1
|
Zhang J, Zhu H, Li L, Gao Y, Yu B, Ma G, Jin X, Sun Y. New mechanism of LncRNA: In addition to act as a ceRNA. Noncoding RNA Res 2024; 9:1050-1060. [PMID: 39022688 PMCID: PMC11254507 DOI: 10.1016/j.ncrna.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) are a class of RNA molecules with nucleic acid lengths ranging from 200 bp to 100 kb that cannot code for proteins, which are diverse and widely expressed in both animals and plants. Scholars have found that lncRNAs can regulate human physiological processes at the gene and protein levels, mainly through the regulation of epigenetic, transcriptional and post-transcriptional levels of genes and proteins, as well as in the immune response by regulating the expression of immune cells and inflammatory factors, and thus participate in the occurrence and development of a variety of diseases. From the downstream targets of lncRNAs, we summarize the new research progress of lncRNA mechanisms other than miRNA sponges in recent years, aiming to provide new ideas and directions for the study of lncRNA mechanisms.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Taheri M, Safarzadeh A, Baniahmad A. Unveiling four axes ADAMTS9-AS2|MEG3/hsa-miR-150/PRKCA|MMP14 within prostate cancer through establishment of the ceRNA network. Pathol Res Pract 2024; 263:155604. [PMID: 39341147 DOI: 10.1016/j.prp.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Prostate cancer is among the most common cancers in males. Recent application of system biology methods has resulted in identification of key genes in the process of carcinogenesis. In the current study, we selected two datasets related to prostate cancer (PCa) and performed bulk RNA-seq analysis by selecting samples with Gleason scores greater than 7 and combining them. Subsequently, using several systems biology approaches, we constructed the ceRNA network and ultimately identified key axes related to PCa. Our analyses revealed importance of ADAMTS9-AS2/miR-150/PRKCA, ADAMTS9-AS2/miR-150/MMP14, MEG3/miR-150/PRKCA and MEG3/miR-150/MMP14 with miR-150 being a central component. Remarkably, miR-150 exhibited strong statistical significance in survival analyses. Further, analyzing expression levels from TCGA datasets, the expression of the identified genes associates significantly with prostate cancer compared to normal tissue confirming the bioinformatic analyses. Therefore, these genes can be regarded as prognostic markers in prostate cancer and the pathways are potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arash Safarzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
3
|
Yu QH, Duan SY, Xing XK, Fan XM, Zhang N, Song GY, Hu YJ, Wang F, Chao TZ, Wang LT, Xu P. Generation of a competing endogenous RNA network and validation of BNIP1 expression in the lung of irradiated mice. Transl Oncol 2024; 47:102007. [PMID: 38906065 PMCID: PMC11245936 DOI: 10.1016/j.tranon.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a serious complication of radiation therapy, and it is mediated by long non-coding RNAs (lncRNAs). STUDY DESIGN AND METHODS Mouse lung tissues were examined using RNA-Seq and RNA-Seq libraries 72 h after the administration of 6 Gy of X-ray irradiation. The target mRNAs were functionally annotated and the target lncRNA-based miRNAs and target miRNA-based mRNAs were predicted after irradiation to establish the lncRNA-miRNA-mRNA ceRNA axis. RESULTS The analyses showed that relative to unirradiated controls, 323 mRNAs, 114 miRNAs, and 472 lncRNAs were significantly up-regulated following irradiation, whereas 1907 mRNAs, 77 miRNAs, and 1572 lncRNAs were significantly down-regulated following irradiation. Voltage-gated ion channels, trans-membrane receptor protein tyrosine kinases, and vascular endothelial growth factor have all been associated with dysregulated miRNA-mRNA relationships. KEGG pathway analysis of the dysregulated miRNA-mRNA targets revealed involvement in pathways associated with the hedgehog signaling pathway-fly, ErbB signaling, VEGF signaling, axon guidance, and focal adhesion. KEGG analysis of differentially expressed showed enrichment of mRNAs in primary immunodeficiency, the intestinal immune axis for IgA production, hematopoietic cell lineages, systemic lupus erythematosus, and Th1 and Th2 cell differentiation. Finally, the ceRNA network revealed that BNIP1 was a critical mRNA modulated by the most significant upregulation of lncRNA E230013L22Rik. CONCLUSION In summary, the lncRNA-miRNA-mRNA ceRNA axis of RILI was constructed following irradiation in a mouse model. RNA dysregulation in the early stage of RILI may lead to severe complications at a later stage, with BNIP1 contributing to radiation-induced cellular apoptosis in RILI.
Collapse
Affiliation(s)
- Qing-Hua Yu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261000, China; Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Shu-Yan Duan
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Xue-Kun Xing
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Xin-Ming Fan
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, 277100, China
| | - Nan Zhang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Gui-Yuan Song
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China; School of Public Health, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Yong-Jian Hu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fei Wang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Tian-Zhu Chao
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Li-Tao Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Ping Xu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China.
| |
Collapse
|
4
|
Kong X, Xiong Y, Li L. LINC01605 promotes malignant phenotypes of cervical cancer via miR-149-3p/WNT7B axis. Gene 2024; 921:148518. [PMID: 38734188 DOI: 10.1016/j.gene.2024.148518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Long non-coding RNAs (LncRNA) play a pivotal role in the progression of various malignancies. Despite recent identification as an oncogene associated with tumorigenesis. The precise role of LINC01605 in cervical cancer (CC) remains unclear. Therefore, the objective of this study was to investigate the influence of LINC01605 on proliferation and invasion of CC cells, while also exploring its potential underlying mechanisms. METHODS The expression of LINC01605 in CC cell lines was analyzed using the TCGA database and qRT-PCR. Various assays, including CCK-8 and transwell analysis, were conducted on CC cells to assess the influence of LINC01605 on their proliferation, migration, and invasion capabilities. Bioinformatics and dual luciferase reporter gene assays were employed to analyze the target genes of LINC01605 and miR-149-3p. To further investigate the mechanism of action, transfection and investigation were performed using specific siRNA, miRNA mimics, or inhibitors. RESULTS The expression of LINC01605 exhibited a significant increase in CC cell lines, and this upregulation was associated with an unfavorable prognosis. Modulating the expression of LINC01605, either by down-regulating or up-regulating it, exerted suppressive or stimulatory effects on the growth and invasion of HeLa and Siha cells. LINC01605 functioned as a competitive endogenous RNA (ceRNA) for miR-149-3p, with WNT7B being identified as a target gene of miR-149-3p. The involvement of LINC01605 in CC development is facilitated by its ability to regulate the expression of WNT7B through sequestering miR-149-3p. CONCLUSION Our study demonstrates that LINC01605 acts as a competitive endogenous RNA in modulating the effects of WNT7B on the proliferation and invasion of CC cells by sequestering miR-149-3p. This research provides novel insights into the involvement of LINC01605 in the advancement of CC.
Collapse
Affiliation(s)
- Xiaoyu Kong
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Liping Li
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; The First Hospital of Nanchang (also known as the Third Affiliated Hospital of Nanchang University), Nanchang, 330006, China.
| |
Collapse
|
5
|
Li P, Ma X, Gu X. The essential roles of lncRNAs/PI3K/AKT axis in gastrointestinal tumors. Front Cell Dev Biol 2024; 12:1442193. [PMID: 39161590 PMCID: PMC11330846 DOI: 10.3389/fcell.2024.1442193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Wu S, Huang J, Li Y. A novel hypoxic lncRNA, LOC110520012 sponges miR-206-y to regulate angiogenesis and liver cell proliferation in rainbow trout (Oncorhynchus mykiss) by targeting vegfaa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116554. [PMID: 38878335 DOI: 10.1016/j.ecoenv.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
Long non-coding RNA (lncRNA) is a novel emerging type of competitive endogenous RNA (ceRNA) that performs key functions in multiple biological processes. However, little is known about the roles of lncRNA under hypoxia stress in fish. Here, vascular endothelial growth factor-Aa (vegfaa) was cloned in rainbow trout (Oncorhynchus mykiss), with the complete cDNA sequence of 2914 bp, encoding 218 amino acids. The molecular weight of the protein was approximately 25.33 kDa, and contained PDGF and VEGF_C domains. Time-course and spatial expression patterns revealed that LOC110520012 was a key regulator of rainbow trout in response to hypoxia stress, and LOC110520012, miR-206-y and vegfaa exhibited a ceRNA regulatory relationship in liver, gill, muscle and rainbow trout liver cells treated with acute hypoxia. Subsequently, the targeting relationship of LOC110520012 and vegfaa with miR-206-y was confirmed by dual-luciferase reporter analysis, and overexpression of LOC110520012 mediated the inhibition of miR-206-y expression in rainbow trout liver cells, while the opposite results were obtained after LOC110520012 silencing with siRNA. We also proved that vegfaa was a target of miR-206-y in vitro and in vivo, and the vegfaa expression and anti-proliferative effect on rainbow trout liver cells regulated by miR-206-y mimics could be reversed by LOC110520012. These results suggested that LOC110520012 can positively regulate vegfaa expression by sponging miR-206-y under hypoxia stress in rainbow trout, which facilitate in-depth understanding of the molecular mechanisms of fish adaptation and tolerance to hypoxia.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Shukla N, Harshini V, Raval I, Patel AK, Joshi CG. lncRNA-miRNA-mRNA network in kidney transcriptome of Labeo rohita under hypersaline environment. Sci Data 2024; 11:226. [PMID: 38388642 PMCID: PMC10883911 DOI: 10.1038/s41597-024-03056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The present study describes the kidney transcriptome of Labeo rohita, a freshwater fish, exposed to gradually increased salinity concentrations (2, 4, 6 and 8ppt). A total of 10.25 Gbps data was generated, and a suite of bioinformatics tools, including FEELnc, CPC2 and BLASTn were employed for identification of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). Our analysis revealed a total of 170, 118, 99, and 269 differentially expressed lncRNA and 120, 118, 99, and 124 differentially expressed miRNAs in 2, 4, 6 and 8 ppt treatment groups respectively. Two competing endogenous RNA (ceRNA) networks were constructed i.e. A* ceRNA network with up-regulated lncRNAs and mRNAs, down-regulated miRNAs; and B* ceRNA network vice versa. 2ppt group had 131 and 83 lncRNA-miRNA-mRNA pairs in A* and B* networks, respectively. 4ppt group featured 163 pairs in A* network and 191 in B* network, while the 6ppt had 103 and 105 pairs. 8ppt group included 192 and 174 pairs. These networks illuminate the intricate RNA interactions in freshwater fish to varying salinity conditions.
Collapse
Affiliation(s)
- Nitin Shukla
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India
| | - Vemula Harshini
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India
| | - Ishan Raval
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India.
