1
|
Yang Y, Yuan L, Meng F, Lu D, Che M, Zhou X, Chen G, Ning N, Nan Y. Gancao Xiexin Decoction inhibits gastric carcinoma proliferation and migration by regulating the JAK2/STAT3 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117241. [PMID: 37777026 DOI: 10.1016/j.jep.2023.117241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of gastric carcinoma (GC) is increasing rapidly. Traditional Chinese Medicine (TCM) plays a unique role in the treatment of GC. At present, Gancao Xiexin Decoction (GCXXD) has been proved to have a good therapeutic effect on diseases of the spleen and stomach system, but relevant molecular mechanisms remain incompletely explained. AIM OF STUDY The mechanism of GCXXD for GC was investigated by network pharmacology and verified by cell experiments. MATERIALS AND METHODS Firstly, the public database was used to identify the core targets and key pathways of GCXXD in treating GC, followed by molecular docking and survival analysis. Subsequently, the effects of GCXXD on human gastric cancer AGS and HGC-27 cells were confirmed by a series of experiments, such as CCK-8, colony formation, apoptosis, cell cycle, wound scratch assay, transwell chamber assay, qRT-PCR and Western blot. RESULTS This study identified quercetin, wogonin, kaempferol, baicalein, sitosterol and beta-sitosterol as key ingredients, along with AKT1, TP53, JUN, STAT3, TNF, MAPK3, HSP90AA1 and EGFR as co targets, and the JAK/STAT signalling pathway as the key pathway. The experimental results showed that GCXXD inhibited the growth of GC cells, increased the apoptosis rate and the ratio of G0/G1 phase cells, and weakened the clone formation rate and inhibited cell migration and invasion. It also reduces the expression of core target genes and downregulates the expression of JAK2, p-JAK2, STAT3, and p-STAT3 proteins. CONCLUSION GCXXD inhibits GC cell growth, reduces clonogenic capacity, induces apoptosis, blocks the cell cycle, and decreases cell migration and invasion rates by inhibiting the JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Mengying Che
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xin Zhou
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Na Ning
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Chen C, Sun Y, Wang Z, Huang Z, Zou Y, Yang F, Hu J, Cheng H, Shen C, Wang S. Pinellia genus: A systematic review of active ingredients, pharmacological effects and action mechanism, toxicological evaluation, and multi-omics application. Gene 2023; 870:147426. [PMID: 37044184 DOI: 10.1016/j.gene.2023.147426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-β (TGF-β) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Zhijing Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Liang M, Zhu X, Zhang D, He W, Zhang J, Yuan S, He Q, Jin J. Yi-Shen-Hua-Shi granules inhibit diabetic nephropathy by ameliorating podocyte injury induced by macrophage-derived exosomes. Front Pharmacol 2022; 13:962606. [PMID: 36506555 PMCID: PMC9732029 DOI: 10.3389/fphar.2022.962606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: To observe the therapeutic effect of Yi-Shen-Hua-Shi (YSHS) granule in podocyte damage and diabetic nephropathy (DN) proteinuria and to explore the corresponding mechanism. Methods: The db/db mice were used to establish the DN model. Serum creatinine (SCr), blood urea nitrogen (BUN), and 24 h urinary proteinuria were detected with specific kits. Glomerular structural lesions and podocyte apoptosis were detected through HE staining, TUNEL assay, and immunofluorescence. The medicated serum of YSHS granule (YSHS-serum) or control serum was prepared. Macrophage-derived exosomes were extracted using an exosome extraction kit. Morphology and the protein concentration of exosomes were evaluated by a transmission electron microscope (TEM) and BCA kit. The activity and apoptosis of podocyte MPC5 cells, the M1 macrophage polarization, and the protein expression of an exosome marker and cleaved caspase were detected by the CCK8 experiment, flow cytometry, and Western blot, respectively. The miR-21a-5p expression in podocytes and the exosomes from macrophages were measured by qRT-PCR. The effect of YSHS granule on the infiltration of M1 macrophages in the kidney tissue in db/db mice was measured by immunofluorescence. Results: The YSHS granule could improve renal function, reduce proteinuria, and inhibit glomerular structural lesions and podocyte apoptosis in db/db mice. High-glucose (HG) stimulation and YSHS granule treatment did not affect the protein concentration in macrophage-derived exosomes. Macrophage-derived exosomes could inhibit the cell viability and increase apoptosis of podocytes, especially the exosomes from macrophages treated with HG and control serum. Compared with the exosomes secreted by macrophages after an HG treatment, the exosome from macrophages treated with HG and YSHS granule showed lower inhibitory effects on podocyte activity, accompanied by the decreased upregulating effects of macrophage-derived exosomes on the miR-21a-5p in podocytes. miR-21a-5p mimics could reduce podocyte activity and promote caspase-3 shearing. M1 polarization of macrophages could change the content of miR-21a-5p in macrophage-derived exosomes. In addition, YSHS granule could inhibit HG-induced M1 polarization of macrophages and M1 macrophage infiltration in renal tissues. Conclusion: The YSHS granule could improve the podocyte injury induced by macrophage-derived exosomes and alleviate the progression of DN. This regulation might be related to the inhibition of M1 macrophage polarization by YSHS granule and the reduction of the miR-21a-5p content in macrophage-derived exosomes.
