trends for the nanodelivery of GA to cancer cells. To the best of our knowledge, no similar recent review described the different nanoformulations designed to improve the anticancer therapeutic activity and targeting ability of GA.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| | - Rawan Elghanam
- Nanotechnology Department, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurugram Haryana 122413 India
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) Cairo 11835 Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| |
Collapse
|
7
|
Su SC, Chen YT, Hsieh YH, Yang WE, Su CW, Chiu WY, Yang SF, Lin CW. Gambogic Acid Induces HO-1 Expression and Cell Apoptosis through p38 Signaling in Oral Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1663-1679. [PMID: 35786173 DOI: 10.1142/s0192415x22500707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gambogic acid (GA), a natural and bioactive compound from the gamboge resin, has been reported to exhibit many oncostatic activities against several types of malignancies. However, its effects on the progression of oral squamous cell carcinoma (OSCC) remain largely unexplored. To fill this gap, we investigated the anticancer role of GA and molecular mechanisms underlying GA's actions in combating oral cancer. We found that GA negatively regulated the viability of OSCC cells, involving induction of the sub-G1 phase and cell apoptosis. In addition, a specific signature of apoptotic proteome, such as upregulation of heme oxygenase-1 (HO-1) and activation of caspase cascades, was identified in GA-treated OSCC. Moreover, such induction of HO-1 expression and caspase cleavage by GA was significantly diminished through the pharmacological inhibition of p38 kinase. In conclusion, these results demonstrate that GA promotes cell apoptosis in OSCC, accompanied with the activation of a p38-dependent apoptotic pathway. Our findings provide potential avenues for the use of GA with high safety and therapeutic implications in restraining oral cancer.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Yu Chiu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Li M, Su F, Zhu M, Zhang H, Wei Y, Zhao Y, Li J, Lv S. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Molecules 2022; 27:2937. [PMID: 35566290 PMCID: PMC9102264 DOI: 10.3390/molecules27092937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Gambogic acid (GA) is a natural product with a wide range of pharmacological properties. It plays an important role in inhibiting tumor growth. A large number of GA derivatives have been designed and prepared to improve its shortcomings, such as poor water solubility, low bioavailability, poor stability, and adverse drug effects. So far, GA has been utilized to develop a variety of active derivatives with improved water solubility and bioavailability through structural modification. This article summarized the progress in pharmaceutical chemistry of GA derivatives to provide a reference and basis for further study on structural modifications of GA and expansion of its clinical applications.
Collapse
Affiliation(s)
- Meng Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Fali Su
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Mingtao Zhu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Huan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Yuxin Wei
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Yang Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Jianmin Li
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Shaowa Lv
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| |
Collapse
|
9
|
Elgiushy HR, Mohamed SH, Taha H, Sawaf H, Hassan Z, Abou-Taleb NA, El-labbad EM, Hassan AS, Abouzid KA, Hammad SF. Identification of a promising hit from a new series of pyrazolo[1,5-a]pyrimidine based compounds as a potential anticancer agent with potent CDK1 inhibitory and pro-apoptotic properties through a multistep in vitro assessment. Bioorg Chem 2022; 120:105646. [DOI: 10.1016/j.bioorg.2022.105646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022]
|
10
|
Phang YL, Zheng C, Xu H. Structural diversity and biological activities of caged Garcinia xanthones: recent updates. ACTA MATERIA MEDICA 2022; 1. [DOI: 10.15212/amm-2022-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Caged xanthones are a class of natural compounds with approximately 200 members that are commonly isolated from the Garcinia genus in the Clusiaceae (formerly Guttiferae) family. They are often characterized by a notable 4-oxa-tricyclo[4.3.1.03,7]dec-2-one (caged) architecture with a common xanthone backbone. Because most caged xanthones have potent anticancer properties, they have become a target of interest in natural product chemistry. The unique chemical architectures and increasingly identified biological importance of these compounds have stimulated many studies and intense interest in their isolation, biological evaluation and mechanistic studies. This review summarizes recent progress and development in the chemistry and biological activity of caged Garcinia xanthones and of several compounds of non-Garcinia origin, from the years 2008 to 2021, providing an in-depth discussion of their structural diversity and medicinal potential. A preliminary discussion on structure-activity relationships is also provided.