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India.
| |
Collapse
|
9
|
Liu M, Yu B, Tian Y, Li F. Regulatory function and mechanism research for m6A modification WTAP via SUCLG2-AS1- miR-17-5p-JAK1 axis in AML. BMC Cancer 2024; 24:98. [PMID: 38233760 PMCID: PMC10795285 DOI: 10.1186/s12885-023-11687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Acute myeloid leukemia (AML), characterized by the abnormal accumulation of immature marrow cells in the bone marrow, is a malignant tumor of the blood system. Currently, the pathogenesis of AML is not yet clear. Therefore, this study aims to explore the mechanisms underlying the development of AML. Firstly, we identified a competing endogenous RNA (ceRNA) SUCLG2-AS1-miR-17-5p-JAK1 axis through bioinformatics analysis. Overexpression of SUCLG2-AS1 inhibits proliferation, migration and invasion and promotes apoptosis of AML cells. Secondly, luciferase reporter assay and RIP assay validated that SUCLG2-AS1 functioned as ceRNA for sponging miR-17-5p, further leading to JAK1 underexpression. Additionally, the results of MeRIP-qPCR and m6A RNA methylation quantification indicted that SUCLG2-AS1(lncRNA) had higher levels of m6A RNA methylation compared with controls, and SUCLG2-AS1 is regulated by m6A modification of WTAP in AML cells. WTAP, one of the main regulatory components of m6A methyltransferase complexes, proved to be highly expressed in AML and elevated WTAP is associated with poor prognosis of AML patients. Taken together, the WTAP-SUCLG2-AS1-miR-17-5p-JAK1 axis played essential roles in the process of AML development, which provided a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Bingxin Yu
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Yong Tian
- Department of Human Anatomy, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China.
- The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, 130021, P.R. China.
- Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, 830017, P.R. China.
| |
Collapse
|
10
|
Yue CF, Chen JG, Li ZY, Li LS, Chen JR, Xie HX, Zhang B, Guo YM. Tumor cell-derived exosomes mediating hsa_circ_0001739/lncRNA AC159540.1 facilitate liver metastasis in colorectal cancer. Cell Biol Toxicol 2023; 39:2551-2568. [PMID: 37957486 DOI: 10.1007/s10565-023-09837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The current study probed into how tumor cell-derived exosomes (Exos) mediated hsa_circ_0001739/lncRNA AC159540.1 to manipulate microRNA (miR)-218-5p/FTO-N6-methyladenosine (m6A)/MYC signal axis in liver metastasis in colorectal cancer (CRC). METHODS hsa_circ_0001739 and lncRNA AC159540.1 were identified as the upstream regulator of miR-218-5p using ENCORI and LncBase databases. Expression patterns of miR-218-5p, hsa_circ_0001739, lncRNA AC159540.1, FTO, and MYC were detected, accompanied by loss-and-gain-of function assays to examine their effects on CRC cell biological functions. SW480 cells-derived Exos were purified, followed by in vitro studies to uncover the effect of hsa_circ_0001739/lncRNA AC159540. RESULTS miR-218-5p was downregulated while hsa_circ_0001739/lncRNA AC159540.1 was upregulated in CRC tissues and cells. Silencing of hsa_circ_0001739/lncRNA AC159540.1 restrained the malignant phenotypes of CRC cells. Exos-mediated hsa_circ_0001739/lncRNA AC159540.1 competitively inhibited miR-218-5p to elevate FTO and MYC. The inducing role of Exos-mediated hsa_circ_0001739/lncRNA AC159540.1 in CRC was also validated in vivo. CONCLUSION Conclusively, Exos-mediated circ_0001739/lncRNA AC159540.1 regulatory network is critical for CRC, offering a theoretical basis for CRC treatment.
Collapse
Affiliation(s)
- Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Ju-Gao Chen
- Department of Oncology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Zi-Yue Li
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lai-Sheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Jie-Rong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hai-Xia Xie
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Bin Zhang
- Department of Cardiovascular Diagnosis, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
11
|
Shariatmadar Taleghani A, Zohrab Beigi Y, Zare-Mirakabad F, Masoudi-Nejad A. Exploring ceRNA networks for key biomarkers in breast cancer subtypes and immune regulation. Sci Rep 2023; 13:20795. [PMID: 38012271 PMCID: PMC10682442 DOI: 10.1038/s41598-023-47816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Breast cancer is a major global health concern, and recent researches have highlighted the critical roles of non-coding RNAs in both cancer and the immune system. The competing endogenous RNA hypothesis suggests that various types of RNA, including coding and non-coding RNAs, compete for microRNA targets, acting as molecular sponges. This study introduces the Pre_CLM_BCS pipeline to investigate the potential of long non-coding RNAs and circular RNAs as biomarkers in breast cancer subtypes. The pipeline identifies specific modules within each subtype that contain at least one long non-coding RNA or circular RNA exhibiting significantly distinct expression patterns when compared to other subtypes. The results reveal potential biomarker genes for each subtype, such as circ_001845, circ_001124, circ_003925, circ_000736, and circ_003996 for the basal-like subtype, circ_00306 and circ_00128 for the luminal B subtype, circ_000709 and NPHS1 for the normal-like subtype, CAMKV and circ_001855 for the luminal A subtype, and circ_00128 and circ_00173 for the HER2+ subtype. Additionally, certain long non-coding RNAs and circular RNAs, including RGS5-AS1, C6orf223, HHLA3-AS1, circ_000349, circ_003996, circ_003925, circ_002665, circ_001855, and DLEU1, are identified as potential regulators of T cell mechanisms, underscoring their importance in understanding breast cancer progression in various subtypes. This pipeline provides valuable insights into cancer and immune-related processes in breast cancer subtypes.
Collapse
Affiliation(s)
- Alireza Shariatmadar Taleghani
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yasaman Zohrab Beigi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Polytechnic Tehran), Tehran, Iran.
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Moallemi Rad L, Safarzadeh A, Taheri M, Ghafouri-Fard S, Eghbali A. Construction of ceRNA network and identification of hub differentially expressed genes associated with breast cancer using reanalysis of microarray dataset: A systems biology approach. Pathol Res Pract 2023; 251:154838. [PMID: 37804544 DOI: 10.1016/j.prp.2023.154838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
The interaction between long non-coding RNAs (lncRNAs), miRNAs and mRNAs has implications in the pathogenesis of different cancer, including breast cancer. In the current study, we developed an in-silico approach to ascertain the competing endogenous RNA (ceRNA) network in breast cancer. Our approach led to identification of 1816 differentially expressed (DE) mRNAs, including 1039 downregulated DEmRNAs (such as LEP and ADIPOQ) and 777 upregulated DEmRNAs (such as COL11A1 and COL10A1), 19 DElncRNAs, including 15 downregulated DElncRNAs (such as CARMN and COPG2IT1) and 4 upregulated DElncRNAs (such as MALAT1 and NRAV) and 27 DEmiRNAs, including 15 downregulated DEmiRNAs (such as MIR452 and MIR224) and 12 upregulated DEmiRNAs (such as MIR6787 and MIR21). Pathway analysis revealed down-regulation of PPAR, Fatty acid metabolism, Adipocytokine, Vascular smooth muscle contraction and Metabolism of xenobiotics by cytochrome P450, while up-regulation of Pyrimidine metabolism, p53 signaling pathway, Cell cycle, Oocyte meiosis and RNA transport pathways in breast cancer. Finally, we constructed an lncRNA/miRNA/mRNA ceRNA network consisted of 2 lncRNAs, 15 mRNAs, and 4 miRNAs. This network represents an appropriate target for design of anti-cancer modalities and documentation of novel markers for breast cancer.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Arash Safarzadeh
- Photochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Jamali E, Safarzadeh A, Hussen BM, Liehr T, Ghafouri-Fard S, Taheri M. Single cell RNA-seq analysis with a systems biology approach to recognize important differentially expressed genes in pancreatic ductal adenocarcinoma compared to adjacent non-cancerous samples by targeting pancreatic endothelial cells. Pathol Res Pract 2023; 248:154614. [PMID: 37329816 DOI: 10.1016/j.prp.2023.154614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is usually diagnosed at late stages. This highly aggressive tumor is resistant to most therapeutic approaches, necessitating identification of differentially expressed genes to design new therapies. Herein, we have analyzed single cell RNA-seq data with a systems biology approach to identify important differentially expressed genes in PDAC samples compared to adjacent non-cancerous samples. Our approach revealed 1462 DEmRNAs, including 1389 downregulated DEmRNAs (like PRSS1 and CLPS) and 73 upregulated DEmRNAs (like HSPA1A and SOCS3), 27 DElncRNAs, including 26 downregulated DElncRNAs (like LINC00472 and SNHG7) and 1 upregulated DElncRNA (SNHG5). We also listed a number of dysregulated signaling pathways, abnormally expressed genes and aberrant cellular functions in PDAC which can be used as possible biomarkers and therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
- Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Harshini V, Shukla N, Raval I, Kumar S, Shrivastava V, Chaudhari A, Patel AK, Joshi CG. Interplay of gene expression and regulators under salinity stress in gill of Labeo rohita. BMC Genomics 2023; 24:336. [PMID: 37337199 DOI: 10.1186/s12864-023-09426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Labeo rohita is the most preferred freshwater carp species in India. The concern of increasing salinity concentration in freshwater bodies due to climate change may greatly impact the aquatic environment. Gills are one of the important osmoregulatory organs and have direct contact with external environment. Hence, the current study is conducted to understand the gill transcriptomic response of L. rohita under hypersalinity environment. RESULTS Comprehensive analysis of differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs was performed in gills of L. rohita treated with 2, 4, 6 and 8ppt salinity concentrations. Networks of lncRNA-miRNA-mRNA revealed involvement of 20, 33, 52 and 61 differentially expressed lncRNAs, 11, 13, 26 and 21 differentially expressed miRNAs in 2, 4, 6 and 8ppt groups between control and treatment respectively. These lncRNA-miRNA pairs were regulating 87, 214, 499 and 435 differentially expressed mRNAs (DE mRNAs) in 2, 4, 6 and 8ppt treatments respectively. Functional analysis of these genes showed enrichment in pathways related to ion transportation and osmolyte production to cope with induced osmotic pressure due to high salt concentration. Pathways related to signal transduction (MAPK, FOXO and phosphatidylinositol signaling), and environmental information processing were also upregulated under hypersalinity. Energy metabolism and innate immune response pathways also appear to be regulated. Protein turnover was high at 8ppt as evidenced by enrichment of the proteasome and aminoacyl tRNA synthesis pathways, along with other enriched KEGG terms such as apoptosis, cellular senescence and cell cycle. CONCLUSION Altogether, the RNA-seq analysis provided valuable insights into competitive endogenous (lncRNA-miRNA-mRNA) regulatory network of L. rohita under salinity stress. L. rohita is adapting to the salinity stress by means of upregulating protein turnover, osmolyte production and removing the damaged cells using apoptotic pathway and regulating the cell growth and hence diverting the essential energy for coping with salinity stress.
Collapse
Affiliation(s)
- Vemula Harshini
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Ishan Raval
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Sujit Kumar
- Postgraduate Institute of Fisheries Education and Research, Kamdhenu University, Himmatnagar, 383010, Gujarat, India
| | - Vivek Shrivastava
- Postgraduate Institute of Fisheries Education and Research, Kamdhenu University, Himmatnagar, 383010, Gujarat, India
| | - Aparna Chaudhari
- Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India.