Collapse
Affiliation(s)
- Mingzhu Liang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,Department of Nephrology, The Medical College of Qingdao University, Qingdao, China
| | - Xiaodong Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Di Zhang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenfang He
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinshi Zhang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shizhu Yuan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Qiang He, ; Juan Jin,
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Qiang He, ; Juan Jin,
| |
Collapse
|
4
|
Xiaotan Sanjie Decoction Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion through lncRNA-ATB and miR-200A. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7029182. [PMID: 36060143 PMCID: PMC9436559 DOI: 10.1155/2022/7029182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
This study is aimed at exploring whether Xiaotan Sanjie decoction (XTSJ) inhibits gastric cancer (GC) proliferation and metastasis by regulating lncRNA-ATB expression. qRT-PCR and Western blot were used to analyze lncRNA-ATB and downstream-regulated genes/proteins in human GC cells. CCK8, Edu, and flow cytometry assays were used to detect the inhibitory effect of XTSJ on cell proliferation and apoptosis. Moreover, transwell and wound healing assays were used to detect the inhibitory effect of XTSJ on migration and invasion. qRT-PCR and Western blot were used to detect regulated genes and proteins levels. The HGC-27 cell line was used for follow-up analysis due to the high level of lncRNA-ATB and cell characteristics. XTSJ inhibited the proliferation and metastasis of HGC-27 in a dose-dependent manner. Further research found that XTSJ downregulated lncRNA-ATB, Vimentin, and N-cadherin, while it upregulated miR-200a and E-cadherin in a dose-dependent manner. XTSJ also upregulated Caspase 3, Caspase 9, Bax, and downregulated Bcl-2. Furthermore, XTSJ inhibited tumor growth in vivo and downregulated EMT signaling pathways. These results indicate that XTSJ may affect EMT and Bcl-2 signaling pathways by regulating lncRNA-ATB and miR-200a, thus inhibiting proliferation, migration, and invasion of HGC-27 cells. Therefore, XTSJ may be an effective treatment for the high levels of lncRNA-ATB in GC.
Collapse
|
5
|
Wang XW, Zhang CA, Ye M. Study on the Mechanism of Xiaotan Sanjie Recipe in the Treatment of Colon Cancer Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9498109. [PMID: 36033553 PMCID: PMC9410815 DOI: 10.1155/2022/9498109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
The aim of the study is to investigate the mechanism of action of Disulfiram against colon cancer through a network pharmacology approach. The targets were then imported into the Cytoscape 3.7.2 software to construct a network of active ingredient targets and were imported into the STRING database to construct a protein-protein interaction (PPI) network, and the Bisogenet plug-in in Cytoscape 3.7.2 was used for network topology analysis. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the potential targets of Yiqi and Baiyu Tang for colon cancer using the R-language Bioconductor platform, and the results were imported into Cytoscape 3.7.2 to obtain KEGG network relationship maps. Molecular docking software Autodock Vina was used to map the core targets to the active ingredients. A total of 119 chemical components and 694 disease targets were obtained, including 113 intersecting targets. The key targets included AKT1 and TP53, and GO functional analysis mainly related to ubiquitination and apoptosis, etc. KEGG analysis showed that the treatment of colon cancer with Ganchenzan mainly acted through cancer-related signaling pathways such as AGE-RAGE and P13K-Akt, and the molecular docking results showed the best binding performance with TP53.
