1
|
Shadnoush M, Momenan M, Seidel V, Tierling S, Fatemi N, Nazemalhosseini-Mojarad E, Norooz MT, Cheraghpour M. A comprehensive update on the potential of curcumin to enhance chemosensitivity in colorectal cancer. Pharmacol Rep 2025; 77:103-123. [PMID: 39304638 DOI: 10.1007/s43440-024-00652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a major cause of cancer-related mortality worldwide. The efficacy of chemotherapy agents in CRC treatment is often limited due to toxic side effects, heterogeneity of cancer cells, and the possibility of chemoresistance which promotes cancer cell survival through several mechanisms. Combining chemotherapy agents with natural compounds like curcumin, a polyphenol compound from the Curcuma longa plant, has been reported to overcome chemoresistance and increase the sensitivity of cancer cells to chemotherapeutics. Curcumin, alone or in combination with chemotherapy agents, has been demonstrated to prevent chemoresistance by modulating various signaling pathways, reducing the expression of drug resistance-related genes. The purpose of this article is to provide a comprehensive update on studies that have investigated the ability of curcumin to enhance the efficacy of chemotherapy agents used in CRC. It is hoped that it can serve as a template for future research on the efficacy of curcumin, or other natural compounds, combined with chemotherapy agents to maximize the effectiveness of therapy and reduce the side effects that occur in CRC or other cancers.
Collapse
Affiliation(s)
- Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Momenan
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Tayefeh Norooz
- General Surgery Department, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran.
| |
Collapse
|
2
|
Steigert S, Brouwers J, Vanuytsel T, Verbandt S, Tejpar S, Oswald S, Augustijns P. Protein abundance of drug transporters and drug-metabolizing enzymes in paired healthy and tumor tissue from colorectal cancer patients. Int J Pharm 2025:125216. [PMID: 39809348 DOI: 10.1016/j.ijpharm.2025.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue. To understand how their presence may affect local drug disposition, the protein abundance of multiple drug transporters and drug-metabolizing enzymes was quantified in paired healthy colonic mucosa and colorectal adenocarcinoma tissue from colorectal cancer patients, utilizing mass spectrometry-based targeted proteomics. Statistically significant changes in protein expression were observed for two transporters (MRP1 and BCRP) and three of the studied enzymes (CES1, CES2 and UGT2B17). MRP1 displayed higher levels in cancerous tissue compared to healthy mucosa samples, while BCRP, CES1, CES2 and UGT2B17 showed the opposite. Other proteins of interest which could be quantified in colonic samples were the drug transporters P-gp, MRP3, MRP4, OATP2B1, MCT1 and enzymes CYP4F2, CYP2J2 and UGT1A1. The insights from this study enhance our understanding of the extent to which drug disposition in tumor tissue of colorectal cancer patients could be impacted by drug transporters and drug-metabolizing enzymes and may facilitate a more accurate prediction of local drug concentrations.
Collapse
Affiliation(s)
- Sebastian Steigert
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, Gasthuisberg ON1, Herestraat 49 - box 701, 3000 Leuven, Belgium.
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, Gasthuisberg ON4, Herestraat 49 - box 603, 3000 Leuven, Belgium.
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, Gasthuisberg ON4, Herestraat 49 - box 603, 3000 Leuven, Belgium.
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Kashif M. Gene expression profiling to uncover prognostic and therapeutic targets in colon cancer, combined with docking and dynamics studies to discover potent anticancer inhibitor. Comput Biol Chem 2025; 115:108349. [PMID: 39813876 DOI: 10.1016/j.compbiolchem.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Drug resistance poses a major obstacle to the efficient treatment of colorectal cancer (CRC), which is one of the cancers that kill people most often in the United States. Advanced colorectal cancer patients frequently pass away from the illness, even with advancements in chemotherapy and targeted therapies. Developing new biomarkers and therapeutic targets is essential to enhancing prognosis and therapy effectiveness. My goal in this study was to use bioinformatics analysis of microarray data to find possible biomarkers and treatment targets for colorectal cancer. Using an ArrayExpress database, I examined a dataset on colon cancer to find genes that were differentially expressed (DEGs) in tumor versus healthy tissues. Integration of advanced bioinformatics tools provided robust insights into the identification and analysis of EGFR as a key player. STRING and Cytoscape enabled the construction and visualization of protein-protein interaction networks, highlighting EGFR as a hub gene due to its centrality and interaction profile. Functional enrichment analysis through DAVID revealed EGFR's involvement in critical biological pathways, as identified in GO and KEGG analyses. This underscores the power of combining computational tools to uncover significant biomarkers like EGFR. Autodock Vina screening of the NCI diversity dataset identified two potential EGFR inhibitors, ZINC13597410 and ZINC04896472. MD simulation data revealed that ZINC04896472 could be potential anticancer inhibitor. These findings serve as a basis for the creation of novel therapeutic approaches that target EGFR and other discovered pathways in CRC. The suggested strategy may improve the efficacy of CRC therapy and advance personalized medicine.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. Anticancer effect of a combinatorial treatment of 5-fluorouracil and cell extract of some probiotic lactobacilli strains isolated from camel milk on colorectal cancer cells. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01228-2. [PMID: 39702737 DOI: 10.1007/s12223-024-01228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024]
Abstract
Colorectal cancer (CRC) has the highest mortality rate among cancer types, emphasizing the need for auxiliaries to 5-fluorouracil (5-FU) due to resistance and side effects. Metabolites produced by probiotic bacteria exhibit promising anticancer properties against CRC. In the current study, the anticancer effects of cell extract of three potential probiotic lactobacilli strains isolated from camel milk, Lactobacillus helveticus, Lactobacillus gallinarum, and Lactiplantibacillus plantarum, as well as that of the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG), on the human colon cancer cell line (HT-29) and the normal HEK293 cell line separately or in combination with 5-FU, were evaluated. This study isolated strains from camel milk and compared their probiotic properties to those of LGG. The cell viability, cell apoptosis, and Th17 cytokine production were assessed using the MTT assay, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry techniques, respectively. The cell extracts of lactobacilli strains combined with 5-FU reduced HT-29 cell viability effectively and increased cell apoptosis. Nevertheless, the cell extracts of lactobacilli strains combined with 5-FU controlled the cytotoxic impact of 5-FU on HEK-293 cell viability and reduced cell apoptosis. No significant differences were observed among the strains. Moreover, the cell extracts from the strains combined with 5-FU increased the levels of cytokines IFN-γ, TNF-α, and IL-17A, all of which contribute to immunity against tumors. The performance of the studied strains was similar to that of the standard probiotic strain (LGG). The investigation revealed that cell extracts from lactobacilli strains may serve as a promising complementary anticancer treatment.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Piekara J, Piasecka-Kwiatkowska D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants (Basel) 2024; 13:1559. [PMID: 39765887 PMCID: PMC11674025 DOI: 10.3390/antiox13121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e., cancer and neurodegenerative diseases. The review aims to examine the antioxidant role of XN in disease prevention, with an emphasis on the benefits and risks associated with its supplementation. The regulation by XN of the Nrf2/NF-kB/mTOR/AKT (Nuclear factor erythroid 2-related factor 2/Nuclear factor kappa-light-chain-enhancer of activated B cells/Mammalian target of rapamycin/Protein Kinase B) pathways induce a strong antioxidant and anti-inflammatory effect, among others the acceleration of autophagy through increased synthesis of Bcl-2 (B-cell lymphoma 2) proteins, inhibition of the synthesis of VEGF (Vascular-endothelial growth factor) responsible for angiogenesis and phosphorylation of HKII (Hexokinase II). It is the key function of XN to ameliorate inflammation and to promote the healing process in organs. However, existing data also indicate that XN may have adverse effects in certain diseases, such as advanced prostate cancer, where it activates the AMPK (activated protein kinase) pathway responsible for restoring cellular energy balance. This potential risk may explain why XN has not been classified as a therapeutic drug so far and proves that further research is needed to determine the effectiveness of XN against selected disease entities at a given stage of the disease.