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India.
| |
Collapse
|
15
|
Qian L, Li L, Li Y, Li S, Zhang B, Zhu Y, Yang B. LncRNA HOTAIR as a ceRNA is related to breast cancer risk and prognosis. Breast Cancer Res Treat 2023:10.1007/s10549-023-06982-4. [PMID: 37294527 DOI: 10.1007/s10549-023-06982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Breast cancer (BC) is one of the biggest threats to women's health. LncRNA HOTAIR is related to the recurrence and metastasis of BC. Whether HOTAIR can serve as an effective biomarker to distinguish BC patients with different prognosis need to be further studied. METHODS The miRNA and mRNA expression profile data of BC patients were downloaded from TCGA database. Univariate Cox regression was used to screen differential expression genes (DEGs). The miRcode database and miRWalk database were used to predict miRNA binding to HOTAIR and binding sites of miRNAs, respectively. Kaplan-Meier (KM) analysis was used to estimate the overall survival rate of BC patients. Finally, qRT-PCR and western blot were applied to evaluate the expression level of HOTAIR and mRNAs between BC cells and normal mammary cells. RESULTS The patients with high HOTAIR expression had poor prognosis in BC. Totally 10 genes correlated with BC prognosis were identified from 170 DEGs, among which PAX7, IYD, ZIC2, MS4A1, TPRXL, CD24, LHX1 were positively correlated with HOTAIR, while CHAD, NPY1R, TPRG1 were opposite. The levels of IYD, ZIC2, CD24 mRNA and protein were increased in BC tissues and BC cells. In BC cells, the levels of IYD, ZIC2 and CD24 mRNA and protein were significantly increased in HOTAIR overexpressed group. HOTAIR had the strongest interaction with hsa-miR-129-5p, followed by hsa-miR-107. CONCLUSION HOTAIR regulated the expression of downstream genes by interacting with 8 miRNAs and ultimately affected the prognosis of BC patients.
Collapse
Affiliation(s)
- Liyu Qian
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Li Li
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Li
- Department of Cardiac Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Bo Zhang
- Department of Immunology, College of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| | - Yu Zhu
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, 300170, China.
- Department of Clinical Laboratory, Tianjin Third Center Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| | - Bing Yang
- Department of Cell Biology, College of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
16
|
Li P, Hong J, Liang C, Li Y, Gao L, Wu L, Yao R, Zhang Y. Endothelial cell-released extracellular vesicles trigger pyroptosis and vascular inflammation to induce atherosclerosis through the delivery of HIF1A-AS2. FASEB J 2023; 37:e22942. [PMID: 37178006 DOI: 10.1096/fj.202201399rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) possess great potential in the modulation of cardiovascular diseases. Our current work intended to assay the clinical significance of endothelial cell (EC)-derived EVs in atherosclerosis (AS). Expression of HIF1A-AS2, miR-455-5p, and ESRRG in plasma from AS patients and mice and EVs from ox-LDL-treated ECs was measured. Interactions among HIF1A-AS2, miR-455-5p, ESRRG, and NLRP3 were analyzed. Next, EVs were co-cultured with ECs, and ectopic expression and depletion experimentations of HIF1A-AS2, miR-455-5p, ESRRG, and/or NLRP3 were carried out to assay their roles in pyroptosis and inflammation of ECs in AS. At last, the effects of HIF1A-AS2 shuttled by EC-derived EVs on EC pyroptosis and vascular inflammation in AS were verified in vivo. HIF1A-AS2 and ESRRG were highly expressed, while miR-455-5p was poorly expressed in AS. HIF1A-AS2 could sponge miR-455-5p to elevate the expression of ESRRG and NLRP3. Both in vitro and in vivo experiments revealed that ECs-derived EVs carrying HIF1A-AS2 induced the pyroptosis and vascular inflammation of ECs to promote the progression of AS by sponging miR-455-5p via ESRRG/NLRP3. HIF1A-AS2 shuttled by ECs-derived EVs can accelerate the progression of AS by downregulating miR-455-5p and upregulating ESRRG and NLRP3.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jin Hong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Cui Liang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yapeng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lu Gao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Leiming Wu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Rui Yao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yanzhou Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
17
|
Han YC, Shen ZJ, Xiang RL, Lu B, Qian H, Li JY, Xie HZ. Long Noncoding RNA and mRNA Expression Profiles in Rats with LPS-induced Myocardial Dysfunction. Curr Genomics 2023; 23:412-423. [PMID: 37920555 PMCID: PMC10173418 DOI: 10.2174/1389202924666230119160258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Background Sepsis is an uncontrolled systemic inflammatory response. Long noncoding RNAs (lncRNAs) are involved in the pathogenesis of sepsis. However, little is known about the roles of lncRNAs in sepsis-induced myocardial dysfunction. Objective We aimed to determine the regulatory mechanism of lncRNAs in sepsis-induced myocardial dysfunction. Methods In this study, we analysed the lncRNA and mRNA expression profiles using microarray analysis. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction network, and gene set enrichment analysis were used to evaluate the data. We also constructed coding and noncoding coexpression and competing endogenous RNA networks to investigate the mechanisms. Results In vivo lipopolysaccharide -induced sepsis rat model was established. A total of 387 lncRNAs and 1,952 mRNAs were identified as significantly changed in the left ventricle. Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs showed that the upregulated genes were mainly enriched in the "complement and coagulation cascade pathway" and "immune-related biological processes" terms. Eight significantly changed lncRNAs detected by RT-qPCR may be responsible for these processes. A competing endogenous RNA network was generated, and the results indicated that eight lncRNAs were related to the "calcium ion binding" process. Conclusion These results demonstrate that crosstalk between lncRNAs and mRNAs may play important roles in the development of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Ye-Chen Han
- Department of Cardiology, Peking Union Medical College Hospital, No. 1 North Street, Dongdan, Beijing, 100032, China
| | - Zhu-Jun Shen
- Department of Cardiology, Peking Union Medical College Hospital, No. 1 North Street, Dongdan, Beijing, 100032, China
| | - Ruo-Lan Xiang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Lu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, No. 1 North Street, Dongdan, Beijing, 100032, China
| | - Jing-Yi Li
- Department of Cardiology, Peking Union Medical College Hospital, No. 1 North Street, Dongdan, Beijing, 100032, China
| | - Hong-Zhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, No. 1 North Street, Dongdan, Beijing, 100032, China
| |
Collapse
|
18
|
Bu H, Song Q, Zhang J, Wei Y, Liu B. Development of a Novel KCNN4-Related ceRNA Network and Prognostic Model for Renal Clear Cell Carcinoma. Anal Cell Pathol (Amst) 2023; 2023:2533992. [PMID: 39282155 PMCID: PMC11401688 DOI: 10.1155/2023/2533992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 09/18/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) accounts for more than 80% of renal cell carcinomas. Yet, it has not been fully understood about the derivation and progression of the tumor, as well as the long-term benefits from multimodality therapy. Therefore, reliable and applicable molecular markers are urgently needed for the prediction of diagnosis and prognosis of ccRCC patients. Methods Genetic and clinical information of 533 ccRCC patients from The Cancer Genome Atlas database was collected for comprehensive bioinformatic analyses. UALCAN was used to detect gene expression in paired tumor samples. Two data sets from Gene Expression Omnibus database were analyzed to identify differentially expressed genes (DEGs), and Gene Set Enrichment Analysis was applied for the functional enrichment of DEGs. Tumor Immune Single Cell Hub and Tumor IMmune Estimation Resource databases were separately used for analyses of single-immune cell and immune cell infiltration. Encyclopedia of RNA Interactomes database was explored to predict targeted microRNAs (miRNAs) and corresponding long non-coding RNAs (lncRNAs). Cox regression analysis was performed for the construction of risk signature and prognosis model. Finally, quantitative real-time polymerase chain reaction and western blot were conducted for KCNN4 expression detection in cell lines and clinical samples. Small interfering RNA was employed to knock down KCNN4, and corresponding functional experiments were conducted on ccRCC cells as well. Results KCNN4 showed elevated expression in tumors and prominent clinical correlation in ccRCC. In total, 41 KCNN4-related genes were enriched, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed they were intimately related to immune-related signaling pathways. Spearman's analysis revealed the significantly positive correlation of KCNN4 with immune cell infiltration. By integrating hub miRNA-let-7e-5p and four critical lncRNA, a competitive endogenous RNA network-based risk signature was constructed. The prognosis model derived from it showed considerable predictive value for survival of ccRCC patients. Finally, in vitro experiments confirmed the remarkable tumor-promoting role of KCNN4 in ccRCC cells. Conclusion KCNN4 significantly affected the immune status of tumor microenvironment and immunotherapy elements, through which it promoted tumor progression in ccRCC, and it could be a potential biomarker for prognosis and immunotherapy effects of ccRCC patients.
Collapse
Affiliation(s)
- Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiexiu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
He D, Li Z, Chen Y, Huang M. Circular RNA circ_0029589 promotes ox-LDL-induced endothelial cell injury through regulating RAB22A by serving as a sponge of miR-1197. Clin Hemorheol Microcirc 2023; 83:359-376. [PMID: 36683504 DOI: 10.3233/ch-221657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysfunction of endothelial cells is now considered a vital contributor to the pathogenesis of atherosclerosis (AS). Moreover, circular RNA (circRNA) circ_0029589 has been found to be involved in the regulation of oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell damage. Nevertheless, its molecular mechanism in ox-LDL-triggered endothelial cell injury is poorly defined. METHODS Human umbilical vein endothelial cells (HUVECs) treated with ox-LDL were applied as cell models of AS. Circ_0029589, microRNA-1197 (miR-1197), and Ras-related protein Rab-22A (RAB22A) expression were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, angiogenesis, and invasion were detected using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation, and transwell assays. Western blot analysis of Cleaved-caspase-3, B-cell lymphoma-2 related X protein (Bax), and RAB22A. IL-6, IL-1β, and Tumor necrosis factor α (TNF-α) levels were gauged using ELISA kits. Superoxide Dismutase (SOD) activity and Malondiahyde (MDA) level were assessed using special kits. Bioinformatics software predicted the binding between miR-1197 and circ_0029589 or RAB22A, which was proved using dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_0029589 and RAB22A expression were strengthened, and miR-1197 was reduced in ox-LDL-treated HUVECs. Importantly, circ_0029589 silencing ameliorated ox-LDL-triggered HUVEC damage via promoting cell proliferation, tube formation ability, invasion, and repressing cell apoptosis, inflammation, and oxidative stress. Mechanical analysis suggested that circ_0029589 might affect RAB22A content through sponging miR-1197. CONCLUSION Circ_0090231 might protect against ox-LDL-mediated HUVEC injury via the miR-1197/RAB22A axis, which provides a therapeutic strategy for endothelial cell damage of AS.