Collapse
|
11
|
Nguyen A, Böttger R, Ong CY, Chao PH, Wu J, Rouhollahi E, Chen Y, Li SD. Interplay Between the Linker and Polymer Molecular Weight of a Self-Assembling Prodrug on the Pharmacokinetics and Therapeutic Efficacy. Biomater Sci 2022; 10:3122-3136. [DOI: 10.1039/d1bm01947c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poorly water-soluble small hydrophobic compounds can be conjugated to a hydrophilic polymer such as methoxypolyethylene glycol (mPEG) to form amphiphilic prodrugs that can self-assemble into nanoparticles (NPs) with increased aqueous...
Collapse
|
12
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Zhao Q, Zhong J, Bi Y, Liu Y, Liu Y, Guo J, Pan L, Tan Y, Yu X. Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1α/JNK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153306. [PMID: 32854039 DOI: 10.1016/j.phymed.2020.153306] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gambogenic acid (GNA), an active component of Garcinia hanburyi Hook.f. (Clusiaceae) (common name gamboge), exerts anti-inflammatory and antitumor properties. However, the underlying mechanism of GNA in colorectal cancer (CRC) is still not well understood. PURPOSE This study aimed to investigate the antitumor effects and mechanisms of GNA on CRC in vitro and in vivo. METHODS Cell viability, colony formation and cell apoptosis assays were performed to determine the antitumor effects of GNA. qRT-PCR and Western blotting were performed to evaluate the expression of genes or proteins affected by GNA in vitro and in vivo. HCT116 colon cancer xenografts and the APCmin/+ mice model were used to confirm the antitumor effects of GNA on CRC in vivo. RESULTS GNA induced Noxa-mediated apoptosis by inducing reactive oxygen species (ROS) generation and c-Jun N-terminal kinase (JNK) activation. Moreover, GNA triggered endoplasmic reticulum (ER) stress, which subsequently activated inositol-requiring enzyme-1α (IRE1α) leading to JNK phosphorylation. ROS scavenger attenuated GNA-induced IRE1α activation and JNK phosphorylation. Knockdown of IRE1α also prevented GNA-induced JNK phosphorylation. In vivo, GNA suppressed tumor growth and progression in HCT116 colon cancer xenografts and the APCmin/+ mices model. CONCLUSION These findings revealed that GNA induced Noxa-mediated apoptosis by activating the ROS/IRE1α/JNK signaling pathway in CRC both in vitro and in vivo. GNA is therefore a promising antitumor agent for CRC treatment.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jing Zhong
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yingxiang Liu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Longrui Pan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xianjun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
14
|
Mohamed SH, Elgiushy HR, Taha H, Hammad SF, Abou-Taleb NA, A M Abouzid K, Al-Sawaf H, Hassan Z. An investigative study of antitumor properties of a novel thiazolo[4,5-d]pyrimidine small molecule revealing superior antitumor activity with CDK1 selectivity and potent pro-apoptotic properties. Bioorg Med Chem 2020; 28:115633. [PMID: 32773088 DOI: 10.1016/j.bmc.2020.115633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
New thiazolo[4,5-d]pyrimidine analogues were synthesized and biologically assessed in-vitro for their antineoplastic activity. The growth inhibitory effects of these compounds were assessed through the National Cancer Institute-United States of America (NCI-USA) anticancer screening program. Compound5(7-Chloro-3-(2,4-dimethoxyphenyl)-5-methylthiazolo[4,5-d]pyrimidine-2(3H)-thione) was found to have a potent and broad-spectrum cytotoxic action against NCI panel with GI50 (50% growth inhibition concentration) mean graph midpoint (MG-MID) = 2.88 µM. MTT assay was used to determine IC50 values of the most potent agent against HCT-116 colorectal carcinoma and WI-38 human lung fibroblast cell lines; 5.33 µM ± 0.69 and 21.69 µM ± 1.04, respectively. Flow cytometric analysis revealed that compound5triggered apoptosis and G2/M cell cycle arrest. The ability of compound5to inhibit CDK1 (Cyclin-Dependent Kinase 1)/Cyclin B complex was evaluated, and its IC50 value was 97 nM ± 2.33. Moreover, according to the gene expression analysis, compound5up-regulated p53, BAX, cytochrome c, caspases-3,-8 and-9 besides down-regulated Bcl-2. In conclusion, compound5exerted a potent pro-apoptotic activity through the activation of the intrinsic apoptotic pathway and arrested the cell cycle at the G2/M phase.