Collapse
Affiliation(s)
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland;
| |
Collapse
|
6
|
Bidooki SH, Quero J, Sánchez-Marco J, Herrero-Continente T, Marmol I, Lasheras R, Sebastian V, Arruebo M, Osada J, Rodriguez-Yoldi MJ. Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance. Int J Mol Sci 2024; 25:13048. [PMID: 39684759 DOI: 10.3390/ijms252313048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Squalene, a triterpene found in extra virgin olive oil, has therapeutic properties in diseases related to oxidative stress, such as cancer. However, its hydrophobic nature and susceptibility to oxidation limit its bioavailability outside of olive oil. To expand its applications, alternative delivery methods are necessary. The objective of the present study was to examine the impact of squalene encapsulated in PLGA (poly(lactic-co-glycolic) acid) nanoparticles (PLGA + Sq) on the proliferation of human colon carcinoma Caco-2 cells, as well as its underlying mechanism of action. The findings demonstrated that PLGA + Sq exert no influence on differentiated cells; however, it is capable of reducing the proliferation of undifferentiated Caco-2 cells through apoptosis and cell cycle arrest in the G1 phase. This effect was initiated by the release of cytochrome c into the cytoplasm and the subsequent activation of caspase-3. Furthermore, squalene exhibited pro-oxidant activity, as evidenced by an increase in intracellular ROS (reactive oxygen species) levels. The results of the squalene effect on genes associated with cell death, inflammation, and the cell cycle indicate that its antiproliferative effect may be post-transcriptional. In conclusion, PLGA + Sq demonstrate an antiproliferative effect on Caco-2 cells through apoptosis by altering redox balance, suggesting squalene's potential as a functional food ingredient for colorectal cancer prevention.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Quero
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Inés Marmol
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Roberto Lasheras
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, E-50071 Zaragoza, Spain
| | - Victor Sebastian
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Manuel Arruebo
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jesús Rodriguez-Yoldi
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
7
|
Dadgar-Zankbar L, Elahi Z, Shariati A, Khaledi A, Razavi S, Khoshbayan A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: implications for tumor proliferation and chemoresistance. Cell Commun Signal 2024; 22:547. [PMID: 39548531 PMCID: PMC11566256 DOI: 10.1186/s12964-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) has been extensively studied for its connection to colorectal cancer (CRC) and its potential role in chemotherapy resistance. Studies indicate that Fn is commonly found in CRC tissues and is associated with unfavorable prognosis and treatment failure. It has been shown that Fn promotes chemoresistance by affecting autophagy, a cellular process that helps cells survive under stressful conditions. Additionally, Fn targets specific signaling pathways that activate particular microRNAs and modulate the response to chemotherapy. Understanding the current molecular mechanisms and investigating the importance of Fn-inducing chemoresistance could provide valuable insights for developing novel therapies. This review surveys the role of Fn in tumor proliferation, metastasis, and chemoresistance in CRC, focusing on its effects on the tumor microenvironment, gene expression, and resistance to conventional chemotherapy drugs. It also discusses the therapeutic implications of targeting Fn in CRC treatment and highlights the need for further research.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, P.O. Box: 87155.111, Kashan, 87154, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
YIN YUQIN, WU YU, HUANG HONGLIANG, DUAN YINGYING, YUAN ZHONGWEN, CAO LIHUI, YING JINJIN, ZHOU YONGHENG, FENG SENLING. The superiority of PMFs on reversing drug resistance of colon cancer and the effect on aerobic glycolysis-ROS-autophagy signaling axis. Oncol Res 2024; 32:1891-1902. [PMID: 39574478 PMCID: PMC11576955 DOI: 10.32604/or.2024.048778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 11/24/2024] Open
Abstract
Background Polymethoxylated flavones (PMFs) are compounds present in citrus peels and other Rutaceae plants, which exhibit diverse biological activities, including robust antitumor and antioxidant effects. However, the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown. In the present study, we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs. Methods MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo; the mRNA and protein levels of the target were detected by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), quantitative real-time fluorescence polymerase chain reaction (qRT-PCR) and Western blot protein immunoblotting (WB); An HCT8/T cell xenograft model was established to investigate the MDR reversal activity of PMFs in vivo; The extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) were detected to assess the cellular oxygen consumption rate and glycolytic process. Results HCT8/T cells demonstrated significant resistance to PTX, up-regulating the expression levels of ABCB1 mRNA, P-gp, LC3-I, and LC3-II protein, and increasing intracellular reactive oxygen species (ROS) content. PMFs mainly contain two active ingredients, nobiletin, and tangeretin, which were able to reverse drug resistance in HCT8/T cells in a concentration-dependent manner. PMFs exhibited high tolerance in the HCT8/T nude mouse model while increasing the sensitivity of PTX-resistant cells and suppressing tumor growth significantly. PMFs combined with PTX reduced extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) in HCT8/T cells. Additionally, PMFs reduced intracellular ROS content, down-regulated the expression levels of autophagy-related proteins LC3-I, LC3-II, Beclin1, and ATG7, and significantly reduced the number of autophagosomes in HCT8/T cells. Conclusions The present study demonstrated that PMFs could potentially reverse PTX resistance in colon cancer by regulating the aerobic glycolysis-ROS-autophagy signaling axis, which indicated that PMFs would be potential potentiators for future chemotherapeutic agents in colon cancer.
Collapse
Affiliation(s)
- YUQIN YIN
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - YU WU
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - HONGLIANG HUANG
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - YINGYING DUAN
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - ZHONGWEN YUAN
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - LIHUI CAO
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - JINJIN YING
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - YONGHENG ZHOU
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, China
| | - SENLING FENG
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
9
|
Yang J, Li C, Wang Z, Jiang K. Multi-omics analysis of the biological function of the VEGF family in colon adenocarcinoma. Funct Integr Genomics 2024; 24:210. [PMID: 39527375 PMCID: PMC11554882 DOI: 10.1007/s10142-024-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The vascular endothelial growth factor (VEGF) family plays a crucial role in cancer progression, but the prognostic significance and biological functions of VEGF family members in colon adenocarcinoma (COAD) remain unclear. Using data from The Cancer Genome Atlas, Gene Expression Omnibus, Gene Set Cancer Analysis, cBioPortal, GeneMANIA, String, MethSurv and starBase database, we identified vascular endothelial growth factor B (VEGFB) as a key gene associated with COAD prognosis, with its abnormal expression linked to methylation dysregulation. In vitro experiments confirmed VEGFB expression was significantly higher in colon cancer tissues compared to normal tissues, as shown by Real-time quantitative PCR and immunohistochemistry. Cell Counting Kit-8 and colony formation assay showed that decreased VEGFB expression in SW480 cells resulted in decreased cell viability and proliferation ability. Scratch assay showed that VEGFB downregulation impaired SW480 cell migration. In addition, our research suggests that VEGFB not only promotes angiogenesis but is also involved in the tumor microenvironment and immune regulation. The SHNG17-miR-375-VEGFB regulatory axis provides a potential therapeutic target for COAD, highlighting VEGFB's role in immune activation during anti-angiogenic therapy and potential reversal of drug resistance.
Collapse
Affiliation(s)
- Jianqiao Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Chen Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhu Wang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
10
|
Huang WS, Wu KL, Chen CN, Chang SF, Lee DY, Lee KC. Amphiregulin Upregulation in Visfatin-Stimulated Colorectal Cancer Cells Reduces Sensitivity to 5-Fluororacil Cytotoxicity. BIOLOGY 2024; 13:821. [PMID: 39452130 PMCID: PMC11505234 DOI: 10.3390/biology13100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Colorectal cancer (CRC) has become a prevalent and deadly malignancy over the years. Drug resistance remains a major challenge in CRC treatment, significantly affecting patient survival rates. Obesity is a key risk factor for CRC development, and accumulating evidence indicates that increased secretion of adipokines, including Visfatin, under obese conditions contributes to the development of resistance in CRC to various therapeutic methods. Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family, which activates the EGF receptor (EGFR), influencing multiple tumorigenic characteristics of cancers. Abnormal expression levels of AREG in cancer cells have been associated with resistance to anti-EGFR therapy in patients. However, it remains unclear whether this abnormal expression also impacts CRC resistance to other chemotherapeutic drugs. The aim of this study is to examine whether AREG expression levels could be affected in CRC cells under Visfatin stimulation, thereby initiating the development of resistance to 5-fluororacil (5-FU). Through our results, we found that Visfatin indeed increases AREG expression, reducing the sensitivity of HCT-116 CRC cells to 5-FU cytotoxicity. Moreover, AREG upregulation is regulated by STAT3-CREB transcription factors activated by JNK1/2 and p38 signaling. This study highlights the significant role of AREG upregulation in CRC cells in initiating chemotherapeutic resistance to 5-FU under Visfatin stimulation. These findings provide a deeper understanding of drug resistance development in CRC under obese conditions and offer new insights into the correlation between an abnormal increase in AREG levels and the development of 5-FU-resistance in CRC cells, which should be considered in future clinical applications.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Kuen-Lin Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung 833, Taiwan;
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan;
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Ding-Yu Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung 833, Taiwan;
| |
Collapse
|
11
|
Yagublu V, Bayramov B, Reissfelder C, Hajibabazade J, Abdulrahimli S, Keese M. Microarray-based detection and expression analysis of drug resistance in an animal model of peritoneal metastasis from colon cancer. Clin Exp Metastasis 2024; 41:707-715. [PMID: 38609535 PMCID: PMC11499332 DOI: 10.1007/s10585-024-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Chemotherapy drugs efficiently eradicate rapidly dividing differentiated cells by inducing cell death, but poorly target slowly dividing cells, including cancer stem cells and dormant cancer cells, in the later course of treatment. Prolonged exposure to chemotherapy results in a decrease in the proportion of apoptotic cells in the tumour mass. To investigate and characterize the molecular basis of this phenomenon, microarray-based expression analysis was performed to compare tHcred2-DEVD-EGFP-caspase 3-sensor transfected C-26 tumour cells that were harvested after engraftment into mice treated with or without 5-FU. Peritoneal metastasis was induced by intraperitoneal injection of C-26 cells, which were subsequently reisolated from omental metastatic tumours after the mice were sacrificed by the end of the 10th day after tumour injection. The purity of reisolated tHcred2-DEVD-EGFP-caspase 3-sensor-expressing C-26 cells was confirmed using FLIM, and total RNA was extracted for gene expression profiling. The validation of relative transcript levels was carried out via real-time semiquantitative RT‒PCR assays. Our results demonstrated that chemotherapy induced the differential expression of mediators of cancer cell dormancy and cell survival-related genes and downregulation of both intrinsic and extrinsic apoptotic signalling pathways. Despite the fact that some differentially expressed genes, such as BMP7 and Prss11, have not been thoroughly studied in the context of chemoresistance thus far, they might be potential candidates for future studies on overcoming drug resistance.