Collapse
Affiliation(s)
- Dequan He
- Department of Cardiology, Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiliang Li
- Department of Cardiology, Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Cardiology, Heart Center, South China hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Youquan Chen
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Huang
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Li N, Li Y, Wu B, Sun R, Zhao M, Hu Z. CIRCKLHL2 KNOCKDOWN ALLEVIATES SEPSIS-INDUCED ACUTE LUNG INJURY BY REGULATING MIR-29B-3P MEDIATED ROCK1 EXPRESSION DOWN-REGULATION. Shock 2023; 59:99-107. [PMID: 36476974 DOI: 10.1097/shk.0000000000002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Background: Acute lung injury (ALI) induced by sepsis is distinguished by an inflammatory progression. Herein, we investigated the action of circular RNA kelch like family member 2 (circKlhl2) in sepsis-induced ALI. Methods: The animal or cell model of sepsis ALI was established by LPS stimulation. The contents of circKlhl2, microRNA-29b-3p (miR-29b-3p), rho-associated coiled-coil containing protein kinase 1 (ROCK1), CyclinD1, B-cell lymphoma-2 (Bcl-2), and cleaved-caspase 3 (C-caspase-3) were detected by quantitative real-time polymerase chain reaction and western blot, respectively. Cell viability was assessed by cell counting kit 8 assay. Cell cycle and apoptosis were evaluated by flow cytometry. The abundances of proinflammatory cytokines were detected by enzyme-linked immunosorbent assay. Besides, the targeted relationship between miR-29b-3p and circKlhl2 or ROCK1 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Results: Loss of circKlhl2 mitigated lung injury and proinflammatory cytokine expression in sepsis-ALI mice model and alleviated LPS-induced apoptosis and inflammatory response in microvascular endothelial cell (MPVECs) in vitro . The abundances of circKlhl2 and ROCK1 were boosted, while the miR-29b-3p level was diminished in the animal or cell model of sepsis-ALI. MiR-29b-3p inhibition abrogated circKlhl2 knockdown-mediated effects on MPVECs injury. Moreover, miR-29b-3p overexpression promoted cell proliferation and inhibited apoptosis and inflammation in LPS-treated MPVECs, while ROCK1 enhancement reversed these effects. Conclusion: CircKlhl2 expedited the sepsis-induced ALI by adjusting miR-29b-3p/ROCK1 axis.
Collapse
Affiliation(s)
| | - Yuqiang Li
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Bin Wu
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Rongli Sun
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Mingzhou Zhao
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | | |
Collapse
|
21
|
Jing Y, Cheng B, Wang H, Bai X, Zhang Q, Wang N, Li H, Wang S. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genomics 2022; 23:790. [PMID: 36456907 PMCID: PMC9714206 DOI: 10.1186/s12864-022-09045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Excessive deposition of abdominal fat poses serious problems in broilers owing to rapid growth. Recently, the evolution of the existing knowledge on long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have established their indispensable roles in multiple physiological metabolic processes, including adipogenesis and fat deposition. However, not much has been explored on their profiles in the abdominal fat tissues of broilers to date. In the study, we aimed to characterize the vital candidates of lncRNAs and circRNAs and their underlying regulations for abdominal fat deposition in broilers. RESULTS The present study sequenced the lncRNAs and circRNAs expression profiles in the abdominal fat tissues isolated from 7-week-old broilers, who were divergently selected for their fatness. It identified a total of 3359 lncRNAs and 176 circRNAs, demonstrating differential expressed (DE) 30 lncRNAs and 17 circRNAs between the fat- and lean-line broilers (|log2FC| ≥ 1, P < 0.05). Subsequently, the 20 cis-targets and 48 trans-targets of the candidate DE lncRNAs were identified for depositing abdominal fat by adjacent gene analysis and co-expression analysis, respectively. In addition, the functional enrichment analysis showed the DE lncRNAs targets and DE circRNAs host genes to be mainly involved in the cellular processes, amino/fatty acid metabolism, and immune inflammation-related pathways and GO terms. Finally, the vital 16 DE lncRNAs located in cytoplasm and specifically expressed in fat/lean line and their targets were used to construct the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network, comprising 7 DE lncRNAs, 28 miRNAs, 11 DE mRNAs. Notably, three lncRNAs including XR_001468036.2, XR_003077610.1 and XR_001466431.2 with the most connected degrees might play hub regulatory roles in abdominal fat deposition of broilers. CONCLUSIONS This study characterized the whole expression difference of lncRNAs and circRNAs between the two lines broilers with divergently ability of abdominal fat. The vital candidate DE lncRNAs/circRNAs and ceRNA regulations were identified related to the deposition of abdominal fat in chicken. These results might further improve our understanding of regulating the non-coding RNAs in obesity.
Collapse
Affiliation(s)
- Yang Jing
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bohan Cheng
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Haoyu Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Xue Bai
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Qi Zhang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Ning Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hui Li
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shouzhi Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
22
|
Hao Y, Xu X, Wang Y, Jin F, Tang L, Zheng W, Zhang H, He Z. Comprehensive analysis of immune-related biomarkers and pathways in intracerebral hemorrhage using weighted gene co-expression network analysis and competing endogenous ribonucleic acid. Front Mol Neurosci 2022; 15:955818. [PMID: 36226317 PMCID: PMC9549172 DOI: 10.3389/fnmol.2022.955818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response is an important part of secondary brain injury following intracerebral hemorrhage (ICH), and is related to neurological deficits and prognosis. The mechanisms underlying the immune response and inflammation are of great significance for brain injury and potential functional restoration; however, the immune-related biomarkers and competing endogenous ribonucleic acid (RNA) (ceRNA) networks in the peripheral blood of ICH patients have not yet been constructed. We collected the peripheral blood from ICH patients and controls to assess their ceRNA profiles using LCHuman ceRNA microarray, and to verify their expression with qRT-PCR. Two-hundred-eleven DElncRNAs and one-hundred-one DEmRNAs were detected in the ceRNA microarray of ICH patients. The results of functional enrichment analysis showed that the immune response was an important part of the pathological process of ICH. Twelve lncRNAs, ten miRNAs, and seven mRNAs were present in our constructed immune-related ceRNA network, combining weighted gene co-expression network analysis (WGCNA). Our study was the first to establish the network of the immune-related ceRNAs derived from WGCNA, and to identify leukemia inhibitory factor (LIF) and B cell lymphoma 2-like 13 (BCL2L13) as pivotal immune-related biomarkers in the peripheral blood of ICH patients, which are likely associated with PI3K-Akt, the MAPK signaling pathway, and oxidative phosphorylation. The MOXD2P-miR-211-3p -LIF and LINC00299-miR-198-BCL2L13 axes were indicated to participate in the immune regulatory mechanism of ICH. The goal of our study was to offer innovative insights into the underlying immune regulatory mechanism and to identify possible immune intervention targets for ICH.
Collapse
Affiliation(s)
- Yuehan Hao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Department of Geriatric, Dalian Friendship Hospital, Dalian, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Heyu Zhang,
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Zhiyi He,
| |
Collapse
|
23
|
Zhou M, Dong J, Huang J, Ye W, Zheng Z, Huang K, Pan Y, Cen J, Liang Y, Shu G, Ye S, Lu X, Zhang J. Chitosan-Gelatin-EGCG Nanoparticle-Meditated LncRNA TMEM44-AS1 Silencing to Activate the P53 Signaling Pathway for the Synergistic Reversal of 5-FU Resistance in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105077. [PMID: 35717675 PMCID: PMC9353463 DOI: 10.1002/advs.202105077] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/31/2022] [Indexed: 05/16/2023]
Abstract
Chemoresistance is one of the leading causes of therapeutic failure in gastric cancer (GC) treatment. Recent studies have shown lncRNAs play pivotal roles in regulating GC chemoresistance. Nanocarriers delivery of small interfering RNAs (siRNAs) to silence cancer-related genes has become a novel approach to cancer treatment research. However, finding target genes and developing nanosystems capable of selectively delivering siRNAs for disease treatment remains a challenge. In this study, a novel lncRNA TMEM44-AS1 that is related to 5-FU resistance is identified. TMEM44-AS1 has the ability to bind to and sponge miR-2355-5p, resulting in the upregulated PPP1R13L expression and P53 pathway inhibition. Next, a new nanocarrier called chitosan-gelatin-EGCG (CGE) is developed, which has a higher gene silencing efficiency than lipo2000, to aid in the delivery of a si-TMEM44-AS1 can efficiently silence TMEM44-AS1 expression to synergistically reverse 5-FU resistance in GC, leading to a markedly enhanced 5-FU therapeutic effect in a xenograft mouse model of GC. These findings indicate that TMEM44-AS1 may estimate 5-FU therapy outcome among GC cases, and that systemic si-TMEM44-AS1 delivery combined with 5-FU therapy is significant in the treatment of patients with recurrent GC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Catechin/therapeutic use
- Cell Line, Tumor
- Chitosan/pharmacology
- Chitosan/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Gelatin/pharmacology
- Gelatin/therapeutic use
- Gene Expression Regulation, Neoplastic
- Gene Silencing/drug effects
- Gene Silencing/physiology
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- MicroRNAs/genetics
- Nanoparticles/therapeutic use
- RNA/genetics
- RNA/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/genetics
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Mi Zhou
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Jiaqi Dong
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional Chinese MedicineFormula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510632P. R. China
| | - Wen Ye
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Zhousan Zheng
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Kangbo Huang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Yihui Pan
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Junjie Cen
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Yanping Liang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Guannan Shu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Sheng Ye
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Xuanxuan Lu
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632P. R. China
| | - Jiaxing Zhang
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| |
Collapse
|
24
|
Wang Y, Guo Y, Zhuang T, Xu T, Ji M. SP1-Induced Upregulation of lncRNA LINC00659 Promotes Tumour Progression in Gastric Cancer by Regulating miR-370/AQP3 Axis. Front Endocrinol (Lausanne) 2022; 13:936037. [PMID: 35957833 PMCID: PMC9361049 DOI: 10.3389/fendo.2022.936037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in various human tumors. LncRNA LINC00659 (LINC00659) is a newly identified lncRNA and its roles in tumors remain largely unclear. In this study, we elucidated the potential functions and molecular mechanisms of LINC00659 on the biological behaviors of gastric cancer (GC), and also explored its clinical significance. We firstly demonstrated that LINC00659 levels were distinctly up-regulated in both GC specimens and cells using bioinformatics analysis and RT-PCR. The results of ChIP assays and luciferase reporter assays confirmed that upregulation of LINC00659 was activated by SP1 in GC. Clinical assays revealed that higher levels of LINC00659 were associated with TNM stage, lymphatic metastasis, and poorer prognosis. Moreover, LINC00659 was confirmed to be an independent prognostic marker for the patients with GC using multivariate assays. Lost-of-function assays indicated that knockdown of LINC00659 suppressed the proliferation, metastasis, and EMT progress of GC cells in vitro. Mechanistic investigation indicated that LINC00659 served as a competing endogenous RNA (ceRNA) for miR-370, thereby resulting in the upregulation of leading to the depression of its endogenous target gene AQP3. Overall, our present study revealed that the LINC00659/miR-370/AQP3 axis contributes to GC progression, which may provide clues for the exploration of cancer biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Guo
- School of Medicine Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Asgari R, Bidmeshkipour A, Mansouri K, Bakhtiari M, Mozafari H, Abdolmaleki A. Fas cell surface death receptor/Fas ligand genetic variants in gastric cancer patients: A case-control study. Indian J Med Res 2022; 156:77-82. [PMID: 36124496 PMCID: PMC9903394 DOI: 10.4103/ijmr.ijmr_2058_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background & objectives Various studies have suggested a correlation between Fas cell surface death receptor/Fas ligand (FAS/FASL) variants and multiple types of cancers. The present study aimed to investigate the association between FAS-670A/G and FASL-844C/T and the synergistic effects of both variants on the risk of gastric cancer (GC) in the Kurdish population of west of Iran. Methods This study was conducted by polymerase chain reaction-restriction fragment length polymorphism technique using MvaI and BsrDI restriction enzymes in 98 GC patients and 103 healthy control individuals. Results According to the obtained results, a significant association (P=0.008) of FASL polymorphism among GC patients and the control group was detected. Furthermore, no significant differences were found in the FAS polymorphism frequencies between GC patients and the control group. Codominant and dominant models in FASL polymorphism showed significant protective effects against GC [odds ratio (OR)=0.307, 95% confidence interval (CI) (0.134-0.705), P=0.005; OR=0.205, 95% CI (0.058-0.718), P=0.013 and OR=0.295, 95% CI (0.129-0.673), P=0.004 for models of codominant CC vs. CT, codominant CC vs. TT and dominant, respectively]. Furthermore, the presence of both FAS-670G and FASL-844T alleles represented a significant protective effect against GC occurrence [OR=0.420, 95% CI (0.181-0.975), P=0.043]. Interpretation & conclusions So far, we believe this is the first study, the results of which suggest that FASL gene variation and its synergistic effects with FAS gene could be associated with the risk of GC in the Kurdish population in the west of Iran.