Collapse
Affiliation(s)
- Xiao-wei Wang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ci-an Zhang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Min Ye
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
6
|
Tang RZ, Li ZZ, Hu D, Kanwal F, Yuan CB, Mustaqeem M, Batool AI, Rehman MFU. Sanjie Yiliu Formula Inhibits Colorectal Cancer Growth by Suppression of Proliferation and Induction of Apoptosis. ACS OMEGA 2021; 6:7761-7770. [PMID: 33778287 PMCID: PMC7992181 DOI: 10.1021/acsomega.0c05565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. As current therapies toward CRC, including chemotherapy and radiotherapy, pose limitations, such as multidrug resistance (MDR) as well as the intrinsic and potential cytotoxic effects, necessitating to find more effective treatment options with fewer side effects, traditional Chinese medicine (TCM) has an advantage in complementary therapies. In the present study, 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assays), trypan blue staining, colony formation, 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, cell cycle determination, and Annexin V-FITC/PI staining were used to examine the efficacy of Sanjie Yiliu Formula (SJYLF) against CRC proliferation and to investigate its underlying molecular mechanisms through protein expression of various proapoptotic factors by quantitative polymerase chain reaction (q-PCR) and Western blotting. This four-herb-TCM SJYLF can be suggested as one of the decoctions clinically effective in late-stage cancer treatment. Our results suggest that SJYLF robustly decreased the viability of only CRC cell lines (HCT-8, SW-480, HT-29, and DLD-1) and not the normal human kidney cells (HK-2). Moreover, SJYLF significantly suppressed proliferation and induced apoptosis in HCT-8 and downregulated cyclin D1, CDK4, and BCL-2, while Bax expression was upregulated at both mRNA and protein expression levels.
Collapse
Affiliation(s)
- Rong Zhu Tang
- Department
of Gastroenterology, Seventh People’s
Hospital of Shanghai University of Traditional Chinese Medicine, NO.358, Datong Road, Pudong New
Area, Shanghai 200137, P. R. China
| | - Zhang Zhi Li
- Department
of Hematology, Taihe Hospital Affiliated
to the Hubei University of Medicine, Shiyan, China
| | - Dan Hu
- Department
of Neurology, The Central Hospital of Xiaogan, Xiaogan, Hubei 432100, P. R. China
| | - Fariha Kanwal
- Med-X
Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, P. R.
China
| | - Cheng Bin Yuan
- Department
of Critical Care Medicine, Shanghai General
Hospital, Shanghai 200080, P. R. China
- School
of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P. R. China
| | - Muhammad Mustaqeem
- Department
of Chemistry, University of Sargodha, Sub-Campus Bhakkar, Bhakkar 30000, Pakistan
| | - Aima Iram Batool
- Department
of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | | |
Collapse
|
7
|
ZiYinHuaTan Recipe Inhibits Cell Proliferation and Promotes Apoptosis in Gastric Cancer by Suppressing PI3K/AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2018162. [PMID: 32382534 PMCID: PMC7193275 DOI: 10.1155/2020/2018162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
In recent years, traditional Chinese medicine has played an important role in the treatment of gastric cancer in China. ZiYinHuaTan (ZYHT) recipe was developed for advanced gastric cancer and had shown its promising value in the clinic. In this study, we explore the effect of ZYHT on gastric cancer in vitro and in vivo. ZYHT can inhibit tumor growth and improve the general condition of mice in subcutaneous transplantation nude mice models of gastric cancer. And ZYHT can also inhibit cell proliferation and blocked the cells in G0/G1 to induce cell apoptosis in HGC27 and MGC803 cells. Then, network pharmacology analysis showed that ZYHT may exert antitumor effect mainly through PI3K/AKT signaling pathway. Furthermore, the expression of PI3K, p-Akt, CyclinD1, and Bcl-2 was detected in vitro and in vivo. The results showed that ZYHT could decrease the expression of PI3K, CyclinD1, and Bcl-2 both in vitro and in vivo. These results suggested that ZYHT could be used as a method for the treatment of developed gastric cancer.