Collapse
Affiliation(s)
- Vugar Yagublu
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Bayram Bayramov
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku, Azerbaijan
- Department of Natural Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Christoph Reissfelder
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Javahir Hajibabazade
- Carver College of Medicine, University of Iowa, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242-1009, USA
| | - Shalala Abdulrahimli
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku, Azerbaijan
| | - Michael Keese
- Department of Vascular Surgery, Theresienkrankenhaus and St. Hedwigsklinik, Mannheim, Germany
| |
Collapse
|
12
|
Jiang YL, Li X, Tan YW, Fang YJ, Liu KY, Wang YF, Ma T, Ou QJ, Zhang CX. Docosahexaenoic acid inhibits the invasion and migration of colorectal cancer by reversing EMT through the TGF-β1/Smad signaling pathway. Food Funct 2024; 15:9420-9433. [PMID: 39189524 DOI: 10.1039/d4fo02346c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The primary cause of mortality in colorectal cancer (CRC) patients is tumor metastasis. The epithelial-mesenchymal transition (EMT) stands out as a crucial factor promoting the metastasis of CRC. Previous findings suggest a potential inhibitory effect of docosahexaenoic acid (DHA) on CRC metastasis, but the precise mechanism remains unknown, this study aims to explore this issue. We assessed metastasis and recurrence, all-cause mortality, and cancer-related mortality rates according to DHA intake in independent CRC cohorts (n = 367) by survival analysis. The ability of DHA to block CRC cell migration and invasion was tested using transwell and wound-healing assays. The regulation of EMT marker genes in CRC by DHA was detected by quantitative real-time PCR (qPCR) and immunoblotting, and the effect of DHA on the TGF-β1/Smad signaling pathway was further investigated. These cellular findings were validated using a subcutaneous CRC mouse model. Survival analyses showed that lower DHA intake was associated with a higher risk of CRC metastasis and a poorer prognosis. In vitro experiments showed that DHA inhibits the TGF-β1/Smad signaling pathway and regulates downstream transcription factors, thereby reversing the EMT and inhibiting invasion and migration. In the mouse model, dietary DHA supplementation effectively increased blood DHA concentrations and inhibited CRC metastasis. Our study demonstrated that DHA inhibits CRC invasion and metastasis by inhibiting the TGF-β1/Smad signaling pathway. Increased intake of DHA among CRC patients may provide additional benefits to the prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xue Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya-Wen Tan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai-Yan Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yi-Fan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ting Ma
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Qian X, Wang Y, Liu Z, Fang F, Ma Y, Zhou L, Pan Y, Meng X, Yan B, Zhu X, Wang X, Zhao J, Liu S. Establishment of XRD fourier fingerprint identification method of realgar decoction pieces and its anti-tumor activity in tumor-in-situ transplanted mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118303. [PMID: 38734390 DOI: 10.1016/j.jep.2024.118303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, a traditional mineral Chinese medicine, has been used in China for more than 2000 years. It has been recorded in many ancient and modern works that it has anti-cancer and anti-tumor effects. Of course, colon cancer is also within the scope of its treatment. Realgar needs to be processed into realgar decoction pieces by water grinding before being used for medicine. To ensure the consistency of efficacy and quality of realgar decoction pieces, modern methods need to be used for further quality control. AIM OF THE STUDY The research of traditional mineral Chinese medicine is relatively difficult, and the related research is less. The purpose of this study is to control the quality of realgar decoction pieces by modern analytical technology and analyze its components. On this basis, its anti-colon cancer activity was discussed. MATERIALS AND METHODS Several batches of realgar decoction pieces were analyzed by XRD, and the components of realgar decoction pieces were obtained. The quality control fingerprints of realgar decoction pieces were established by processing XRD spectra and similarity evaluation. Then, the effects of realgar decoction pieces on apoptosis of CT26 and HTC-116 cells were observed in vitro by Hoechst 33258 staining, flow cytometry, measurement of mitochondrial membrane potential and Western blot; In vivo, the mouse model of tumor-in-situ transplantation of colon cancer was established, and the related indexes were observed. RESULT The explorations showed that the XRD Fourier fingerprints of realgar decoction pieces samples that had the same phase revealed 10 common peaks, respectively. The similarity evaluation of the established XRD Fourier fingerprint was greater than 0.900. We also demonstrated that realgar decoction pieces can promote apoptosis and inhibit tumor growth in colon cancer cells, its activating effect on p53 protein, and its safety when used within reasonable limits. CONCLUSION The quality control of realgar decoction pieces by XRD is scientific and has the inhibitory effect on colon cancer, which has the development potential.
Collapse
Affiliation(s)
- Xilong Qian
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fang Fang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulu Ma
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liu Zhou
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqiong Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Taikang Xianlin Drum Tower Hospital, Nanjing, 210046, China
| | | | - Baofei Yan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Health Vocational College, Nanjing, 211800, China
| | - Xingyu Zhu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu College of Nursing, Huai'an, 223001, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, China
| | - Shengjin Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Gu Z, Yin J, Da Silva CG, Liu Q, Cruz LJ, Ossendorp F, Snaar-Jagalska E. Therapeutic liposomal combination to enhance chemotherapy response and immune activation of tumor microenvironment. J Control Release 2024; 373:38-54. [PMID: 38986909 DOI: 10.1016/j.jconrel.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Multiple oxaliplatin-resistance mechanisms have been proposed such as increase of anti-inflammatory M2 macrophages and lack of cytotoxic T-cells. Thereby oxaliplatin chemotherapy promotes an immunosuppressive tumor microenvironment and inhibits anti-tumor efficacy. It has been shown that toll-like receptor (TLR) agonists are capable of triggering broad inflammatory responses, which may potentially reduce oxaliplatin-resistance and improve the efficacy of chemotherapy. In this study, we established colorectal tumor-bearing zebrafish and mice, and investigated the effects of TLR agonists and oxaliplatin in macrophage function and anti-tumor T cell immunity as well as tumor growth control in vivo. To increase the potential of this strategy as well minimize side effects, neutral liposomes carrying oxaliplatin and cationic liposomes co-loaded with TLR agonists Poly I:C and R848 were employed for maximum immune activation. Both of two liposomal systems exhibited good physicochemical properties and excellent biological activities in vitro. The combination strategy delivered by liposomes showed more pronounced tumor regression and correlated with decreased M2 macrophage numbers in both zebrafish and mice. Increasing numbers of dendritic cells, DC maturation and T cell infiltration mediated via immunogenic cell death were observed in treated mice. Our study offers valuable insights into the potential of liposomal combination therapy to improve cancer treatment by reprogramming the tumor microenvironment and enhancing immune responses.
Collapse
Affiliation(s)
- Zili Gu
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Jie Yin
- Institution of Biology Leiden, Leiden University, the Netherlands
| | - Candido G Da Silva
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis J Cruz
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, the Netherlands.
| | | |
Collapse
|
15
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
16
|
Hosseini H, Abbasi A, Sabahi S, Akrami S, Yousefi-Avarvand A. Assessing the Potential Biological Activities of Postbiotics Derived from Saccharomyces cerevisiae: An In Vitro Study. Probiotics Antimicrob Proteins 2024; 16:1348-1364. [PMID: 37402072 DOI: 10.1007/s12602-023-10117-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
A new biotherapeutic strategy involves the use of microbial bioactive substances (postbiotics) that exhibit optimum compatibility and intimate contact with the immune system of the host. This study was aimed at investigating the potential biological activities of postbiotics derived from Saccharomyces cerevisiae (PTCC 5269) (PSC) under in vitro circumstances. Based on the outcomes, the synthesized PSC possessing a high level of phenolic (102.46 ± 0.25 mg GAE/g) and flavonoid (19.87 ± 75.32 mg QE/g) content demonstrated significant radical scavenging activity (87.34 ± 0.56%); antibacterial action towards Listeria monocytogenes, Streptococcus mutans, Salmonella typhi, and Escherichia coli (in order of effectiveness) in both in vitro and food models (whole milk and ground meat); probiotics' growth-promoting activity in the fermentation medium; α-glucosidase enzyme-inhibiting and cholesterol-lowering properties in a concentration- and pH-dependent manner; reduction in the cell viability (with the significant IC50 values of 34.27 and 23.58 μg/mL after 24 and 48 h, respectively); suppressed the initial (G0/G1) phase of the cell's division; induced apoptosis; and increased the expression of PTEN gene, while the IkB, RelA, and Bcl-XL genes indicated diminished expression in treated SW480 cancer cells. These multiple health-promoting functions of PSC can be extended to medical, biomedical, and food scopes, as novel biotherapeutic approaches, in order to design efficient and optimized functional food formulations or/and supplementary medications to use as adjuvant agents for preventing or/and treating chronic/acute disorders.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshid Yousefi-Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Li S, Ding M, Feng M, Fan X, Li Z. Polyunsaturated Fatty Acids in Quinoa Induce Ferroptosis of Colon Cancer by Suppressing Stemness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16152-16162. [PMID: 38991049 DOI: 10.1021/acs.jafc.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential nutrients for the human body, playing crucial roles in reducing blood lipids, anti-inflammatory responses, and anticancer effect. Quinoa is a nutritionally sound food source, rich in PUFAs. This study investigates the role of quinoa polyunsaturated fatty acids (QPAs) on quelling drug resistance in colorectal cancer. The results reveal that QPA downregulates the expression of drug-resistant proteins P-gp, MRP1, and BCRP, thereby enhancing the sensitivity of colorectal cancer drug-resistant cells to the chemotherapy drug. QPA also inhibits the stemness of drug-resistant colorectal cancer cells by reducing the expression of the stemness marker CD44. Consequently, it suppresses the downstream protein SLC7A11 and leads to ferroptosis. Additionally, QPA makes the expression of ferritin lower and increases the concentration of free iron ions within cells, leading to ferroptosis. Overall, QPA has the dual-function reversing drug resistance in colorectal cancer by simultaneously inhibiting stemness and inducing ferroptosis. This study provides a new option for chemotherapy sensitizers and establishes a theoretical foundation for the development and utilization of quinoa.