Collapse
Affiliation(s)
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran,For correspondence: Dr Ali Bidmeshkipour, Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran e-mail:
| | | | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah, Iran
| | | | - Amir Abdolmaleki
- Department of Anatomical Sciences & Cell Biology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Exp Neurol 2022; 356:114151. [PMID: 35738418 DOI: 10.1016/j.expneurol.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND New data are accumulating on the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in cerebrovascular diseases. We explored the potential role of KLF3-AS1-containing bone marrow MSC-EVs (BMSC-EVs) in a rat model of subarachnoid hemorrhage (SAH). METHODS A rat model of SAH was established by endovascular perforation method, into which KLF3-AS1-containing EVs from BMSCs or miR-183-5p mimic were injected. Further, brain microvascular endothelial cells (BMECs) were induced by oxyhemoglobin (OxyHb) to simulate in vitro setting, which were co-cultured with KLF3-AS1-containing EVs from BMSCs. Effects of KLF3-AS1 on neurological deficits in vivo and endothelial cell dysfunction in vitro were investigated. We also performed bioinformatics analysis to predict downstream factors miR-183-5p and TCF7L2, which were verified by RIP, RNA pull-down and luciferase activity assays. RESULTS BMSC-EVs was demonstrated to alleviate neurological deficits in SAH rats and endothelial cell dysfunction in OxyHb-induced BMECs. In addition, BMSC-EVs were shown to deliver KLF3-AS1 to BMECs, where KLF3-AS1 bound to miR-183-5p and miR-183-5p targeted TCF7L2. In vivo results confirmed that BMSC-EVs regulated the KLF3-AS1/miR-183-5p/TCF7L2 signaling axis to attenuate neurological deficit and endothelial dysfunction after SAH. CONCLUSION Overall, KLF3-AS1 delivered by BMSC-EVs upregulate TCF7L2 expression by binding to miR-138-5p, thus attenuating neurological deficits and endothelial dysfunction after SAH.
Collapse
|
27
|
Li H, Ye Z, Li Z. Identification of the potential biological target molecules related to primary open-angle glaucoma. BMC Ophthalmol 2022; 22:188. [PMID: 35461232 PMCID: PMC9034601 DOI: 10.1186/s12886-022-02368-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
Background To identify the potential biological target molecules and the corresponding interaction networks in primary open-angle glaucoma (POAG) development. Methods The microarray datasets of GSE138125 and GSE27276 concerning lncRNA and mRNA expression profiles in trabecular meshwork of POAG were downloaded from the Gene Expression Omnibus database. The R software was applied to identify differentially expressed (DE) lncRNAs and mRNAs in POAG, and to perform GO and KEGG functional enrichment analysis. Protein–protein interaction (PPI) network and module analysis, and lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network were performed by Cytoscape software. Results A total of 567 DE-mRNAs were identified from GSE138125 and GSE27276, including 298 up-regulated and 269 down-regulated mRNAs, which were found enriching in biological processes of extracellular matrix organization and epidermis development, respectively. KEGG pathway enrichment analysis further revealed that module genes in PPI network were primarily involved in the AGE-PAGE, PI3K-Akt and TGF-β signaling pathways. Moreover, 897 up-regulated and 1036 down-regulated DE-lncRNAs were identified from GSE138125. Through literature review and databases searching, we obtained 712 lncRNA-miRNA and 337 miRNA-mRNA pairs based on the selected eight POAG-related miRNAs. After excluding 702 lncRNAs and 284 mRNAs that were not comprised in the DE-lncRNA and DE-mRNAs, a total of 53 lncRNA nodes, eight miRNA nodes, 10 mRNA nodes, and 78 edges were included in the final ceRNA network. Conclusions This study demonstrated the lncRNA and mRNA expression profiles of trabecular meshwork in POAG patients and the normal controls, and identified potentially ceRNAs and pathways which might improve the pathogenic understanding of this ocular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02368-0.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
28
|
Wang Z, Zhang M, Li K, Chen Y, Cai D, Chen B, Nie Q. CircMGA Depresses Myoblast Proliferation and Promotes Myotube Formation through miR-144-5p/FAP Signal. Animals (Basel) 2022; 12:ani12070873. [PMID: 35405864 PMCID: PMC8996899 DOI: 10.3390/ani12070873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs are endogenous and abundant in skeletal muscle, and may not only be involved in regulating gene expression in a variety of ways, but also function as important regulators in poultry muscle development. Our previous research found that circMGA was differentially expressed during chicken muscle embryo development; however, as a novel circular RNA, the regulating mechanism of circMGA in myogenesis has never been studied before. In this study, we aimed to investigate the functional roles and related molecular mechanisms of circMGA in chicken primary myoblast cells. CircMGA originated from the exon 13–14 of MGA gene, was differentially expressed during embryo development and myogenesis differentiation, and could inhibit myoblast cell proliferation by repressing cell cycle related genes and promote myotube formation through MyoD and MyHC. Biotin-labeled miRNA pulldown assay and luciferase reporter assay result showed that miR-144-5p could directly target circMGA and FAP, indicating that there could be a competing endogenous RNA mechanism between circMGA and FAP. In function, miR-144-5p showed opposite regulation in myoblast cell with circMGA and FAP, just as expected. circMGA co-transfected with miR-144-5p or si-FAP could effectively eliminate the inhibition of miR-144-5p on myoblast proliferation and differentiation. In conclusion, we found a novel circRNA, named circMGA, which generated from the 13–14 exon of the MGA gene, and could inhibit myoblast proliferation and promote myotube formation by acting as the sponge of miR-144-5p and through miR-144-5p/FAP signal. Moreover, circMGA could effectively eliminate the inhibition of miR-144-5p on myoblast differentiation, thus releasing FAP and promoting myotube formation.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (M.Z.); (K.L.); (Y.C.); (D.C.)
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Min Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (M.Z.); (K.L.); (Y.C.); (D.C.)
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (M.Z.); (K.L.); (Y.C.); (D.C.)
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yangfeng Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (M.Z.); (K.L.); (Y.C.); (D.C.)
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Danfeng Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (M.Z.); (K.L.); (Y.C.); (D.C.)
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (B.C.); (Q.N.); Tel.: +86-18931507508 (B.C.); +86-20-8528-5759 (Q.N.); Fax: +86-20-8528-0740 (Q.N.)
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (M.Z.); (K.L.); (Y.C.); (D.C.)
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (B.C.); (Q.N.); Tel.: +86-18931507508 (B.C.); +86-20-8528-5759 (Q.N.); Fax: +86-20-8528-0740 (Q.N.)
| |
Collapse
|
29
|
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, Zhang X. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res 2022; 417:113131. [DOI: 10.1016/j.yexcr.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
|
30
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
31
|
Huang X, Liufu Q, Xu R, Chen X, Liu M, Han J, Guan H, Ma C. Integrating lncRNAs and mRNAs Expression Profiles in Penicillin-Induced Persistent Chlamydial Infection in HeLa Cells. Front Mol Biosci 2022; 9:744901. [PMID: 35252346 PMCID: PMC8890745 DOI: 10.3389/fmolb.2022.744901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is a major etiological agent of sexually transmitted infection. Some stressing conditions can result in persistent chlamydial infection, which is thought to be associated with severe complications including ectopic pregnancy and tubal factor infertility. Long noncoding RNAs (lncRNAs) have been identified as key modulators in many biological processes. Nevertheless, the role of lncRNAs in persistent chlamydial infection is still unclear. In this study, we used lncRNA and mRNA microarray to identify the global lncRNAs and mRNAs expression in penicillin-induced persistent chlamydial infection in HeLa cells as well as the control group (HeLa cells without C. trachomatis infection). Among 1005 differentially expressed lncRNAs, 585 lncRNAs were upregulated and 420 downregulated in persistent chlamydial infection, while 410 mRNAs were identified to express differentially, of which 113 mRNAs were upregulated and 297 downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with differentially expressed genes were performed. We then constructed the lncRNA-miRNA-mRNA competing endogenous RNAs (ceRNAs) network. Four mRNAs were validated to be changed by quantitative real-time PCR which were correlated with the microarray result. Integration of protein-protein interaction network was constructed and hub genes were identified. These findings provide a new perspective on the molecular mechanisms of penicillin-induced persistent chlamydial infection.
Collapse
Affiliation(s)
- Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Liufu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingna Liu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiande Han
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunguang Ma, ; Hongyu Guan,
| | - Chunguang Ma
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunguang Ma, ; Hongyu Guan,
| |
Collapse
|
32
|
Shi W, Wang F. circ_AKT3 knockdown suppresses cisplatin resistance in gastric cancer. Open Med (Wars) 2022; 17:280-291. [PMID: 35233464 PMCID: PMC8847719 DOI: 10.1515/med-2021-0355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNAs (circRNAs) are associated with cisplatin resistance in gastric cancer (GC). This study aims to explore the role of circRNA AKT serine/threonine kinase 3 (circ_AKT3) in the resistance of GC to cisplatin. Methods 42 sensitive and 23 resistant GC patients were recruited for tissue collection. The cisplatin-resistant GC cells MKN-7/DDP and HGC-27/DDP were used for in vitro study. circ_AKT3, microRNA-206 (miR-206) and protein tyrosine phosphatase non-receptor type 14 (PTPN14) levels were detected via quantitative reverse transcription real-time PCR (qPCR) and Western blot. Cisplatin resistance was assessed by detecting P-glycoprotein (P-gp) level, half maximal inhibitory concentration (IC50) of cisplatin and cell apoptosis. The target relationship between miR-206 and circ_AKT3 or PTPN14 was analyzed via dual-luciferase reporter and RNA pull-down assays. The role of circ_AKT3 in vivo was assessed using xenograft model. Results circ_AKT3 level was increased, but miR-206 was declined in cisplatin-resistant GC tissues and cells. circ_AKT3 knockdown or miR-206 overexpression decreased the level of P-gp and IC50 of cisplatin and increased apoptosis of MKN-7/DDP and HGC-27/DDP cells. Additionally, circ_AKT3 targeted miR-206, and regulated cisplatin resistance by interacting with miR-206. PTPN14 was regulated by circ_AKT3 through miR-206 as a bridge. Also, circ_AKT3 knockdown decreased xenograft tumor growth. Conclusion circ_AKT3 knockdown suppressed cisplatin resistance using miR-206/PTPN14 axis in cisplatin-resistant GC cells.