Collapse
Affiliation(s)
- Sameh H Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr 11829, Cairo, Egypt.
| | - Hossam R Elgiushy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt
| | - Heba Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Helwan, Cairo, Egypt
| | - Sherif F Hammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt; Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Nageh A Abou-Taleb
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Hussein Al-Sawaf
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr 11829, Cairo, Egypt
| | - Zeinab Hassan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Helwan, Cairo, Egypt
| |
Collapse
|
15
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
16
|
Nguyen A, Ando H, Böttger R, DurgaRao Viswanadham KK, Rouhollahi E, Ishida T, Li SD. Utilization of click chemistry to study the effect of poly(ethylene)glycol molecular weight on the self-assembly of PEGylated gambogic acid nanoparticles for the treatment of rheumatoid arthritis. Biomater Sci 2020; 8:4626-4637. [DOI: 10.1039/d0bm00711k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry was used to study the effect of varied PEG molecular weights on the self-assembly of PEG-gambogic acid (GA) conjugates into nanoparticles.
Collapse
Affiliation(s)
- Anne Nguyen
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics
- Subdivision of Biopharmaceutical Sciences
- Institute of Health Biosciences
- The University of Tokushima
- Tokushima
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | | | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics
- Subdivision of Biopharmaceutical Sciences
- Institute of Health Biosciences
- The University of Tokushima
- Tokushima
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
17
|
Ding X, Chang VHS, Li Y, Li X, Xu H, Ho C, Ho D, Yen Y. Harnessing an Artificial Intelligence Platform to Dynamically Individualize Combination Therapy for Treating Colorectal Carcinoma in a Rat Model. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes of Biomedical Engineering School Shanghai Jiao Tong University Shanghai 200030 China
| | - Vincent H. S. Chang
- Department of Physiology, School of Medicine, College of Medicine Taipei Medical University Taipei 110 Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology Taipei Medical University Taipei 110 Taiwan
| | - Yulong Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes of Biomedical Engineering School Shanghai Jiao Tong University Shanghai 200030 China
| | - Xin Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes of Biomedical Engineering School Shanghai Jiao Tong University Shanghai 200030 China
| | - Hongquan Xu
- Department of Statistics University of California Los Angeles CA 90095 USA
| | - Chih‐Ming Ho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science University of California Los Angeles CA 90095 USA
- Department of Mechanical and Aerospace Engineering, Henry Samueli School of Engineering and Applied Science University of California Los Angeles CA 90095 USA
| | - Dean Ho
- The N.1 Institute for Health (N.1) National University of Singapore Singapore 117456
- Department of Biomedical Engineering, NUS Engineering National University of Singapore Singapore 117583
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore 117600
| | - Yun Yen
- The PhD Program for Translational Medicine, College of Medical Science and Technology Taipei Medical University Taipei 110 Taiwan
- Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology California 91125 USA
| |
Collapse
|
18
|
Gambogic acid increases the sensitivity to paclitaxel in drug‑resistant triple‑negative breast cancer via the SHH signaling pathway. Mol Med Rep 2019; 20:4515-4522. [PMID: 31545492 PMCID: PMC6797991 DOI: 10.3892/mmr.2019.10697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Paclitaxel is the most frequently used therapy regimen for triple-negative breast cancer (TNBC). However, chemoresistance frequently occurs, leading to enhanced failure rates of chemotherapy in TNBC; therefore, novel biological therapies are urgently needed. Gambogic acid (GA) has potent anticancer effects and inhibits tumor growth in several types of human cancer. However, the effects of GA on paclitaxel-resistant TNBC remain unknown. In the present study, the Cell Counting Kit-8 assay was used to examine the effect of GA and/or paclitaxel on the viability of TNBC cells; flow cytometry was used to examine the effects of GA on cell apoptosis; and western blotting and reverse transcription-quantitative PCR were used to determine the effects of GA on the expression of sonic hedgehog (SHH) signaling pathway target genes. The present results indicated that GA significantly inhibited the viability and enhanced the rate of apoptosis in paclitaxel-resistant MDA-MB-231 cells via activating the SHH signaling pathway. In vivo experiments confirmed that GA treatment enhanced the sensitivity of MDA-MB-231 cells to paclitaxel via the SHH signaling pathway. In conclusion, the combination of GA with paclitaxel may increase the antitumor effects on paclitaxel-resistant TNBC via downregulating the SHH signaling pathway.