Collapse
Affiliation(s)
- Songtao Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Man Ding
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Mangmang Feng
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaxia Fan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
18
|
Hon KW, Naidu R. Synergistic Mechanisms of Selected Polyphenols in Overcoming Chemoresistance and Enhancing Chemosensitivity in Colorectal Cancer. Antioxidants (Basel) 2024; 13:815. [PMID: 39061884 PMCID: PMC11273411 DOI: 10.3390/antiox13070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
Collapse
Affiliation(s)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
19
|
Arif B, Yasir S, Saeed M, Fatmi MQ. Natural products can be potential inhibitors of metalloproteinase II from Bacteroides fragilis to intervene colorectal cancer. Heliyon 2024; 10:e32838. [PMID: 39005891 PMCID: PMC11239599 DOI: 10.1016/j.heliyon.2024.e32838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Bacteroides fragilis, a gram negative and obligate anaerobe bacterium, is a member of normal gut microbiota and facilitates many essential roles being performed in human body in normal circumstances specifically in Gastrointestinal or GI tract. Sometimes, due to genetics, epigenetics, and environmental factors, Bacteroides fragilis and their protein(s) start interacting with intestinal epithelium thus damaging the lining leading to colorectal cancers (CRC). To identify these protein(s), we incorporated a novel subtractive proteomics approach in the study. Metalloproteinase II (MPII), a Bacteroides fragilis toxin (bft), was investigated for its virulence and unique pathways to demonstrate its specificity and uniqueness in pathogenicity followed by molecular docking against a set of small drug-like natural molecules to discover potential inhibitors against the toxin. All these identified inhibitor-like molecules were analyzed for their ADMET calculations and detailed physiochemical properties to predict their druggability, GI absorption, blood brain barrier and skin permeation, and others. Resultantly, a total of ten compounds with the least binding energies were obtained and were subjected to protein-compound interaction analysis. Interaction analysis revealed the most common ligand-interacting residues in MPII are His 345, Glu 346, His 339, Gly 310, Tyr 341, Pro 340, Asp 187, Phe 309, Lys 307, Ile 185, Thr 308, and Pro 184. Therefore, top three compounds complexed with MPII having best binding energies were selected in order to analyze their trajectories. RMSD, RMSF, Rg and MMPBSA analysis revealed that all compounds showed good binding and keeping the complex stable and compact throughout the simulation time in addition to all properties and qualities of being a potential inhibitor against MPII.
Collapse
Affiliation(s)
- Bushra Arif
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| | - Saba Yasir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Saeed
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| |
Collapse
|
20
|
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang XJ. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:24. [PMID: 39050885 PMCID: PMC11267154 DOI: 10.20517/cdr.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Authors contributed equally
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Authors contributed equally
| | - Wisawat Keaswejjareansuk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Mirbahari SN, Fatemi N, Savabkar S, Chaleshi V, Zali N, Taleghani MY, Mirzaei E, Rejali L, Moghadam PK, Mojarad EN. Unmasking early colorectal cancer clues: in silico and in vitro investigation of downregulated IGF2, SOCS1, MLH1, and CACNA1G in SSA polyps. Mol Biol Rep 2024; 51:764. [PMID: 38874740 PMCID: PMC11178608 DOI: 10.1007/s11033-024-09683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) originates from pre-existing polyps in the colon. The development of different subtypes of CRC is influenced by various genetic and epigenetic characteristics. CpG island methylator phenotype (CIMP) is found in about 15-20% of sporadic CRCs and is associated with hypermethylation of certain gene promoters. This study aims to find prognostic genes and compare their expression and methylation status as potential biomarkers in patients with serrated sessile adenomas/polyps (SSAP) and CRC, in order to evaluate which, one is a better predictor of disease. METHOD This study employed a multi-phase approach to investigate genes associated with CRC and SSAP. Initially, two gene expression datasets were analyzed using R and Limma package to identify differentially expressed genes (DEGs). Venn diagram analysis further refined the selection, revealing four genes from the Weissenberg panel with significant changes. These genes, underwent thorough in silico evaluations. Once confirmed, they proceeded to wet lab experimentation, focusing on expression and methylation status. This comprehensive methodology ensured a robust examination of the genes involved in CRC and SSAP. RESULT This study identified cancer-specific genes, with 8,351 and 1,769 genes specifically down-regulated in SSAP and CRC tissues, respectively. The down-regulated genes were associated with cell adhesion, negative regulation of cell proliferation, and drug response. Four highly downregulated genes in the Weissenberg panel, including CACNA1G, IGF2, MLH1, and SOCS1. In vitro analysis showed that they are hypermethylated in both SSAP and CRC samples while their expressions decreased only in CRC samples. CONCLUSION This suggests that the decrease in gene expression could help determine whether a polyp will become cancerous. Using both methylation status and gene expression status of genes in the Weissenberg panel in prognostic tests may lead to better prognoses for patients.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Savabkar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Yaghoob Taleghani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzaei
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Ketabi Moghadam
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717413, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, P.O. Box 2333 ZA, Leiden, Netherlands.
| |
Collapse
|
22
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
23
|
Panda M, Biswal S, Biswal BK. Evodiamine potentiates cisplatin-induced cell death and overcomes cisplatin resistance in non-small-cell lung cancer by targeting SOX9-β-catenin axis. Mol Biol Rep 2024; 51:523. [PMID: 38630183 DOI: 10.1007/s11033-024-09477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating β-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and β-catenin. CONCLUSION The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha,, 769008, India
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha,, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha,, 769008, India.
| |
Collapse
|
24
|
Carmignani A, Battaglini M, Marino A, Pignatelli F, Ciofani G. Drug-Loaded Polydopamine Nanoparticles for Chemo/Photothermal Therapy against Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:2205-2217. [PMID: 38489294 DOI: 10.1021/acsabm.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly malignancy, ranking second in terms of mortality and third in terms of incidence on a global scale. The survival rates for CRC patients are unsatisfactory primarily because of the absence of highly effective clinical strategies. The efficacy of existing CRC treatments, such as chemotherapy (CT), is constrained by issues such as drug resistance and damage to healthy tissues. Alternative approaches such as photothermal therapy (PTT), while offering advantages over traditional therapies, suffer instead from a low efficiency in killing tumor cells when used alone. In this context, nanostructures can efficiently contribute to a selective and targeted treatment. Here, we combined CT and PTT by developing a nanoplatform based on polydopamine nanoparticles (PDNPs), selected for their biocompatibility, drug-carrying capabilities, and ability to produce heat upon exposure to near-infrared (NIR) irradiation. As a chemotherapy drug, sorafenib has been selected, a multikinase inhibitor already approved for clinical use. By encapsulating sorafenib in polydopamine nanoparticles (Sor-PDNPs), we were able to successfully improve the drug stability in physiological media and the consequent uptake by CRC cells, thereby increasing its therapeutic effects. Upon NIR stimulus, Sor-PDNPs can induce a temperature increment of about 10 °C, encompassing both PTT and triggering a localized and massive drug release. Sor-PDNPs were tested on healthy colon cells, showing minimal adverse outcomes; conversely, they demonstrated excellent efficacy against CRC cells, with a strong capability to hinder cancer cell proliferation and induce apoptosis. Obtained findings pave the way to new synergistic chemo-photothermal approaches, maximizing the therapeutic outcomes against CRC while minimizing side effects on healthy cells.