Collapse
Affiliation(s)
- Wenting Shi
- School of Clinical Medicine, Changchun University of Chinese Medicine , Changchun , Jilin 130117 , China
| | - Fang Wang
- School of Clinical Medicine, Changchun University of Chinese Medicine , No. 1035, Boshuo Road, Changchun , Jilin 130117 , China
| |
Collapse
|
33
|
Zhao P, Ma X, Cheng J, Chen H, Li L. Identification of the hub genes and transcription factor-miRNA axes involved in Helicobacter pylori-associated gastric cancer. Oncol Lett 2022; 23:89. [PMID: 35126731 PMCID: PMC8805177 DOI: 10.3892/ol.2022.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
It has been previously reported that transcription factor-microRNA (TF-miRNA) axes play a significant role in the carcinogenesis of several types of malignant tumor. However, there is a lack of research into the differences in the mechanism of Helicobacter pylori (HP)-positive [HP(+)] and HP-negative [HP(−)] gastric cancer. The aim of the present study was to identify the hub genes and TF-miRNA axes, and to determine the potential mechanisms involved in HP-associated gastric cancer. HP-associated mRNA and miRNA data, as well as the corresponding clinical information, was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) and DE miRNAs (DEMs) were then identified from the HP(+) and HP(−) cancer mRNA and miRNA datasets, respectively. Subsequently, gene set enrichment analysis and the protein-protein interaction (PPI) networks were investigated using the ClusterProfiler packages. Lastly, TF-miRNA-DEG networks were constructed using the miRWalk online tool. A total of 1,050 DEGs and 13 DEMs were identified from the normalized mRNA and miRNA expression datasets, respectively. In addition, 180 Gene Ontology terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways were found to be enriched, while 6 hub genes were identified from the PPI analysis. Furthermore, 7 TF-miRNA interactions and 181 TF-miRNA-DEG axes were constructed using an integrated bioinformatics approach, while 2 TF-miRNA interactions (ZEB1-miRNA-144-3p and PAX2-miRNA-592) were confirmed using reverse transcription-quantitative PCR in samples from enrolled patients. Moreover, the ZEB1-miRNA-144-3p axis was further validated based on dual luciferase reporter assay results. In summary, an integrated bioinformatics approach was used to screen the significant molecular and regulatory axes, which may provide a novel direction to investigate the pathogenesis of gastric cancer associated with HP.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiancheng Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China.,Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
34
|
Hong S, Li Q, Yang Y, Jing D, Zhu F. Silencing of Long Non-coding RNA LINC01106 Represses Malignant Behaviors of Gastric Cancer Cells by Targeting miR-34a-5p/MYCN Axis. Mol Biotechnol 2022; 64:144-155. [PMID: 34550549 DOI: 10.1007/s12033-021-00402-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNA LINC01106 is an lncRNA aberrantly expressed in gastric cancer (GC). However, the accurate function remains unclear. The objective of this investigation is to explore detailed regulatory mechanism of lncRNA LINC01106 in GC. The expression of lncRNA LINC01106, MYCN, and miR-34a-5p was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined using MTT assay. Migratory and invasive abilities of GC cells were evaluated by transwell assay. The targeting relation among lncRNA LINC01106, MYCN, and miR-34a-5p was tested by dual-luciferase reporter (DLR) assay. Relative protein expression of MYCN was assessed via western blot. Besides, a xenograft mouse model was established to assess the role of LINC01106 in GC in vivo. LncRNA LINC01106 and MYCN expression were boosted and miR-34a-5p expression was reduced in GC cells and tissues compared to their controls. Functionally, decreased lncRNA LINC01106 or increased miR-34a-5p restrained GC cells in viability, invasion, and migration in vitro. LINC01106 down-regulation suppressed tumor growth of mice in vivo. In terms of mechanism, lncRNA LINC01106 directly targeted miR-34a-5p and was inversely correlated with miR-34a-5p. MYCN was targeted by miR-34a-5p and was inversely correlated with miR-34a-5p. There was a positive correlation between LINC01106 and MYCN. LINC01106 knockdown led to the suppression of cell invasion, migration, and viability, whereas these effects caused by LINC01106 knockdown were reversed by miR-34a-5p down-regulation or MYCN up-regulation in GC cells. Silencing of lncRNA LINC01106 attenuated cell viability, invasion, and migration by sponging miR-34a-5p to target MYCN in GC.
Collapse
Affiliation(s)
- Sen Hong
- Digestive System Department, The Fifth People's Hospital of Jinan, No. 24297, Jingshi Road, Jinan City, 250022, Shandong Province, China
| | - Qiuxia Li
- Digestive System Department, The Fifth People's Hospital of Jinan, No. 24297, Jingshi Road, Jinan City, 250022, Shandong Province, China
| | - Ying Yang
- Hyperbaric Chamber, The Fifth People's Hospital of Jinan, Jinan City, 250022, Shandong Province, China
| | - Deqian Jing
- Community Development Department, First People's Hospital of Jinan, Jinan City, 250014, Shandong Province, China
| | - Fengbo Zhu
- Digestive System Department, The Fifth People's Hospital of Jinan, No. 24297, Jingshi Road, Jinan City, 250022, Shandong Province, China.
| |
Collapse
|
35
|
Luo Y, Zhang Q, Lv B, Shang Y, Li J, Yang L, Yu Z, Luo K, Deng X, Min L, Zhu T. CircFOXP1: A novel serum diagnostic biomarker for non-small cell lung cancer. Int J Biol Markers 2022; 37:58-65. [PMID: 35072545 DOI: 10.1177/17246008211073151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Emerging evidence suggests that circular RNAs (circRNAs) were aberrantly expressed in the patients of non-small cell lung cancer (NSCLC). This study aims to evaluate the diagnostic value of potential serum biomarker in circRNAs. Methods Serum circRNAs were extracted and purified by RNA isolated kit and identified by quantitative real time-polymerase chain reaction (qRT-PCR) assay. We then performed a receiver operating characteristic (ROC) curve to estimate the diagnostic efficacy. The relationship between circRNA and clinic characteristics of patients was analyzed by SPSS 25.0. Univariate and multivariate analyses were also used to evaluate its diagnostic capability. The mechanism of circFOXP1 was further excavated by bioinformatics analysis. Results By performing qRT-PCR assay, we identified that circFOXP1 (hsa_circ_0008234) and conventional tumor markers (carcinoembryonic antigen (CEA) and cytokeratin fragment 21–1 (CYFRA21-1)) were all significantly overexpressed in the serum of patients with NSCLC when compared with healthy controls ( P < 0.05). While the ROC curves analysis demonstrated that area under the curve of circFOXP1 was obviously superior to CEA and CYFRA21-1, which exerted more diagnostic advantage. Univariate and multivariate analyses revealed that serum circFOXP1 was an independent diagnostic molecule, and was significantly correlated with T stage and lymphatic metastasis in NSCLC ( P < 0.05). Mechanistically, circFOXP1 might target hsa-miR-370-3p and hsa-miR-18a-5p, and be involved in vascular endothelial growth factor signaling pathways to regulate proliferative and metastasis processes. Conclusion Our results highlight the preferable diagnostic potential of serum circFOXP1 in NSCLC.
Collapse
Affiliation(s)
- Yirong Luo
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medial University, Guangzhou, China
| | - Qichao Zhang
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Bo Lv
- Department of General Practice, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Yanyan Shang
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Juan Li
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Lina Yang
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhiwu Yu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Kai Luo
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Deng
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medial University, Guangzhou, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
hsa_circWDR37_016 Regulates Hypoxia-Induced Proliferation of Pulmonary Arterial Smooth Muscle Cells. Cardiovasc Ther 2022; 2022:7292034. [PMID: 35116078 PMCID: PMC8786516 DOI: 10.1155/2022/7292034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal remodeling of pulmonary vessel walls caused by excessive pulmonary arterial smooth muscle cell (PASMC) proliferation. Our previous clinical studies have demonstrated the importance of the downregulated circRNA in PAH. However, the role of upregulated circRNAs is still elusive. Here, we identified the upregulated circRNA in PAH patients, hsa_circWDR37_016 (circWDR37), as a key regulator of hypoxic proliferative disorder of pulmonary arterial smooth muscle cells (PASMCs). Quantitative real-time PCR (qRT-PCR) analysis validated that exposure to hypoxia markedly increased the circWDR37 level in cultured human PASMCs. As evidenced by flow cytometry, 5-ethynyl-2′-deoxyuridine (EdU) incorporation, wound healing, and Tunel assay, silencing of endogenous circWDR37 attenuated proliferation and cell-cycle progression in hypoxia-exposed human PASMCs in vitro. Furthermore, bioinformatics and Luciferase assay showed that circWDR37 directly sponged hsa-miR-138-5p (miR-138) and was involved in the immunoregulatory and inflammatory processes of PAH. Together, these studies suggested new insights into circRNA regulated the pathology of PAH, providing a new potential therapeutic target for PAH treatment.
Collapse
|
37
|
Qi C, Liu J, Guo P, Xu Y, Hu J, Han X. LncRNA NORAD facilitates oral squamous cell carcinoma progression by sponging miR-577 to enhance TPM4. Biol Direct 2022; 17:1. [PMID: 34991683 PMCID: PMC8734353 DOI: 10.1186/s13062-021-00299-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been reported to be vital factors to affect the expression of genes and proteins. Also, it has been proved that the abnormal expression or mutation of lncRNAs stands as a signal of metastasis and proliferation of cancer. Nevertheless, the majority of lncRNAs still need to be explored in abundant cancers especially in oral squamous cell carcinoma (OSCC). METHODS RT-qPCR assays were applied to test the expression of RNAs. Mechanism assays were performed to verify the combination among NORAD, TPM4 and miR-577. Also, functional assays were conducted to verify the function of RNAs on OSCC cells. RESULTS LncRNA NORAD was highly expressed in OSCC tissues and cells. NORAD silencing repressed the biological behaviors of OSCC cells. MiR-577 was found in OSCC with low expression, and RIP assays illustrated that NORAD, miR-577 and TPM4 coexisted in RNA-induced silencing complexes. Rescue assays proved that the overexpression of TPM4 could recover the effect of NORAD silencing on OSCC progression. CONCLUSIONS It was revealed that NORAD functioned as a tumor promoter to sponge miR-577 thus elevating TPM4 in OSCC, which indicated that NORAD was worthy to be studied as a target for the treatment of OSCC.