Collapse
|
19
|
Fang W, Dai YJ, Wang T, Gao HT, Huang P, Yu J, Huang HP, Wang DL, Zong WL. Aminated β-cyclodextrin-grafted Fe 3O 4-loaded gambogic acid magnetic nanoparticles: preparation, characterization, and biological evaluation. RSC Adv 2019; 9:27136-27146. [PMID: 35529223 PMCID: PMC9070625 DOI: 10.1039/c9ra04955j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
Based on aminated β-cyclodextrin (6-NH2-β-CD)-grafted Fe3O4 and gambogic acid (GA) clathrate complexes, a nanoparticle delivery system was developed with the aim to achieve low irritation, strong targeting, and high bioavailability of a gambogic acid magnetic nanopreparation. 6-NH2-β-CD grafted onto Fe3O4 MNPs was demonstrated by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, zeta potential, and magnetic measurements. The average particle size of the Fe3O4@NH2-β-CD MNPs was 147.4 ± 0.28 nm and the PDI was 0.072 ± 0.013. The encapsulation efficiency, drug loading, zeta potential, and magnetic saturation values of the Fe3O4@NH2-β-CD MNPs were 85.71 ± 3.47%, 4.63 ± 0.04%, −29.3 ± 0.42 mV, and 46.68 emu g−1, respectively. Compared with free GA, the in vitro release profile of GA from Fe3O4@NH2-β-CD MNPs was characterized by two phases: an initial fast release and a delayed-release phase. The Fe3O4@NH2-β-CD MNPs displayed continuously increased cytotoxicity against HL-60 and HepG2 cell lines in 24 h, whereas the carrier Fe3O4@NH2-β-CD MNPs showed almost no cytotoxicity, indicating that the release of GA from the nanoparticles had a sustained profile and Fe3O4@NH2-β-CD MNPs as a tumor tissue-targeted drug delivery system have great potential. Besides, blood vessel irritation tests suggested that the vascular irritation could be reduced by the use of Fe3O4@NH2-β-CD MNPs encapsulation for GA. The t1/2 and the AUC of the Fe3O4@NH2-β-CD@GA MNPs were found to be higher than those for the GA solution by approximately 2.71-fold and 2.42-fold in a pharmacokinetic study, respectively. The better biocompatibility and the combined properties of specific targeting and complexation ability with hydrophobic drugs make the Fe3O4@NH2-β-CD MNPs an exciting prospect for the targeted delivery of GA. Based on aminated β-cyclodextrin (6-NH2-β-CD)-grafted Fe3O4 and gambogic acid clathrate complexes, a nanoparticle delivery system was developed with the aim of achieving low irritation, strong targeting and high bioavailability of a gambogic acid magnetic nanopreparation.![]()
Collapse
Affiliation(s)
- Wei Fang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Ya Ji Dai
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159.,Anhui Second People's Hospital Hefei 230041 Anhui China
| | - Ting Wang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Hai Tao Gao
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Peng Huang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Juan Yu
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - He Ping Huang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Dian Lei Wang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159.,Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei 230012 Anhui China
| | - Wei Lu Zong
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| |
Collapse
|
20
|
Yu Z, Jv Y, Cai L, Tian X, Huo X, Wang C, Zhang B, Sun C, Ning J, Feng L, Zhang H, Ma X. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol Appl Pharmacol 2019; 371:63-73. [PMID: 30953615 DOI: 10.1016/j.taap.2019.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 12/17/2022]
Abstract
Gambogic acid (GA), a major ingredient of Garcinia hanburryi, is known to have diverse biological effects. The present study was designed to evaluate the anti-fibrotic effects of GA on hepatic fibrosis and reveal its underlying mechanism. We investigated the anti-fibrotic effect of GA on dimethylnitrosamine and bile duct ligation induced liver fibrosis in rats in vivo. The rat and human hepatic stellate cell lines (HSCs) lines were chose to evaluate the effect of GA in vitro. Our results indicated that GA could significantly ameliorate liver fibrosis associated with improving serum markers, decrease in extracellular matrix accumulation and HSCs activation in vivo. GA significantly inhibited the proliferation of HSC cells and induced the cell cycle arrest at the G1 phase. Moreover, GA triggered autophagy at early time point and subsequent initiates mitochondrial mediated apoptotic pathway resulting in HSC cell death. The mechanism of GA was related to inhibit heat shock protein 90 (HSP90) and degradation of the client proteins inducing PI3K/AKT and MAPK signaling pathways inhibition. This study demonstrated that GA effectively ameliorated liver fibrosis in vitro and in vivo, which provided new insights into the application of GA for liver fibrosis.