Collapse
Affiliation(s)
- Alessio Carmignani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Pignatelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
25
|
Fatima I, Ahmad R, Barman S, Gowrikumar S, Pravoverov K, Primeaux M, Fisher KW, Singh AB, Dhawan P. Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20. Br J Cancer 2024; 130:1046-1058. [PMID: 38278978 PMCID: PMC10951408 DOI: 10.1038/s41416-023-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristina Pravoverov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
26
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
27
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells. World J Microbiol Biotechnol 2024; 40:139. [PMID: 38514489 DOI: 10.1007/s11274-024-03929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
5-Fluorouracil (5-FU) is an effective chemotherapy drug in the treatment of colorectal cancer (CRC). However, auxiliary or alternative therapies must be sought due to its resistance and potential side effects. Certain probiotic metabolites exhibit anticancer properties. In this study evaluated the anticancer and potential therapeutic activities of cell extracts potential probiotic strains, Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from the mule milk and the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG) against the human colon cancer cell line (HT-29) and the normal cell line (HEK-293) alone or in combination with 5-FU. In this study, L. plantarum and L. fermentum, which were isolated from mule milk, were identified using biochemical and molecular methods. Their probiotic properties were investigated in vitro and compared with the standard probiotic strain of the species L. rhamnosus GG. The MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and flow cytometry were employed to measure the viability of cell lines, cell apoptosis, and production rates of Th17 cytokines, respectively. The results demonstrated that the combination of lactobacilli cell extracts and 5-FU decreased cell viability and induced apoptosis in HT-29 cells. Furthermore, this combination protected HEK-293 cells from the cytotoxic effects of 5-FU, enhancing their viability and reducing apoptosis. Moreover, the combination treatment led to an increase in the levels of IL-17A, IFN-γ, and TNF-α, which can enhance anti-tumor immunity. In conclusion, the cell extracts of the lactobacilli strains probably can act as a potential complementary anticancer therapy.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Ma L, Ai F, Xiao H, Wang F, Shi L, Bai X, Zhu Y, Ma W. Lycium barbarum polysaccharide reverses drug resistance in oxaliplatin-resistant colon cancer cells by inhibiting PI3K/AKT-dependent phosphomannose isomerase. Front Pharmacol 2024; 15:1367747. [PMID: 38576495 PMCID: PMC10991850 DOI: 10.3389/fphar.2024.1367747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Objective: Here, we aimed to explore the effect of LBP in combination with Oxaliplatin (OXA) on reversing drug resistance in colon cancer cells through in vitro and in vivo experiments. We also aimed to explore the possible mechanism underlying this effect. Finally, we aimed to determine potential targets of Lycium barbarum polysaccharide (LBP) in colon cancer (CC) through network pharmacology and molecular docking. Methods: The invasion ability of colon cancer cells was assessed using the invasion assay. The migration ability of these cells was assessed using the migration assay and wound healing assay. Cell cycle analysis was carried out using flow cytometry. The expression levels of phosphomannose isomerase (PMI) and ATP-binding cassette transport protein of G2 (ABCG2) proteins were determined using immunofluorescence and western blotting. The expression levels of phosphatidylinositol3-kinase (PI3K), protein kinase B (AKT), B-cell lymphoma 2 (Bcl-2), and BCL2-Associated X (Bax) were determined using western blotting. Forty BALB/c nude mice purchased from Weitong Lihua, Beijing, for the in vivo analyses. The mice were randomly divided into eight groups. They were administered HCT116 and HCT116-OXR cells to prepare colon cancer xenograft models and then treated with PBS, LBP (50 mg/kg), OXA (10 mg/kg), or LBP + OXA (50 mg/kg + 10 mg/kg). The tumor weight and volume of treated model mice were measured, and organ toxicity was evaluated using hematoxylin and eosin staining. The expression levels of PMI, ABCG2, PI3K, and AKT proteins were then assessed using immunohistochemistry. Moreover, PMI and ABCG2 expression levels were analyzed using immunofluorescence and western blotting. The active components and possible targets of LBP in colon cancer were explored using in silico analysis. GeneCards was used to identify CC targets, and an online Venn analysis tool was used to determine intersection targets between these and LBP active components. The PPI network for intersection target protein interactions and the PPI network for interactions between the intersection target proteins and PMI was built using STRING and Cytoscape. To obtain putative targets of LBP in CC, we performed GO function enrichment and KEGG pathway enrichment analyses. Results: Compared with the HCT116-OXR blank treatment group, both invasion and migration abilities of HCT116-OXR cells were inhibited in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group (p < 0.05). Cells in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group were found to arrest in the G1 phase of the cell cycle. Knockdown of PMI was found to downregulate PI3K, AKT, and Bcl-2 (p < 0.05), while it was found to upregulate Bax (p < 0.05). After treatment with L. barbarum polysaccharide, 40 colon cancer subcutaneous tumor models showed a decrease in tumor size. There was no difference in the liver index after LBP treatment (p > 0.05). However, the spleen index decreased in the OXA and LBP + OXA groups (p < 0.05), possibly as a side effect of oxaliplatin. Immunohistochemistry, immunofluorescence, and western blotting showed that LBP + OXA treatment decreased PMI and ABCG2 expression levels (p < 0.05). Moreover, immunohistochemistry showed that LBP + OXA treatment decreased the expression levels of PI3K and AKT (p < 0.05). Network pharmacology analysis revealed 45 active LBP components, including carotenoids, phenylpropanoids, quercetin, xanthophylls, and other polyphenols. It also revealed 146 therapeutic targets of LBP, including AKT, SRC, EGFR, HRAS, STAT3, and MAPK3. KEGG pathway enrichment analysis showed that the LBP target proteins were enriched in pathways, including cancer-related signaling pathways, PI3K/AKT signaling pathway, and IL-17 signaling pathways. Finally, molecular docking experiments revealed that the active LBP components bind well with ABCG2 and PMI. conclusion: Our in vitro experiments showed that PMI knockdown downregulated PI3K, AKT, and Bcl-2 and upregulated Bax. This finding confirms that PMI plays a role in drug resistance by regulating the PI3K/AKT pathway and lays a foundation to study the mechanism underlying the reversal of colon cancer cell drug resistance by the combination of LBP and OXA. Our in vivo experiments showed that LBP combined with oxaliplatin could inhibit tumor growth. LBP showed no hepatic or splenic toxicity. LBP combined with oxaliplatin could downregulate the expression levels of PMI, ABCG2, PI3K, and AKT; it may thus have positive significance for the treatment of advanced metastatic colon cancer. Our network pharmacology analysis revealed the core targets of LBP in the treatment of CC as well as the pathways they are enriched in. It further verified the results of our in vitro and in vivo experiments, showing the involvement of multi-component, multi-target, and multi-pathway synergism in the drug-reversing effect of LBP in CC. Overall, the findings of the present study provide new avenues for the future clinical treatment of CC.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Fangfang Ai
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongyan Xiao
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fang Wang
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Lei Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuehong Bai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yongzhao Zhu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenping Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
29
|
Liu W, Wang Y, Xia L, Li J. Research Progress of Plant-Derived Natural Products against Drug-Resistant Cancer. Nutrients 2024; 16:797. [PMID: 38542707 PMCID: PMC10975298 DOI: 10.3390/nu16060797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the malignant diseases globally, cancer seriously endangers human physical and mental health because of its high morbidity and mortality. Conventional cancer treatment strategies, such as surgical resection and chemoradiotherapy, are effective at the early stage of cancer but have limited efficacy for advanced cancer. Along with cancer progress and treatment, resistance develops gradually within the population of tumor cells. As a consequence, drug resistance become the major cause that leads to disease progression and poor clinical prognosis in some patients. The mechanisms of cancer drug resistance are quite complex and involve various molecular and cellular mechanisms. Therefore, exploring the mechanisms and finding specific targets are becoming imperative to overcome drug resistance. In recent years, plant-derived natural products have been evaluated as potential therapeutic candidates against cancer with drug resistance due to low side effects and high anticancer efficacy. A growing number of studies have shown that natural products can achieve superior antitumor effects through multiple signaling pathways. The mechanisms include regulation of multiple drug resistance (MDR)-related genes, inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, induction of autophagy, and blockade of the cell cycle. This paper reviews the molecular and cellular mechanisms of cancer drug resistance, as well as the therapeutic effects and mechanisms of plant-derived natural products against cancer drug resistance. It provides references for developing therapeutic medication for drug-resistant cancer treatment with high efficacy and low side effects.
Collapse
Affiliation(s)
| | | | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| |
Collapse
|
30
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
31
|
Shi Y, Zhang C, Cao W, Li L, Liu K, Zhu H, Balcha F, Fang Y. Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future Microbiol 2024; 19:227-239. [PMID: 38270125 DOI: 10.2217/fmb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 01/26/2024] Open
Abstract
Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.
Collapse
Affiliation(s)
- Yangqian Shi
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Microbiology, Beihua University, 132013 Jilin, China
| | - Chunliang Zhang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Blood Centre,150056 Harbin, China
| | - Wanyu Cao
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Luyi Li
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Kaili Liu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Hanyue Zhu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Fikadu Balcha
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Medical Laboratory Science, College of Health Science, Arsi University, POBX 193 Asella, Ethiopia
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Heilongjiang Province Key Laboratory of Immunity & Infection, Pathogenic Biology, 150081 Harbin, China
| |
Collapse
|
32
|
Wu Z, Zhou S, Liang D, Mu L. GPX2 acts as an oncogene and cudraflavone C has an anti-tumor effect by suppressing GPX2-dependent Wnt/β-catenin pathway in colorectal cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1115-1125. [PMID: 37610461 DOI: 10.1007/s00210-023-02668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Colorectal carcinoma (CRC) is a common cancer associated with poor prognosis, and cudraflavone C (Cud C) is a natural flavonol with reported anti-CRC capacity. However, the precise mechanisms underlying the anti-CRC effect require further demonstration. The aim of present study was to evaluate the impact of Cud C on the cell viability and apoptosis of CRC cells and to determine the underlying mechanisms. The Human Protein Atlas (THPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to analyze the expression status of glutathione peroxidase 2 (GPX2) in CRC. Cell viability was examined using cell counting kit-8 (CCK-8) assay. Flow cytometry was utilized to evaluate apoptosis. The levels of gene transcription and protein expression of GPX2, caspase-3, cleaved caspase-3), β-catenin, and c-Myc were determined by RT-qPCR and Western blotting. Our results showed that GPX2 was overexpressed in CRC as compared to normal tissue and the extent of GPX2 overexpression is greatest in CRC when compared with other cancers according to GEPIA and THPA databases. GPX2 knockdown significantly suppressed the cell viability, induced apoptosis of CRC cell lines, and restrained the activity of Wnt/β-catenin pathway. Cud C treatment decreased cell viability, induced apoptosis in CRC cell lines, and diminished the expression level of GPX2-dependent activation of Wnt/β-catenin pathway, while such effects can be abolished by GPX2 overexpression. In conclusion, Cud C suppressed GPX2-dependent Wnt/β-catenin pathway to exert anti-CRC function.