Collapse
Affiliation(s)
- Change Qi
- Department of Oral Implantology, Affiliated Hospital of Chifeng University, No. 4, Section 3, East Yuanlin Road, Chifeng, 024000, Inner Mongolia, China
| | - Jianwei Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Chifeng University, Chifeng, 024000, Inner Mongolia, China
| | - Pengnv Guo
- Department of Oral Implantology, Affiliated Hospital of Chifeng University, No. 4, Section 3, East Yuanlin Road, Chifeng, 024000, Inner Mongolia, China
| | - Yali Xu
- Department of Oral Implantology, Affiliated Hospital of Chifeng University, No. 4, Section 3, East Yuanlin Road, Chifeng, 024000, Inner Mongolia, China
| | - Jing Hu
- Department of Oral Implantology, Affiliated Hospital of Chifeng University, No. 4, Section 3, East Yuanlin Road, Chifeng, 024000, Inner Mongolia, China
| | - Xiaomei Han
- Department of Oral Implantology, Affiliated Hospital of Chifeng University, No. 4, Section 3, East Yuanlin Road, Chifeng, 024000, Inner Mongolia, China.
| |
Collapse
|
38
|
ZHANG X, FAN G, ZHAN J, GUAN Z. SNHG17 promotes gastric cancer cell proliferation and invasion by suppressing RUNX3 via interacting with EZH2. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.53521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Guofang FAN
- The People Hospital of Changshan County, China
| | | | - Zihua GUAN
- The People Hospital of Changshan County, China
| |
Collapse
|
39
|
Li X, Yang Y, Liang L, Fan M, Li X, Feng N, Pan Y, Tan Q, Xu Q, Xie Y, Guo F. Effect Of XBP1 Deficiency In Cartilage On The Regulatory Network Of LncRNA/circRNA-miRNA-mRNA. Int J Biol Sci 2022; 18:315-330. [PMID: 34975335 PMCID: PMC8692151 DOI: 10.7150/ijbs.64054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
X-box binding protein 1(XBP1) is a critical component for unfolded protein response (UPR) in ER stress. According to previous studies performed with different XBP1-deficient mice, the XBP1 gene affects mouse cartilage development and causes other related diseases. However, how the complete transcriptome, including mRNA and ncRNAs, affects the function of cartilage and other tissues when XBP1 is deficient in chondrocytes is unclear. In this study, we aimed to screen the differentially expressed (DE) mRNAs, circRNAs, lncRNAs and miRNAs in XBP1 cartilage-specific knockout (CKO) mice using high throughput sequencing and construct the circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks. DE LncRNAs (DE-LncRNAs), circRNAs (DE-circRNAs), miRNAs (DE-miRNAs), and mRNAs [differentially expressed genes (DEGs)] between the cartilage tissue of XBP1 CKO mice and controls were identified, including 441 DE-LncRNAs, 15 DE-circRNAs, 6 DE-miRNAs, and 477 DEGs. Further, 253,235 lncRNA-miRNA-mRNA networks and 1,822 circRNA-miRNA-mRNA networks were constructed based on the correlation between lncRNAs/circRNAs, miRNAs, mRNAs. The whole transcriptome analysis revealed that XBP1 deficiency in cartilage affects the function of cartilage and other different tissues, as well as associated diseases. Overall, our findings may provide potential biomarkers and mechanisms for the diagnosis and treatment of cartilage and other related diseases.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Yang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Li Liang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Mengtian Fan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xingyue Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Naibo Feng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yiming Pan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, United Kingdom
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
40
|
Mei J, Liu G, Li R, Xiao P, Yang D, Bai H, Hao Y. LncRNA SNHG6 knockdown inhibits cisplatin resistance and progression of gastric cancer through miR-1297/BCL-2 axis. Biosci Rep 2021; 41:BSR20211885. [PMID: 34821362 PMCID: PMC8661508 DOI: 10.1042/bsr20211885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance is a huge obstacle to gastric cancer (GC) treatment. Long non-coding RNAs (lncRNAs) have been manifested to exert pivotal functions in GC development. Herein, we aimed to explore the functional impact of lncRNA small nucleolar RNA host gene 6 (SNHG6) on DDP resistance and progression of GC. Quantitative real-time PCR (qRT-PCR) assay or Western blotting was performed to detect the expression of SNHG6, microRNA(miR)-1297, and epithelial-mesenchymal transition (EMT)-related factors and B-Cell Lymphoma 2 (Bcl-2) in DDP-resistant GC cells. Half inhibition concentration (IC50) to DDP, clonogenicity, apoptosis and invasion were examined via CCK-8 assay, colony formation assay, flow cytometry and Transwell assay, respectively. Target association between miR-1297 and SNHG6 or BCL-2 was demonstrated via dual-luciferase reporter assay or RIP assay. Xenograft models in nude mice were formed to investigate role of SNHG6 in vivo. We found that SNHG6 and BCL-2 were up-regulated, while miR-1297 expression was declined in GC tissues and DDP-resistant cells. Moreover, depletion of SNHG6 or gain of miR-1297 could repress DDP resistance, proliferation and metastasis of DDP-resistant cells, which was weakened by miR-1297 inhibition or BCL-2 overexpression. Besides, SNHG6 positively regulated BCL-2 expression by sponging miR-1297. Furthermore, SNHG6 knockdown repressed GC tumor growth in vivo. In a word, lncRNA SNHG6 knockdown had inhibitory effects on DDP resistance and progression of GC by sponging miR-1297, highlighting its potential in GC treatment.
Collapse
Affiliation(s)
- Jiazhuan Mei
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Guiju Liu
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Ruijun Li
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Peng Xiao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Dan Yang
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Hua Bai
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Yibin Hao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| |
Collapse
|
41
|
Hu F, Rao M, Zhang M, Meng Q, Wan M, Zhang X, Ding L, Jiang Y. Long non-coding RNA profiles in plasma exosomes of patients with gastric high-grade intraepithelial neoplasia. Exp Ther Med 2021; 23:1. [PMID: 34815753 PMCID: PMC8593877 DOI: 10.3892/etm.2021.10923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding (lnc) RNAs in circulating exosomes are a new class of promising cancer biomarkers; however, their expression in exosomes derived from gastric high-grade intraepithelial neoplasia (GHGIN) has not been reported. In the present study, differentially expressed (DE) lncRNAs were analyzed in the peripheral blood collected from 5 patients with GHGIN and 5 healthy donors using high-throughput sequencing. Reverse transcription-quantitative PCR analysis was performed on 6 randomly selected DE lncRNAs to validate the reliability of the sequencing results. The potential roles of the DE lncRNAs in GHGIN were investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses. A total of 25,145 lncRNAs were identified in all the samples and 83 DE lncRNAs were further screened, including 76 upregulated and 7 downregulated DE lncRNAs. GO and KEGG analyses predicted that the DE lncRNAs played notable roles in ‘protein/macromolecule glycosylation’, ‘regulation of protein ubiquitination’, ‘renin-angiotensin system’ and ‘MAPK signaling pathways’. A lncRNA-micro (mi)RNA-mRNA interaction network was constructed and used to perform association analyses. It was found that 83 lncRNAs were abnormally expressed in GHGIN, with some potential functions associated with gastric cancer. Furthermore, the lncRNA-miRNA-mRNA interaction network indicated that 7 DE lncRNAs may play a notable role in the occurrence and development of GHGIN. The results of the present study showed the expression profiles of lncRNAs in human GHGIN, elucidated some of the molecular changes associated with GHGIN and improved the understanding of the molecular mechanisms underlying GHGIN and gastric cancer.
Collapse
Affiliation(s)
- Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Min Rao
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qingqing Meng
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiuna Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lili Ding
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
42
|
Yu XH, Liu SY, Li CF. TGF-β2-induced NEAT1 regulates lens epithelial cell proliferation, migration and EMT by the miR-26a-5p/FANCE axis. Int J Ophthalmol 2021; 14:1674-1682. [PMID: 34804856 DOI: 10.18240/ijo.2021.11.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 01/15/2023] Open
Abstract
AIM To explore the regulatory mechanism of nuclear paraspeckle assembly transcript 1 (NEAT1) in the pathogenesis of posterior capsule opacification (PCO). METHODS Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was executed to analyze NEAT1 and microRNA (miR)-26a-5p expression in transforming growth factor-beta 2 (TGF-β2)-disposed lens epithelial cells (LECs). The proliferation, cell cycle progression, apoptosis, and migration of TGF-β2-disposed LECs were evaluated. The relationship between NEAT1 or fanconi anemia (FA) complementation group E (FANCE) and miR-26a-5p was verified by dual-luciferase reporter assay. RESULTS TGF-β2 induced NEAT1 expression in LECs. NEAT1 inhibition accelerated apoptosis, cell cycle arrest, decreased proliferation, epithelial-mesenchymal transition (EMT), and migration of TGF-β2-disposed LECs. NEAT1 sponged miR-26a-5p to further regulate FANCE expression. Rescue experiments presented that miR-26a-5p downregulation overturned NEAT1 silencing-mediated impacts on TGF-β2-disposed LEC biological behaviors. Additionally, FANCE overexpression reversed miR-26a-5p mimic-mediated impacts on TGF-β2-disposed LEC biological behaviors. CONCLUSION TGF-β2-induced NEAT1 facilitates LEC proliferation, migration, and EMT by upregulating FANCE via sequestering miR-26a-5p.
Collapse
Affiliation(s)
- Xiao-Hui Yu
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Shao-Yi Liu
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Cheng-Fang Li
- Department of Ophthalmology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao 266033, Shandong Province, China
| |
Collapse
|
43
|
SLCO4A1-AS1 Facilitates the Malignant Phenotype via miR-149-5p/STAT3 Axis in Gastric Cancer Cells. JOURNAL OF ONCOLOGY 2021; 2021:1698771. [PMID: 34712324 PMCID: PMC8548156 DOI: 10.1155/2021/1698771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
Solute carrier organic anion transporter family member 4A1 (SLCO4A1-AS1), a newly discovered lncRNA, may exert effects in tumors. Since its role in gastric cancer remains obscure, we sought to explore the mechanism of SLCO4A1-AS1 in gastric cancer. The relationship among SLCO4A1-AS1, miR-149-5p, and STAT3 was detected by bioinformatics, dual luciferase analysis, and Pearson's test, and the expressions of these genes were determined by quantitative real-time PCR and Western blot. Moreover, CCK-8, flow cytometry, wound healing assay, and Transwell analysis were performed to verify the function of SLCO4A1-AS1 in gastric cancer. Rescue experiments were used to detect the role of miR-149-5p. The expressions of SLCO4A1-AS1 and STAT3 were increased, while the expression of miR-149-5p was suppressed in gastric cancer tissues and cell lines. In addition, STAT3 expression was negatively correlated with miR-149-5p expression but was positively correlated with SLCO4A1-AS1 expression. Overexpression of SLCO4A1-AS1 promoted cell viability, migration, invasion, and STAT3 expression but suppressed apoptosis, while knockdown of SLCO4A1-AS1 had the opposite effect. SLCO4A1-AS1 bound to miR-149-5p and targeted STAT3. Moreover, miR-149-5p mimic inhibited the malignant development of gastric cancer cells and obviously reversed the function of SLCO4A1-AS1 overexpression. Our research reveals that abnormally increased SLCO4A1-AS1 expression may be an important molecular mechanism in the development of gastric cancer.