Collapse
|
8
|
Du Z, Wang Q, Ma G, Jiao J, Jiang D, Zheng X, Qiu M, Liu S. Inhibition of Nrf2 promotes the antitumor effect of Pinelliae rhizome in papillary thyroid cancer. J Cell Physiol 2019; 234:13867-13877. [PMID: 30697724 DOI: 10.1002/jcp.28069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022]
Abstract
We previously reported that Xiaotan Sanjie (XTSJ) decoction can prevent the progression of gastric cancer in vitro and in vivo. Pinelliae rhizome (PR), one component of XTSJ decoction, has an inhibitory effect on the growth and proliferation of tumor cells. The present study investigated the underlying mechanisms of action of PR. Using the human papillary thyroid cancer cell lines, TPC-1 and BCPAP, we found that XTSJ decoction and PR alone decreased cell viability to a similar extent in both cell lines, whereas treatment with XTJS decoction without PR [PR (-)] had a lesser effect. PR treatment inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in a dose-dependent manner. To investigate the role of Nrf2 in the PR-mediated effects of XTSJ, knockdown of Nrf2 in the tumor cell lines using Nrf2 siRNA (siNrf2) was performed and transfected cells were treated with PR. Silencing of Nrf2 amplified the effects on autophagy, cell viability, apoptosis, and colony formation. Similar results were obtained following treatment with the autophagy inhibitor 3-methyladenine (3-MA). Furthermore, treatment with PR, siNrf2, and/or 3-MA inhibited the MAPK pathway, and analysis of the MAPK pathway components confirmed the role of this pathway in the PR-mediated cellular effects. In mice implanted with siNrf2-transfected cells, the effects of PR were amplified. Taken together, these findings indicate that PR is critical for the inhibitory effects of XTSJ decoction on tumor cell viability and that downregulation of Nrf2 promotes the antitumor effects of PR on papillary thyroid cancer cells.
Collapse
Affiliation(s)
- Zhipeng Du
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Wang
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guanjun Ma
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianpeng Jiao
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Daozhen Jiang
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiangmin Zheng
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming Qiu
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sheng Liu
- Department of General Surgery III, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Xu J, Shen W, Pei B, Wang X, Sun D, Li Y, Xiu L, Liu X, Lu Y, Zhang X, Yue X. Xiao Tan He Wei Decoction reverses MNNG-induced precancerous lesions of gastric carcinoma in vivo and vitro: Regulation of apoptosis through NF-κB pathway. Biomed Pharmacother 2018; 108:95-102. [PMID: 30218863 DOI: 10.1016/j.biopha.2018.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years, Chinese medicine has played an important role in the prognosis of gastric cancer. Precancerous lesions of gastric carcinoma (PLGC) is a class of gastric cancer which is closely related to the gastric mucosal pathology changes in the role of carcinogenic incentives, and plays key role in the progression of normal gastric mucosal cells into gastric cancerous cells. In current experiment, we explore the relationship between Chinese traditional medicine (Xiao Tan He Wei Decoction) and gastric cancer in the PLGC rat animal models and epithelial-mesenchymal transitioned GES-1 cells which were induced useing 1- Methyl-3-nitro-1-nitrosoguanidine (MNNG). PLGC rat model showed significant deterioration in the gastric mucosa with terrible growth rate in body weight and more atypical hyperplasia in gastric mucosa. MC cells, MNNG induced GES-1 cells which epithelial- mesenchymal-transition (EMT)-related proteins have a great change compare with normal GES-1 cells. The cells had characteristics of malignant cells including proliferation, invasion and metastasis ability. Our research founds that Xiao Tan He Wei Decoction could inhibit cell proliferation and increased apoptosis by increase the level of pro-apoptotic proteins like Bax and caspase-3 and decreased the level of anti-apoptotic protein Bcl-2, block the cells in G0/G1 phase simultaneously. Furthermore, Xiao Tan He Wei Decoction could inhibit nuclear factor kappa-light-chain-enhancer (NF-kB) activity and inhibit its transfer from the cytoplasm to the nucleus. However, when we incubated with NF-κB activator PMA, the effect of Xiao Tan He Wei Decoction was reversed. These results suggested that Xiao Tan He Wei Decoction could be used as a method for the treatment of gastric precancerous lesions, and possibly provide a theoretical basis for the clinical treatment of gastric cancer and gastric precancerous lesions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wei Shen
- Changjiang Road Community Health Service Center, NO. 639, Tonghe Road, Zhangmiao Street, Baoshan Qv, Shanghai, 200431, China
| | - Bei Pei
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiaowei Wang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Dazhi Sun