Collapse
Affiliation(s)
- Zhuo Wu
- Uutpatient Department, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Su Zhou
- Department of Drug Management, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Dan Liang
- Department of Otolaryngology, the First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, People's Republic of China
| | - Lan Mu
- Department of Otolaryngology, the First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, People's Republic of China.
| |
Collapse
|
33
|
Sedky NK, Fawzy IM, Hassan A, Mahdy NK, Attia RT, Shamma SN, Alfaifi MY, Elbehairi SE, Mokhtar FA, Fahmy SA. Innovative microwave-assisted biosynthesis of copper oxide nanoparticles loaded with platinum(ii) based complex for halting colon cancer: cellular, molecular, and computational investigations. RSC Adv 2024; 14:4005-4024. [PMID: 38288146 PMCID: PMC10823359 DOI: 10.1039/d3ra08779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
In the current study, we biosynthesized copper oxide NPs (CuO NPs) utilizing the essential oils extracted from Boswellia carterii oleogum resin, which served as a bioreductant and capping agent with the help of microwave energy. Afterwards, the platinum(ii) based anticancer drug, carboplatin (Cr), was loaded onto the CuO NPs, exploiting the electrostatic interactions forming Cr@CuO NPs. The produced biogenic NPs were then characterized using zeta potential (ZP), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. In addition, the entrapment efficiency and release profile of the loaded Cr were evaluated. Thereafter, SRB assay was performed, where Cr@CuO NPs demonstrated the highest cytotoxic activity against human colon cancer cells (HCT-116) with an IC50 of 5.17 μg mL-1, which was about 1.6 and 2.2 folds more than that of Cr and CuO NPs. Moreover, the greenly synthesized nanoparticles (Cr@CuO NPs) displayed a satisfactory selectivity index (SI = 6.82), which was far better than the free Cr treatment (SI = 2.23). Regarding the apoptosis assay, the advent of Cr@CuO NPs resulted in an immense increase in the cellular population percentage of HCT-116 cells undergoing both early (16.02%) and late apoptosis (35.66%), significantly surpassing free Cr and CuO NPs. A study of HCT-116 cell cycle kinetics revealed the powerful ability of Cr@CuO NPs to trap cells in the Sub-G1 and G2 phases and impede the G2/M transition. RT-qPCR was utilized for molecular investigations of the pro-apoptotic (Bax and p53) and antiapoptotic genes (Bcl-2). The novel Cr@CuO NPs treatment rose above single Cr or CuO NPs therapy in stimulating the p53-Bax mediated mitochondrial apoptosis. The cellular and molecular biology investigations presented substantial proof of the potentiated anticancer activity of Cr@CuO NPs and the extra benefits that could be obtained from their use.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology Giza 12578 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street 11562 Cairo Egypt
| | - Reem T Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Serag Eldin Elbehairi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University El Saleheya El Gadida Sharkia 44813 Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| |
Collapse
|
34
|
Yang LL, Li M, Huang W, Ren PT, Yan QH, Hao YH. ANP32B promotes colorectal cancer cell progression and reduces cell sensitivity to PRAP1 inhibitor through up-regulating HPF1. Heliyon 2024; 10:e23829. [PMID: 38192816 PMCID: PMC10772160 DOI: 10.1016/j.heliyon.2023.e23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 family member B, is aberrantly expressed in various cancers, including colorectal cancer. However, the function and mechanism of action of ANP32B in colorectal cancer remain unclear. The present study therefore analyzed the expression of ANP32B and its activity in colorectal cancer patient samples and colorectal cancer cell lines. ANP32B expression was found to be significantly upregulated in colorectal cancer patient samples and cell lines. Upregulation of ANP32B enhanced colorectal cancer cell proliferation and migration, whereas downregulation of ANP32B suppressed colorectal cancer cell proliferation. RNA sequencing analysis of differentially expressed genes in ANP32B silenced colorectal cancer cells showed that histone PARylation factor 1 (HPF1), which protects against DNA damage by interacting with the anti-tumor target PARP1, was significantly downregulated. Luciferase promoter assays testing the regulatory association between ANP32B and HPF1 showed that ANP32B interacted with the HPF1 promoter. Analysis of colorectal cancer samples from The Cancer Genome Atlas showed that ANP32B and HPF1 expression were positively correlated, and recovery assays showed that ANP32B promoted colorectal cancer progression by up-regulating HPF1. Overexpression of ANP32B also reduced the sensitivity of colorectal cancer cells to PARP1 inhibitor, consistent with the oncogenic role of ANP32B. ANP32B may alter the sensitivity of colorectal cancer cells to PARP1 inhibitor via a mechanism associated with the HPF1 gene. In summary, these findings showed that ANP32B acted as a tumor promoter, potentiating both colorectal cancer malignancy and drug resistance. Targeting the ANP32B/HPF1 axis may have benefit for patients with colorectal cancer.
Collapse
Affiliation(s)
- Li-Li Yang
- Department of Radiology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Meng Li
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Huang
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Peng-Tao Ren
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing-Hui Yan
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying-Hao Hao
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
35
|
Fu R, Chang R, Peng A, Feng C, Zhu W, Chen Y, Tian X, Wang R, Yan H, Jia D, Li J. Efficient treatment of colon cancer with codelivery of TRAIL and imatinib by liposomes. Pharm Dev Technol 2024; 29:52-61. [PMID: 38230653 DOI: 10.1080/10837450.2024.2301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
To solve the problem of resistance of tumor cells to TRAIL and the inevitable side effects of imatinib during treatment, we successfully prepared a kind of multifunctional liposome that encapsulated imatinib in its internal water phase and inserted TRAIL on its membrane in this study, which named ITLPs. The liposomes appeared uniform spherical and the particle size was approximately 150 nm. ITLPs showed high accumulation in TRAIL-resistance cells and HT-29 tumor-bearing mice model. In vitro cytotoxicity assay results showed that the killing activity of HT-29 cells treated with ITLPs increased by 50% and confirmed that this killing activity was mediated by the apoptosis pathway. Through mechanism studies, it was found that ITLPs arrested up to 32.3% of cells in phase M to exert anti-tumor effects. In vivo anti-tumor study showed that ITLPs achieved 61.8% tumor suppression and little toxicity in the HT-29 tumor-bearing mice model. Overall results demonstrated that codelivery of imatinib and TRAIL via liposomes may be a prospective method in the treatment of the TRAIL-resistance tumor.
Collapse
Affiliation(s)
- Rongrong Fu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Chang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Andong Peng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Changshun Feng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weifan Zhu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yi Chen
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xue Tian
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Hui Yan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
36
|
Bhaskaran NA, Jitta SR, Salwa, Kumar L, Sharma P, Kulkarni OP, Hari G, Gourishetti K, Verma R, Birangal SR, Bhaskar KV. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer. Int J Biol Macromol 2023; 253:127142. [PMID: 37797853 DOI: 10.1016/j.ijbiomac.2023.127142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
In the present study, polymeric nanoparticles loaded with IRI and quercetin, a p-gp inhibitor, were developed to target folate receptors expressed by colon cancer cells for oral targeted delivery. This work reports the development of PNPs with an entrapment efficiency of 41.26 ± 0.56 % for IRI and 55.83 ± 4.51 for QT. PNPs were further surface modified using chitosan-folic acid conjugates for better targetability to obtain folic acid-chitosan coated nanoparticles. DLS and FeSEM revealed particles in the nanometric size range with spherical morphology, while FTIR and DSC provided details on their structure and encapsulation. In vitro drug release studies confirmed a sustained release pattern of IRI and QT, while cell line studies confirmed the superiority of C-FA-PNPs when tested on Caco2 cells. Pharmacodynamic studies in colon cancer induced rats showed similar efficacy for PNPs and C-FA-PNPs. Further examination from a bio-distribution study in healthy rats, revealed the failure of C-FA-PNPs to deliver the drugs to the colon adequately, while the PNPs improved the available concentration of IRI at the colon by almost 1.8 folds when compared to the available marketed product. Hence, the developed PNP formulation sticks out as a plausible substitute for the intravenous dosage forms of IRI which have been conventionally prevailing.
Collapse
Affiliation(s)
- Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Gate No. 2, V.M. Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, India.
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad campus, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad campus, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Biotherapeutics Laboratory, Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| |
Collapse
|
37
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Primeaux M, Liu X, Gowrikumar S, Fatima I, Fisher KW, Bastola D, Vecchio AJ, Singh AB, Dhawan P. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett 2023; 579:216479. [PMID: 37924938 PMCID: PMC10765961 DOI: 10.1016/j.canlet.2023.216479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Therapy resistance is the primary problem in treating late-stage colorectal cancer (CRC). Claudins are frequently dysregulated in cancer, and several are being investigated as novel therapeutic targets and biomarkers. We have previously demonstrated that Claudin-1 (CLDN1) expression in CRC promotes epithelial-mesenchymal transition, metastasis, and resistance to anoikis. Here, we hypothesize that CLDN1 promotes cancer stemness and chemoresistance in CRC. We found that high CLDN1 expression in CRC is associated with cancer stemness and chemoresistance signaling pathways in patient datasets, and it promotes chemoresistance both in vitro and in vivo. Using functional stemness assays, proteomics, biophysical binding assays, and patient-derived organoids, we found that CLDN1 promotes properties of cancer stemness including CD44 expression, tumor-initiating potential, and chemoresistance through a direct interaction with ephrin type-A receptor 2 (EPHA2) tyrosine kinase. This interaction is dependent on the CLDN1 PDZ-binding motif, increases EPHA2 protein expression by inhibiting its degradation, and enhances downstream AKT signaling and CD44 expression to promote stemness and chemoresistance. These results suggest CLDN1 is a viable target for pharmacological intervention and/or biomarker development.