Collapse
Affiliation(s)
- Zhenlong Yu
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yanan Jv
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lu Cai
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Baojing Zhang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - ChengPeng Sun
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Houli Zhang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| | - Xiaochi Ma
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
21
|
Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis 2019; 10:187. [PMID: 30796201 PMCID: PMC6385239 DOI: 10.1038/s41419-019-1360-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/25/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022]
Abstract
Gambogic acid (GA), a xanthonoid extracted from the resin of the tree, Garcinia hanburyi, was recently shown to exert anticancer activity in multiple studies, but the underlying action mechanism remains unclear. Here, we show that GA induces cancer cell death accompanied by vacuolation in vitro and in vivo. This GA-induced vacuolation in various cancer cells was derived from dilation of the endoplasmic reticulum (ER) and mitochondria, and was blocked by cycloheximide. These findings suggest that GA kills cancer cells by inducing paraptosis, a vacuolization-associated cell death. We found that megamitochondria formation, which arose from the fusion of swollen mitochondria, preceded the fusion of ER-derived vacuoles. GA-induced proteasomal inhibition was found to contribute to the ER dilation and ER stress seen in treated cancer cells, and megamitochondria formation was followed by mitochondrial membrane depolarization. Interestingly, GA-induced paraptosis was effectively blocked by various thiol-containing antioxidants, and this effect was independent of ROS generation. We observed that GA can react with cysteinyl thiol to form Michael adducts, suggesting that the ability of GA to covalently modify the nucleophilic cysteinyl groups of proteins may cause protein misfolding and subsequent accumulation of misfolded proteins within the ER and mitochondria. Collectively, our findings show that disruption of thiol proteostasis and subsequent paraptosis may critically contribute to the anti-cancer effects of GA.
Collapse
|
22
|
Gao G, Bian Y, Qian H, Yang M, Hu J, Li L, Yu L, Liu B, Qian X. Gambogic acid regulates the migration and invasion of colorectal cancer via microRNA-21-mediated activation of phosphatase and tensin homolog. Exp Ther Med 2018; 16:1758-1765. [PMID: 30186399 PMCID: PMC6122420 DOI: 10.3892/etm.2018.6421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Gambogic acid (GA) has been reported to inhibit cancer cell proliferation and migration and enhance apoptosis. Several signaling pathways were identified to be involved in GA function, including PI3K/Akt, caspase-3 apoptosis and TNF-α/NF-κB. However, to the best of our knowledge, the association between miRNA and GA has not been explored. The present study initially demonstrated that GA could inhibit HT-29 cancer cell proliferation using an MTT assay. In addition, a Transwell assay and a wound-healing assay respectively indicated that GA inhibited HT-29 cancer cell invasion and migration, which was also confirmed by the increased MMP-9 protein expression. Furthermore, GA induced the apoptosis of HT-29 cancer cells in an Annexin V and PI double staining assay. Moreover, treatment with GA significantly decreased miR-21 expression in these cells. Additionally, western blot analysis demonstrated that GA treatment enhanced the activation of phosphatase and tensin homolog (PTEN) along with the suppression of PI3K and p-Akt. Furthermore, miR-21 mimics reversed all the aforementioned activities of GA, which indicated that miR-21 was the effector of GA and blocked PI3K/Akt signaling pathway via enhancing PTEN activity. In summary, GA induced HT-29 cancer cell apoptosis via decreasing miR-21 expression and blocking PI3K/Akt, which may be a useful novel insight for future CRC treatment.