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yongjin Li
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - LiJuan Xiu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ye Lu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - XiaoQiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
10
|
Traditional Chinese medicine integrated with chemotherapy for stage IV non-surgical gastric cancer: a retrospective clinical analysis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:469-475. [PMID: 29103417 DOI: 10.1016/s2095-4964(17)60377-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Traditional Chinese medicine (TCM) is regarded as an important treatment for gastric cancer patients, especially for those in advanced stage. To evaluate the effects of TCM treatment on gastric cancer patients, the authors performed a retrospective study to report the result of the integrated treatment of TCM with chemotherapy for stage IV non-surgical gastric cancer. METHODS In this study, 182 patients with stage IV and non-surgical gastric cancer were retrospectively analyzed to evaluate the effects of TCM integrated with chemotherapy. Among the 182 cases, 88 cases received integrated therapy consisting of TCM and chemotherapy, while 94 cases received chemotherapy alone. The overall survival and Karnofsky performance status (KPS) score were measured as the main outcome. RESULTS The median overall survival of the integrated therapy group and chemotherapy group were 16.9 and 10.5 months, respectively. The 1-, 3- and 5-year survival rates of integrated therapy group vs. chemotherapy group were 70% vs. 32%, 18% vs. 4%, and 11% vs. 0%, respectively. There was a significant difference between the two groups (χ2 = 42.244, P > 0.001). After six-month treatment, KPS scores of the integrated therapy group and the chemotherapy group were 75.00 ± 14.78 and 60.64 ± 21.39, respectively (P > 0.001). The Cox regression analysis showed that TCM treatment is a protective factor for patients' overall survival. CONCLUSION This study demonstrated that TCM integrated with chemotherapy may prolong overall survival and improve survival rate and life quality of patients with stage IV non-surgical gastric cancer.
Collapse
|
11
|
Fu Z, Han X, Du J, Han X, Liu W, Shao S, Liu X. Euphorbia lunulata extract acts on multidrug resistant gastric cancer cells to inhibit cell proliferation, migration and invasion, arrest cell cycle progression, and induce apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:8-17. [PMID: 28811220 DOI: 10.1016/j.jep.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The milky sap or the aboveground part of the plant Euphorbia lunulata has long been used by Chinese people to treat noncancerous growths and cancerous ailments but the specific mode of action and the action mechanism remain to be elucidated. AIM OF THE STUDY To investigate the effects of Euphorbia lunulata extract on cell proliferation, migration, invasion, cell cycle progression, and apoptosis of multidrug resistant human gastric cancer cells; To study the mechanism of apoptosis induction by Euphorbia lunulata extract in multidrug resistant human gastric cancer cells. MATERIALS AND METHODS The aboveground part of fresh Euphorbia lunulata plant was extracted first with ethanol and then with n-hexane. The aseptic extract at varying concentrations was used to treat the multidrug resistant human gastric cancer SGC7901/ADR cells. After treatment, the inhibition of cell proliferation was examined by MTT assay. The inhibitions of cell migration and invasion were detected by Transwell method. The alteration of cell cycle progression was studied by flow cytometry. The morphological changes of cell nuclei were observed with fluorescence microscopy following Hoechst 33258 staining and the apoptotic indexes were calculated. The activation of caspase enzymes was analyzed by spectrophotometry. The sub-cellular distribution of cytochrome complex and the expression of Bax and Bcl-2 proteins were determined by Western blot. RESULTS The proliferation, migration, and invasion of SGC7901/ADR cells were significantly inhibited by Euphorbia lunulata extract, which showed time- and dose-dependent manners. Cell cycle was arrested in G2/M phase. Significant apoptotic morphological changes were observed in the nuclei of the treated cells, and apoptotic indexes were increased significantly; these changes were diminished when Z-VAD-FMK, a caspase inhibitor, was also presented. The activities of caspase-3, caspase-8, and caspase-9 were increased. The sub-cellular distribution of cytochrome complex was altered----reduced in the mitochondria and increased in the cytoplasm. The expression of Bax was upregulated, while that of Bcl-2 was downregulated. CONCLUSION Euphorbia lunulata extract inhibited the proliferation, migration, and invasion of SGC7901/ADR cells, arrested cell cycle progression, and induced cell apoptosis; the mechanism of apoptosis induction involved both the extrinsic and the intrinsic pathways.