Collapse
Affiliation(s)
- Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiangdong Liu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhundy Bastola
- Department of Bioinformatics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
39
|
Yang Z, Liu Z, Ablise M, Maimaiti A, Aihaiti A, Alimujiang Y. Design and Synthesis of Novel α-Methylchalcone Derivatives, Anti-Cervical Cancer Activity, and Reversal of Drug Resistance in HeLa/DDP Cells. Molecules 2023; 28:7697. [PMID: 38067428 PMCID: PMC10707934 DOI: 10.3390/molecules28237697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a collection of newly developed α-methylchalcone derivatives were synthesized and assessed for their inhibitory potential against human cervical cancer cell lines (HeLa, SiHa, and C33A) as well as normal human cervical epithelial cells (H8). Notably, compound 3k exhibited substantial inhibitory effects on both HeLa and HeLa/DDP cells while demonstrating lower toxicity toward H8 cells. Furthermore, the compound 3k was found to induce apoptosis in both HeLa and HeLa/DDP cells while also inhibiting the G2/M phase, resulting in a decrease in the invasion and migration capabilities of these cells. When administered alongside cisplatin, 3k demonstrated a significant reduction in the resistance of HeLa/DDP cells to cisplatin, as evidenced by a decrease in the resistance index (RI) value from 7.90 to 2.10. Initial investigations into the underlying mechanism revealed that 3k did not impact the expression of P-gp but instead facilitated the accumulation of rhodamine 123 in HeLa/DDP cells. The results obtained from CADD docking analysis demonstrated that 3k exhibits stable binding to microtubule proteins and P-gp targets, forming hydrogen bonding interaction forces. Immunofluorescence analysis further revealed that 3k effectively decreased the fluorescence intensity of α and β microtubules in HeLa and HeLa/DDP cells, resulting in disruptions in cell morphology, reduction in cell numbers, nucleus coagulation, and cell rupture. Additionally, Western blot analysis indicated that 3k significantly reduced the levels of polymerized α and β microtubule proteins in both HeLa and HeLa/DDP cell lines while concurrently increasing the expression of dissociated α and β microtubule proteins. The aforementioned findings indicate a potential correlation between the inhibitory effects of 3k on HeLa and HeLa/DDP cells and its ability to inhibit tubulin and P-gp.
Collapse
Affiliation(s)
| | | | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (Z.Y.); (Z.L.); (A.M.); (A.A.); (Y.A.)
| | | | | | | |
Collapse
|
40
|
HU WEI, WARTMANN THOMAS, STRECKER MARCO, PERRAKIS ARISTOTELIS, CRONER ROLAND, SZALLASI ARPAD, SHI WENJIE, KAHLERT ULFD. Transient receptor potential channels as predictive marker and potential indicator of chemoresistance in colon cancer. Oncol Res 2023; 32:227-239. [PMID: 38188686 PMCID: PMC10767253 DOI: 10.32604/or.2023.043053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Abstract
Transient receptor potential (TRP) channels are strongly associated with colon cancer development and progression. This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature, with further validation of signature in real world samples from our hospital treated patient samples. Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curves were employed to evaluate this gene signature's predictive accuracy and robustness in both training and testing cohorts, respectively. Additionally, the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature's immune infiltration landscape and underlying functional implications. The support vector machine algorithm was applied to evaluate the signature's potential in predicting chemotherapy outcomes. The findings unveiled a novel three TRP channels-related gene signature (MCOLN1, TRPM5, and TRPV4) in colon adenocarcinoma (COAD). The ROC and K-M survival curves in the training dataset (AUC = 0.761; p = 1.58e-05) and testing dataset (AUC = 0.699; p = 0.004) showed the signature's robust predictive capability for the overall survival of COAD patients. Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration, especially an increased presence of M2 macrophages, in high-risk group patients compared to their low-risk counterparts. High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy, evident through increased CD86 and PD-1 expression profiles. Moreover, the TRPM5 gene within the signature was highly expressed in the chemoresistance group (p = 0.00095) and associated with poor prognosis (p = 0.036) in COAD patients, highlighting its role as a hub gene of chemoresistance. Ultimately, this signature emerged as an independent prognosis factor for COAD patients (p = 6.48e-06) and expression of model gene are validated by public data and real-world patients. Overall, this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
Collapse
Affiliation(s)
- WEI HU
- The Fourth Clinical Medical College of Yangzhou University, Nantong Rich Hospital, Nantong, China
| | - THOMAS WARTMANN
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - MARCO STRECKER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARISTOTELIS PERRAKIS
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ROLAND CRONER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARPAD SZALLASI
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - WENJIE SHI
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ULF D. KAHLERT
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
41
|
Khalili E, Afgar A, Rajabpour A, Aghaee-Bakhtiari SH, Jamialahmadi K, Teimoori-Toolabi L. MiR-548c-3p through suppressing Tyms and Abcg2 increases the sensitivity of colorectal cancer cells to 5-fluorouracil. Heliyon 2023; 9:e21775. [PMID: 38045156 PMCID: PMC10692789 DOI: 10.1016/j.heliyon.2023.e21775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background Colorectal cancer, is one of most prevalent the cancer in the world. 5-Fluorouracil is a standard chemotherapeutic drug while the acquisition of resistance to 5-Fluorouracil is one of the problems during treatment. In this study, we aimed to find the miRNAs that modulate the expression of Tyms and Abcg2 as resistance-inducing genes in the resistant cell lines to 5-Fluorouracil. Methods 5-Fluorouracil-resistant HCT116 and SW480 cell lines were generated by consecutive treatment of cells with 5-Fluorouracil. This resistance induction was validated by MTT assays. The expression of the Tyms and Abcg2 gene and miR-548c-3p were studied by quantitative real-time PCR in the cell lines. Results We hypothesized that miR-548c-3p is targeting Tyms and Abcg2 simultaneously. Increased expression Tyms gene in the two most resistant cell lines derived from HCT116 and all resistant cell lines derived from SW480 except one were seen. Increased expression of Abcg2 was observed in the most resistant HCT116-derived cell line and all resistant cell lines, derived from SW480. In all resistant cell lines, the expression of miR-548c-3p was decreased. Conclusion It can be concluded downregulation of miR548c-3p is in line with Tyms and Abcg2 overexpression in resistant cell lines to 5-Fluorouracil.
Collapse
Affiliation(s)
- Elham Khalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Rajabpour
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| |
Collapse
|
42
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
43
|
Dey DK, Gahlot H, Chang SN, Kang SC. CopA3 treatment suppressed multidrug resistivity in HCT-116 cell line by p53-induced degradation of hypoxia-inducible factor 1α. Life Sci 2023; 329:121933. [PMID: 37451396 DOI: 10.1016/j.lfs.2023.121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The major reason for multidrug resistance is the failure of chemotherapy in many tumors, including colon cancer. Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor that simulates multiple cellular response to hypoxia. HIF-1α has been known to play a vital role towards tumor resistance; however, its mechanism of action is still not fully elucidated. N this study, we found that HIF-1α remarkably modulated drug resistance-associated proteins upon CopA3 peptide treatment against colon cancer cells. Abnormal rates of tumor growth along with high metastatic potential lacks the susceptibility towards cellular signals is a key characteristic in many tumor types. Moreover, in growing tumors, cells are exposed to insufficient nutrient supply and low oxygen availability. These stress force them to switch into adaptable and aggressive phenotypes. Our study investigated the interaction of HIF-1α and MDR gene association upon CopA3 treatment in the tumor microenvironment. We demonstrate that the multidrug resistance gene is associated with tumor resistance to chemotherapeutics, which upon CopA3 treatment promotes p53 activation and proteasomal degradation of HIF-1α, effecting the angiogenesis response to hypoxia. p53 downregulation augments HIF-1-dependent transcriptional activation of VEGF in response to oxygen deprivation.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Himanshi Gahlot
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
44
|
Cutshaw G, Hassan N, Uthaman S, Wen X, Singh B, Sarkar A, Bardhan R. Monitoring Metabolic Changes in Response to Chemotherapies in Cancer with Raman Spectroscopy and Metabolomics. Anal Chem 2023; 95:13172-13184. [PMID: 37605298 PMCID: PMC10845238 DOI: 10.1021/acs.analchem.3c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Resistance to clinical therapies remains a major barrier in cancer management. There is a critical need for rapid and highly sensitive diagnostic tools that enable early prediction of treatment response to allow accurate clinical decisions. Here, Raman spectroscopy was employed to monitor changes in key metabolites as early predictors of response in KRAS-mutant colorectal cancer (CRC) cells, HCT116, treated with chemotherapies. We show at the single cell level that HCT116 is resistant to cetuximab (CTX), the first-line treatment in CRC, but this resistance can be overcome with pre-sensitization of cells with oxaliplatin (OX). In combination treatment of CTX + OX, sequential delivery of OX followed by CTX rather than simultaneous administration of drugs was observed to be critical for effective therapy. Our results demonstrated that metabolic changes are well aligned to cellular mechanical changes where Young's modulus decreased after effective treatment, indicating that both changes in mechanical properties and metabolism in cells are likely responsible for cancer proliferation. Raman findings were verified with mass spectrometry (MS) metabolomics, and both platforms showed changes in lipids, nucleic acids, and amino acids as predictors of resistance/response. Finally, key metabolic pathways enriched were identified when cells are resistant to CTX but downregulated with effective treatment. This study highlights that drug-induced metabolic changes both at the single cell level (Raman) and ensemble level (MS) have the potential to identify mechanisms of response to clinical cancer therapies.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anwesha Sarkar
- Department of Electrical Engineering, Iowa State University, Ames, IA 50012, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
45
|
Zhang L, Lu X, Xu Y, La X, Tian J, Li A, Li H, Wu C, Xi Y, Song G, Zhou Z, Bai W, An L, Li Z. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22-CCR4-ATF6-GRP78 axis. Cell Death Dis 2023; 14:582. [PMID: 37658050 PMCID: PMC10474093 DOI: 10.1038/s41419-023-06108-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.
Collapse
Affiliation(s)
- Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Xiaoqing Lu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Aiping Li
- Modern Research Center for traditional Chinese medicine, Shanxi University, 030006, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, 030006, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China.