Collapse
Affiliation(s)
- Guangyi Gao
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,Department of Traditional Chinese Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Yinzhu Bian
- Department of Oncology, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, P.R. China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Mi Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Li Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
23
|
Su MQ, Zhou YR, Li CQ, Wang Z, Wang YL, Shen BY, Dou J. Zedoary Turmeric Oil Induces Senescence and Apoptosis in Human Colon Cancer HCT116 Cells. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zedoary turmeric oil (ZTO) is a volatile oil that is extracted from the dry rhizome of Curcuma zedoaria with a variety of biological activities, including anti-tumor activity. However, there is a lack of knowledge about the effect and mechanism of ZTO in human colon cancer cells. The aim of this study was to examine the potential efficacy of ZTO against human colon cancer cells (HCT116) and to uncover the molecular mechanisms of its anti-tumor effects. The anti-proliferative activity of ZTO was determined by the MTT assay, cell counts and colony formation assay. Senescent cells were detected using SA-β-Gal staining, while apoptosis and the CD44+ subpopulation were evaluated by flow cytometry. The expression levels of senescence- and apoptosis-related proteins were examined using western blotting. The results showed that treatment with ZTO significantly inhibited the growth of HCT116 cells and caused senescence and apoptosis in a dose- and time-dependent manner. Western blotting revealed that ZTO significantly increased the expression of senescence- and apoptosis-related proteins p16, p21, and p53 and the phosphorylation of ERK. Moreover, ZTO treatment reduced the cancer stem-like CD44 positive cell population. These findings suggest that ZTO inhibits human colon cancer cells by inducing senescence and apoptosis.
Collapse
Affiliation(s)
- Meng-Qi Su
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yi-Ran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Cheng-Qin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Zhou Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yue-Liang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Bai-Yong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Jie Dou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
24
|
Banik K, Harsha C, Bordoloi D, Lalduhsaki Sailo B, Sethi G, Leong HC, Arfuso F, Mishra S, Wang L, Kumar AP, Kunnumakkara AB. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett 2017; 416:75-86. [PMID: 29246645 DOI: 10.1016/j.canlet.2017.12.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Natural compounds have enormous biological and clinical activity against dreadful diseases such as cancer, as well as cardiovascular and neurodegenerative disorders. In spite of the widespread research carried out in the field of cancer therapeutics, cancer is one of the most prevalent diseases with no perfect treatment till date. Adverse side effects and the development of chemoresistance are the imperative limiting factors associated with conventional chemotherapeutics. For this reason, there is an urgent need to find compounds that are highly safe and efficacious for the prevention and treatment of cancer. Gambogic acid (GA) is a xanthone structure extracted from the dry, brownish gamboge resin secreted from the Garcinia hanburyi tree in Southeast Asia and has inherent anti-cancer properties. In this review, the molecular mechanisms underlying the targets of GA that are liable for its effective anti-cancer activity are discussed that reveal the potential of GA as a pertinent candidate that can be appropriately developed and designed into a capable anti-cancer drug.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
25
|
Jiang Y, Wang X, Hu D. Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: a study in vitro and in vivo. Cell Death Dis 2017; 8:e2815. [PMID: 28542135 PMCID: PMC5520734 DOI: 10.1038/cddis.2017.220] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
Furanodienone, a major bioactive constituents of sesquiterpene derived from Rhizoma Curcumae, has been proven to possess the potent anticancer efficacy on human breast cancer cells. Here, we investigated the cytotoxicity of furanodienone on human colorectal carcinoma cell lines in vitro and in vivo, as well as its underlying molecular mechanisms in the induction of apoptosis. In this study, we found that furanodienone significantly inhibited proliferation of RKO and HT-29 cells, induced mitochondrial dysfunction characterized by collapse of mitochondrial transmembrane potential and reduction of ATP level, and promoted the production of reactive oxygen species (ROS) that functions upstream of caspase-dependent apoptosis. The antioxidant N-acetyl cysteine, a ROS scavenger, abolished this apoptosis induced by furanodienone. In addition, furanodienone elevated the expression of p-p38, p-JNK, but decreased p-ERK, as a result of the produced ROS. The specific inhibitors U0126, SP600125 and SB202190 attenuated the expression of MAPKs, and regulated the expression of cleaved caspase-8, -9 and -3. Furthermore, the potential inhibitory effect of furanodienone on CRC cells was also corroborated in mouse xenograft model. In conclusion, the results demonstrated that furanodienone-triggered ROS plays a pivotal role in apoptosis as an upstream molecule-modulating activity of caspases in mitochondrial pathway via stimulating MAPKs signaling pathway. Our finding may provide a novel candidate for development of antitumor drugs targeting on colorectal cancer.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xiaoqin Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