Collapse
|
44
|
Ren J, Xu N, Zhou R, Huang F, Zhang H, Li W. Long non-coding RNA PCED1B antisense RNA 1 promotes gastric cancer progression via modulating microRNA-215-3p / C-X-C motif chemokine receptor 1 axis. Bioengineered 2021; 12:6083-6095. [PMID: 34516330 PMCID: PMC8806612 DOI: 10.1080/21655979.2021.1971503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) emerge as vital modulators and tissue-specific biomarkers of multiple cancers, including gastric cancer (GC). Instead, the expression characteristics, biological function and molecular mechanism of lncRNA PCED1B antisense RNA 1 (PCED1B-AS1) in GC await more elaboration. In this study, 48 cases of GC tissues and matched non-cancerous tissues were collected, and PCED1B-AS1, microRNA-215-3p (miR-215-3p) and C-X-C motif chemokine receptor 1 (CXCR1) expression levels were detected by qRT-PCR. Besides, CCK-8, EdU, Transwell and Western blot assays were conducted to assess the impact of PCED1B-AS1 or miR-215-3p on cell growth, migration, invasion and epithelial-mesenchymal transition (EMT). The interaction between genes was verified by bioinformatics analysis, rna immunoprecitipation (RIP) and dual-luciferase reporter gene assays. We demonstrated that, PCED1B-AS1 expression level was raised in GC tissues and cell lines, and increased expression of PCED1B-AS1 was in association with tumor size, TNM stage and lymph node metastasis in GC patients. Additionally, PCED1B-AS1 overexpression promoted GC cells proliferation, migration, invasion and EMT, and miR-215-3p overexpression counteracted the biological effects of PCED1B-AS1. Mechanistically, PCED1B-AS1 specifically inhibited miR-215-3p expressions, thus up-regulating CXCR1 expressions. In conclusion, PCED1B-AS1 accelerates GC progression via adsorbing miR-215-3p and up-regulating CXCR1, indicating that PCED1B-AS1 is a novel therapeutic target for treating GC.
Collapse
Affiliation(s)
- Junyu Ren
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ning Xu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruize Zhou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengchang Huang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongbin Zhang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenliang Li
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
45
|
Li L, Li L, Hu L, Li T, Xie D, Liu X. Long non‑coding RNA HAND2‑AS1/miR‑106a/PTEN axis re‑sensitizes cisplatin‑resistant ovarian cells to cisplatin treatment. Mol Med Rep 2021; 24:762. [PMID: 34476500 PMCID: PMC8436234 DOI: 10.3892/mmr.2021.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/05/2021] [Indexed: 01/20/2023] Open
Abstract
Cisplatin (DDP) resistance in patients suffering from ovarian cancer is a considerable hurdle to successful treatment. The present study aimed to identify a possible long non‑coding RNA (lncRNA)‑microRNA (miRNA)‑mRNA axis participating in ovarian cancer DDP‑resistance based on the critical roles of non‑coding RNAs, including lncRNAs and miRNAs, in carcinogenesis. According to online data and experimental results, lncRNA HAND2‑AS1 expression was significantly downregulated within ovarian carcinoma, especially within recurrent and DDP‑resistant ovarian carcinoma. The expression of HAND2‑AS1 was also shown to be markedly inhibited in SKOV3/DDP (DDP) cells with resistance to DDP. In SKOV3/DDP cells, HAND2‑AS1 overexpression inhibited cell viability and promoted cell apoptosis upon DDP treatment through the Bcl‑2/caspase‑3 apoptotic signaling. It was hypothesized that PTEN mRNA expression was also markedly inhibited in SKOV3/DDP ovarian cancer cells, while HAND2‑AS1 overexpression rescued PTEN proteins and blocked PI3K/AKT signaling activation. Moreover, miR‑106a was found to bind directly to PTEN 3' UTR and HAND2‑AS1. Upon DDP treatment, miR‑106a overexpression in SKOV3/DDP cells promoted cell viability. It inhibited cell apoptosis through the Bcl‑2/caspase‑3 apoptotic signaling pathway and downregulated the protein levels of PTEN and upregulated PI3K/AKT signaling activity. Furthermore, miR‑106a overexpression partially reversed the effect of HAND2‑AS1 overexpression upon PTEN proteins and SKOV3/DDP cell proliferation upon DDP treatment. In conclusion, a lncRNA HAND2‑AS1/miR‑106a/PTEN axis that re‑sensitizes DDP‑resistant SKOV3/DDP cells to DDP treatment has been established.
Collapse
Affiliation(s)
- Lijun Li
- Obstetrics and Gynecology Department, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Li Li
- Obstetrics and Gynecology Department, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Lian Hu
- Obstetrics and Gynecology Department, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ting Li
- Obstetrics and Gynecology Department, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Dan Xie
- Obstetrics and Gynecology Department, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Xiaoliu Liu
- Obstetrics and Gynecology Department, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
46
|
Gao J, Zong X, Chen N, Lan T, Yu W, Long H, Cui F, Tu Y. Research progress on three different types of noncoding RNAs related to ionizing radiation. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Comprehensive analysis of competitive endogenous RNA associated with immune infiltration in lung adenocarcinoma. Sci Rep 2021; 11:11056. [PMID: 34040139 PMCID: PMC8155208 DOI: 10.1038/s41598-021-90755-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
To identify the prognostic biomarker of the competitive endogenous RNA (ceRNA) and explore the tumor infiltrating immune cells (TIICs) which might be the potential prognostic factors in lung adenocarcinoma. In addition, we also try to explain the crosstalk between the ceRNA and TIICs to explore the molecular mechanisms involved in lung adenocarcinoma. The transcriptome data of lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) database, and the hypergeometric correlation of the differently expressed miRNA-lncRNA and miRNA-mRNA were analyzed based on the starBase. In addition, the Kaplan–Meier survival and Cox regression model analysis were used to identify the prognostic ceRNA network and TIICs. Correlation analysis was performed to analysis the correlation between the ceRNA network and TIICs. In the differently expressed RNAs between tumor and normal tissue, a total of 190 miRNAs, 224 lncRNAs and 3024 mRNAs were detected, and the constructed ceRNA network contained 5 lncRNAs, 92 mRNAs and 10 miRNAs. Then, six prognostic RNAs (FKBP3, GPI, LOXL2, IL22RA1, GPR37, and has-miR-148a-3p) were viewed as the key members for constructing the prognostic prediction model in the ceRNA network, and three kinds of TIICs (Monocytes, Macrophages M1, activated mast cells) were identified to be significantly related with the prognosis in lung adenocarcinoma. Correlation analysis suggested that the FKBP3 was associated with Monocytes and Macrophages M1, and the GPI was obviously related with Monocytes and Macrophages M1. Besides, the LOXL2 was associated with Monocytes and Activated mast cells, and the IL22RA1 was significantly associated with Monocytes and Macrophages M1, while the GPR37 and Macrophages M1 was closely related. The constructed ceRNA network and identified Monocytes, Macrophages M1 and activated Mast cells are all prognostic factors for lung adenocarcinoma. Moreover, the crosstalk between the ceRNA network and TIICs might be a potential molecular mechanism involved.
Collapse
|
48
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
49
|
Liu MJ, Jin H, Chen YB, Yu JJ, Guo ZY, He SQ, Zeng YL. Screening of non-alcoholic steatohepatitis (NASH)-related datasets and identification of NASH-related genes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:567-581. [PMID: 34093943 PMCID: PMC8167495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a common liver disease in the western world. The mechanisms behind NASH formation are poorly understood, but there may be multiple targets considering the disease's multifactorial nature. To explore the genes related to the pathogenesis of NASH, we downloaded clinical data and gene expression of NASH patients from the Gene Expression Omnibus database (GEO). We identified 281 genes with a common expression in two NASH-related datasets (GSE89632 and GSE83452), suggesting that they may be related to NASH. Further study showed that Angptl4, Foxo1, and Ttc39B might be essential for NASH progression, and these have been poorly studied. Therefore, we explored their roles in NASH. Our data show that these genes participate in the development of NASH through lipid metabolism. This suggests that the three genes can be used as therapeutic targets in NASH.
Collapse
Affiliation(s)
- Ming-Jiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Hu Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Yu-Bing Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Jing-Jing Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Zhen-Ya Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Yong-Lian Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| |
Collapse
|
50
|
Gao H, Xu J, Qiao F, Xue L. Depletion of hsa_circ_0000144 Suppresses Oxaliplatin Resistance of Gastric Cancer Cells by Regulating miR-502-5p/ADAM9 Axis. Onco Targets Ther 2021; 14:2773-2787. [PMID: 33907420 PMCID: PMC8068497 DOI: 10.2147/ott.s281238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been disclosed to exert important roles in human cancers, including gastric cancer (GC). CircRNA hsa_circ_0000144 was identified as an oncogene in GC development. The aim of our study was to explore the role of hsa_circ_0000144 in oxaliplatin (OXA) resistance of GC. Methods Expression levels of hsa_circ_0000144, microRNA-502-5p (miR-502-5p) and A disintegrin and metalloproteinase 9 (ADAM9) were examined by quantitative real-time PCR (RT-qPCR) or Western blot assay. The OXA resistance of GC cells was evaluated by Cell Counting Kit-8 (CCK-8) assay. Colony formation assay was performed to assess the colony formation capacity. Cell apoptosis was determined by flow cytometry and caspase 3 activity. And cell migration and invasion were detected by Transwell assay. Target association between miR-502-5p and hsa_circ_0000144 or ADAM9 was demonstrated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Moreover, role of hsa_circ_0000144 in vivo was analyzed by xenograft tumor assay. Results Hsa_circ_0000144 and ADAM9 were highly expressed, while miR-502-5p was downregulated in OXA-resistant GC tissues and cells. Depletion of hsa_circ_0000144 could inhibit OXA resistance, proliferation and metastasis in OXA-resistant GC cells, which was attenuated by miR-502-5p inhibition. Hsa_circ_0000144 sponged miR-502-5p to positively regulate ADAM9 expression. MiR-502-5p suppressed OXA resistance, proliferation and metastasis in OXA-resistant GC cells by targeting ADAM9. Hsa_circ_0000144 knockdown could hamper tumor growth in vivo. Conclusion Hsa_circ_0000144 exerted inhibitory effects on OXA resistance, proliferation and metastasis of OXA-resistant GC cells by regulating miR-502-5p/ADAM9 axis, at least in part.
Collapse
Affiliation(s)
- Haifeng Gao
- Department of Clinical Laboratory, Baoji Central Hospital, Baoji City, 721008, Shaanxi Province, People's Republic of China
| | - Jiajia Xu
- Department of Organic Chemistry and Pharmaceutical Chemistry, Pharmaceutical College of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Fen Qiao
- Department of Pediatrics, Baoji Central Hospital, Baoji City, Shaanxi Province, People's Republic of China
| | - Liangjun Xue
- Department of Radiotherapy, Yijishan Hospital of Wannan Medical College, Wuhu City, Anhui Province, 241001, People's Republic of China
| |
Collapse
|