Collapse
Affiliation(s)
- Zhaoying Fu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaodong Han
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Juan Du
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaoxiao Han
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Weipeng Liu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Shumei Shao
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaobin Liu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| |
Collapse
|
12
|
Zhao X, Zhao J, Hu R, Yao Q, Zhang G, Shen H, Yagüe E, Hu Y. Ruanjian Sanjie decoction exhibits antitumor activity by inducing cell apoptosis in breast cancer. Oncol Lett 2017; 13:3071-3079. [PMID: 28529560 PMCID: PMC5431657 DOI: 10.3892/ol.2017.5832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/06/2017] [Indexed: 12/28/2022] Open
Abstract
Traditional Chinese medicine, based on theories developed and practiced for >2,000 years, is one of the most common complementary and alternative types of medicine currently used in the treatment of patients with breast cancer. Ruanjian Sanjie (RJSJ) decoction, is composed of four herbs, including Ban xia (Pinellia ternata), Xia ku cao (Prunella vulgaris), Shan ci gu (Cremastra appendiculata) and Hai zao (Sargassum pallidum), and has traditionally been used for softening hard lumps and resolving hard tissue masses. However, the active compounds and mechanisms of action of RJSJ remain unknown. The present study demonstrated the antitumor activity of RJSJ against Ehrlich ascites carcinoma in Swiss albino mice and breast cancer xenografts in nude mice. Notably, RJSJ does not induce body weight loss, immune function toxicity or myelosuppression in mice, indicating that it is safe and well tolerated. In addition, RJSJ shows potent cytotoxicity against breast cancer cells in vitro by the suppression of the anti-apoptotic proteins B-cell lymphoma 2 and survivin, leading to the activation of caspase-3/7 and caspase-9, and the apoptotic cascade. These findings provide a clear rationale to explore the therapeutic strategy of using RJSJ alone or in combination with chemotherapeutic agents for breast cancer patients and the characterization of its active principles.
Collapse
Affiliation(s)
- Xiumei Zhao
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Jing Zhao
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Renjie Hu
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Qiang Yao
- Tianjin People's Hospital, Tianjin 300121, P.R. China
| | - Guixian Zhang
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Hongsheng Shen
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Yunhui Hu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
13
|
Shi J, Lu Y, Wei P. Xiaotan Sanjie decoction inhibits angiogenesis in gastric cancer through Interleukin-8-linked regulation of the vascular endothelial growth factor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:230-237. [PMID: 27224240 DOI: 10.1016/j.jep.2016.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/30/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interleukin-8 (IL-8) as a pro-angiogenic factor is strongly associated with gastric cancer metastasis. Xiaotan Sanjie (XTSJ) decoction is an empirical compound prescription based on the phlegm theory of traditional Chinese medicine. Previous studies have shown that XTSJ decoction decreases IL-8 level and formation of vasculogenic mimicry of gastric cancer. AIM OF THE STUDY To investigate the link between Xiaotan Sanjie (XTSJ) decoction and IL-8 regulation in the angiogenesis of gastric cancer. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were co-cultured with SGC-7901 human gastric cancer cells and exposed to serum samples containing XTSJ decoction and/or IL-8 (1.0ng/mL). The canalization and migration capacities were evaluated by tube formation and transwell migration assay. Protein (immunofluorescence and Western blot) and mRNA (qPCR) expressions were measured in 24-h-cultured HUVECs for vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor receptor (VEGFR)-1, and VEGFR-2. RESULTS IL-8 significantly promoted and XTSJ decoction inhibited HUVEC tube formation and migration. Links between IL-8 regulation and XTSJ decoction were found in tube formation and migration assays. IL-8 upregulated and XTSJ decoction downregulated VEGF-A, VEGFR-1, and VEGFR-2 protein levels. XTSJ decoction inhibited IL-8-induced VEGF-A and VEGFR-1 protein expressions. Similarly, IL-8 promoted VEGF-A, VEGFR-1, and VEGFR-2 mRNA levels; however, XTSJ decoction inhibited only VEGF-A mRNA. Interestingly, XTSJ decoction inhibited IL-8-induced VEGFR-1 and VEGFR-2 mRNA expression. CONCLUSION XTSJ decoction might inhibit angiogenesis in gastric cancer through IL-8-linked regulation of the VEGF pathway.
Collapse
Affiliation(s)
- Jun Shi
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China.
| | - Ye Lu
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Pinkang Wei
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| |
Collapse
|
14
|
Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds. Int J Mol Sci 2016; 17:ijms17060893. [PMID: 27338343 PMCID: PMC4926427 DOI: 10.3390/ijms17060893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field.
Collapse
|