26
|
Brito LDC, Berenger ALR, Figueiredo MR. An overview of anticancer activity of Garcinia and Hypericum. Food Chem Toxicol 2017; 109:847-862. [PMID: 28363851 DOI: 10.1016/j.fct.2017.03.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023]
Abstract
Cancer is one of the leading causes of death worldwide (approximately 8.2 million cases/year) and, over the next two decades, a 70% increase in new cancer cases is expected. Through analysis of the available drugs between the years of 1930 and 2014, it was found that 48% were either natural products or their derivatives. This proportion increased to 66% when semi-synthetic products were included. The family Clusiaceae Juss. (Malpighiales) includes approximately 1000 species distributed throughout all tropical and temperate regions. The phytochemical profile of this family includes many chemicals with interesting pharmacological activities, including anticancer activities. This study includes an overview of the in vitro and in vivo anticancer activity of secondary metabolites from Garcinia and Hypericum and the mechanisms involved in this activity. Hypericum no longer belong to Clusiaceae family, but was considered in the past by taxonomists, due to similarities with this family. Research in the area has shown that several compounds belonging to different chemical classes exhibit activity in several tumor cell lines in different experimental models. This review shows the significant antineoplasic activity of these compounds, in particular of these two genera and validates the importance of natural products in the search for anticancer drugs.
Collapse
Affiliation(s)
- Lavínia de C Brito
- Central Analítica Fernanda Coutinho, Instituto de Química, UERJ, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais 3 (PN3), FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
27
|
Zhang Z, Qian H, Yang M, Li R, Hu J, Li L, Yu L, Liu B, Qian X. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int J Nanomedicine 2017; 12:1593-1605. [PMID: 28280328 PMCID: PMC5339001 DOI: 10.2147/ijn.s127256] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gambogic acid (GA) is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid) (PLGA) with red blood-cell membrane (RBCm), and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier.
Collapse
Affiliation(s)
- Zhen Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine
| | - Hanqing Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| | - Mi Yang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| | - Rutian Li
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| | - Jing Hu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine
| | - Li Li
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine
| | - Lixia Yu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| | - Baorui Liu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine; Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine; Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrob Agents Chemother 2016; 61:AAC.01220-16. [PMID: 27799215 DOI: 10.1128/aac.01220-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023] Open
Abstract
Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents.
Collapse
|
29
|
Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proc Natl Acad Sci U S A 2016; 113:E4801-9. [PMID: 27466407 DOI: 10.1073/pnas.1606655113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because of their importance in maintaining protein homeostasis, molecular chaperones, including heat-shock protein 90 (Hsp90), represent attractive drug targets. Although a number of Hsp90 inhibitors are in preclinical/clinical development, none strongly differentiate between constitutively expressed Hsp90β and stress-induced Hsp90α, the two cytosolic paralogs of this molecular chaperone. Thus, the importance of inhibiting one or the other paralog in different disease states remains unknown. We show that the natural product, gambogic acid (GBA), binds selectively to a site in the middle domain of Hsp90β, identifying GBA as an Hsp90β-specific Hsp90 inhibitor. Furthermore, using computational and medicinal chemistry, we identified a GBA analog, referred to as DAP-19, which binds potently and selectively to Hsp90β. Because of its unprecedented selectivity for Hsp90β among all Hsp90 paralogs, GBA thus provides a new chemical tool to study the unique biological role of this abundantly expressed molecular chaperone in health and disease.
Collapse
|
30
|
Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumour Biol 2016; 37:12915-12925. [PMID: 27448303 DOI: 10.1007/s13277-016-5194-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
|
31
|
Gambogic Acid and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:375-395. [DOI: 10.1007/978-3-319-41334-1_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules 2015; 21:42. [PMID: 26729077 PMCID: PMC6273601 DOI: 10.3390/molecules21010042] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/04/2022] Open
Abstract
Prodrug design is a widely known molecular modification strategy that aims to optimize the physicochemical and pharmacological properties of drugs to improve their solubility and pharmacokinetic features and decrease their toxicity. A lack of solubility is one of the main obstacles to drug development. This review aims to describe recent advances in the improvement of solubility via the prodrug approach. The main chemical carriers and examples of successful strategies will be discussed, highlighting the advances of this field in the last ten years.
Collapse
|