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
46
|
Oravetz K, Todea AV, Balacescu O, Cruceriu D, Rakosy-Tican E. Potential antitumor activity of garlic against colorectal cancer: focus on the molecular mechanisms of action. Eur J Nutr 2023; 62:2347-2363. [PMID: 37140645 DOI: 10.1007/s00394-023-03166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE The aim of this review is to highlight the potential of garlic phytoconstituents as antitumor agents in colorectal cancer management based on their molecular mechanisms of action, while asking if their consumption, as part of the human diet, might contribute to the prevention of colorectal cancer. METHODS To gather information on appropriate in vitro, in vivo and human observational studies on this topic, the keywords "Allium sativum", "garlic", "colorectal cancer", "antitumor effect", "in vitro", "in vivo", "garlic consumption" and "colorectal cancer risk" were searched in different combinations in the international databases ScienceDirect, PubMed and Google Scholar. After duplicate and reviews removal, 61 research articles and meta-analyses published between 2000 and 2022 in peer-reviewed journals were found and included in this review. RESULTS Garlic (Allium sativum) proves to be a rich source of compounds with antitumor potential. Garlic-derived extracts and several of its individual constituents, especially organosulfur compounds such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, allylmethylsulfide, S-allylmercaptocysteine, Z-ajoene, thiacremonone and Se-methyl-L-selenocysteine were found to possess cytotoxic, cytostatic, antiangiogenic and antimetastatic activities in different in vitro and in vivo models of colorectal cancer. The molecular mechanisms for their antitumor effects are associated with the modulation of several well-known signaling pathways involved in cell cycle progression, especially G1-S and G2-M transitions, as well as both the intrinsic and extrinsic apoptotic pathways. However, even though in various animal models some of these compounds have chemopreventive effects, based on different human observational studies, a diet rich in garlic is not consistently associated with a lower risk of developing colorectal cancer. CONCLUSION Independent of the impact of garlic consumption on colorectal cancer initiation and promotion in humans, its constituents might be good candidates for future conventional and/or complementary therapies, based on their diverse mechanisms of action.
Collapse
Affiliation(s)
- Kinga Oravetz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Adelina-Violeta Todea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania.
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Siddiqui L, Hasan N, Mishra PK, Gupta N, Singh AT, Madaan A, Jaggi M, Saad S, Ekielski A, Iqbal Z, Kesharwani P, Talegaonkar S. CD44 mediated colon cancer targeting mutlifaceted lignin nanoparticles: Synthesis, in vitro characterization and in vivo efficacy studies. Int J Pharm 2023; 643:123270. [PMID: 37499773 DOI: 10.1016/j.ijpharm.2023.123270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Hyaluronic acid (HA) coated irinotecan loaded lignin nanoparticles (HDLNPs) were synthesized using ionic interaction method. Optimized nanoparticles were characterized for their active chemotherapeutic targeting potential to CD44 receptors overly-expressed on cancer cells. Blood component interaction studies supported hemocompatible nature of HDLNPs and also demonstrated their sustained plasma residence property. Cell anti-proliferation and mitochondrial depolarization studies on HT-29 cells suggest significantly (p < 0.01) improved chemotherapeutic efficacy of HDLNPs. In vitro cell based studies showed that nanoparticles have retained antioxidant activity of lignin that can prevent cancer relapse. In vivo biodistribution studies in tumor-bearing Balb/c mice confirmed improved drug localization in tumor site for longer duration. Tumor regression and histopathological studies indicated the efficacy ofligand-assisted targeting chemotherapy over the conventional therapy. Hematological and biochemical estimation suggested that irinotecan-associated myelosuppression, liver steatosis and rare kidney failure can be avoided by its encapsulation in HA-coated lignin nanoparticles. HDLNPs were found to be stable over a period of 12 months.
Collapse
Affiliation(s)
- Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pawan K Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic.
| | - Neha Gupta
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, New Delhi, India.
| |
Collapse
|
48
|
Okuno K, Pratama MY, Li J, Tokunaga M, Wang X, Kinugasa Y, Goel A. Ginseng mediates its anticancer activity by inhibiting the expression of DNMTs and reactivating methylation-silenced genes in colorectal cancer. Carcinogenesis 2023; 44:394-403. [PMID: 37137336 PMCID: PMC10414140 DOI: 10.1093/carcin/bgad025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/26/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
Developing safe and effective therapeutic modalities remains a critical challenge for improving the prognosis of patients with colorectal cancer (CRC). In this regard, targeting epigenetic regulation in cancers has recently emerged as a promising therapeutic approach. Since several natural compounds have recently been shown to be important epigenetic modulators, we hypothesized that Ginseng might exert its anticancer activity by regulating DNA methylation alterations in CRC. In this study, a series of cell culture studies were conducted, followed by their interrogation in patient-derived 3D organoid models to evaluate Ginseng's anticancer activity in CRC. Genome-wide methylation alterations were interrogated by undertaking MethylationEpic BeadChip microarrays. First, 50% inhibitory concentrations (IC50) were determined by cell viability assays, and subsequent Ginseng treatment demonstrated a significant anticancer effect on clonogenicity and cellular migration in CRC cells. Treatment with Ginseng potentiated cellular apoptosis through regulation of apoptosis-related genes in CRC cells. Furthermore, Ginseng treatment downregulated the expression of DNA methyltransferases (DNMTs) and decreased the global DNA methylation levels in CRC cells. The genome-wide methylation profiling identified Ginseng-induced hypomethylation of transcriptionally silenced tumor suppressor genes. Finally, cell culture-based findings were successfully validated in patient-derived 3D organoids. In conclusion, we demonstrate that Ginseng exerts its antitumorigenic potential by regulating cellular apoptosis via the downregulation of DNMTs and reversing the methylation status of transcriptionally silenced genes in CRC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Muhammad Yogi Pratama
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Jiang Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
49
|
Manogaran P, Anandan A, Vijaya Padma V. Isoliensinine augments the therapeutic potential of paclitaxel in multidrug-resistant colon cancer stem cells and induced mitochondria-mediated cell death. J Biochem Mol Toxicol 2023; 37:e23395. [PMID: 37424111 DOI: 10.1002/jbt.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
Previously we have reported the isoliensinine (ISO) potentates the therapeutic potential of cisplatin in cisplatin resistant colorectal cancer stem cells. The present study evaluates the chemo-sensitizing potential of the combinatorial regimen of ISO and Paclitaxcel (PTX) on multidrug-resistant (MDR)-HCT-15 cells to reduce the dose requirement of both ISO and PTX. The results of the present study suggest that treatment with the combinatorial regimen of ISO and PTX enhanced the cytotoxic effect with resultant increase in apoptosis in MDR-HCT-15 cells as evident from the altered cellular morphology, G2/M cell cycle arrest, propidium iodide uptake, Annexin V, increased intracellular Ca2+ accumulation, decreased mitochondrial membrane potential, diminished ATP production, PARP-1 cleavage, altered expression of ERK1/2, and apoptotic proteins. Treatment with combinatorial regimen of ISO and PTX also modulated the expression of the transcription factors SOX2, OCT4 which determine the stemness of cancer cells. Thus, results of the present study suggest that ISO and PTX combination regimen induces apoptosis in MDR-HCT-15 in a synergistic manner.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Aparna Anandan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
50
|
Ghosh S, Fan F, Powell RT, Roszik J, Park YS, Stephan C, Sebastian M, Tan L, Sorokin AV, Lorenzi PL, Kopetz S, Ellis LM, Bhattacharya R. Vincristine Enhances the Efficacy of MEK Inhibitors in Preclinical Models of KRAS-mutant Colorectal Cancer. Mol Cancer Ther 2023; 22:962-975. [PMID: 37310170 DOI: 10.1158/1535-7163.mct-23-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Mutations in KRAS are found in more than 50% of tumors from patients with metastatic colorectal cancer (mCRC). However, direct targeting of most KRAS mutations is difficult; even the recently developed KRASG12C inhibitors failed to show significant benefit in patients with mCRC. Single agents targeting mitogen-activated protein kinase kinase (MEK), a downstream mediator of RAS, have also been ineffective in colorectal cancer. To identify drugs that can enhance the efficacy of MEK inhibitors, we performed unbiased high-throughput screening using colorectal cancer spheroids. We used trametinib as the anchor drug and examined combinations of trametinib with the NCI-approved Oncology Library version 5. The initial screen, and following focused validation screens, identified vincristine as being strongly synergistic with trametinib. In vitro, the combination strongly inhibited cell growth, reduced clonogenic survival, and enhanced apoptosis compared with monotherapies in multiple KRAS-mutant colorectal cancer cell lines. Furthermore, this combination significantly inhibited tumor growth, reduced cell proliferation, and increased apoptosis in multiple KRAS-mutant patient-derived xenograft mouse models. In vivo studies using drug doses that reflect clinically achievable doses demonstrated that the combination was well tolerated by mice. We further determined that the mechanism underlying the synergistic effect of the combination was due to enhanced intracellular accumulation of vincristine associated with MEK inhibition. The combination also significantly decreased p-mTOR levels in vitro, indicating that it inhibits both RAS-RAF-MEK and PI3K-AKT-mTOR survival pathways. Our data thus provide strong evidence that the combination of trametinib and vincristine represents a novel therapeutic option to be studied in clinical trials for patients with KRAS-mutant mCRC. SIGNIFICANCE Our unbiased preclinical studies have identified vincristine as an effective combination partner for the MEK inhibitor trametinib and provide a novel therapeutic option to be studied in patients with KRAS-mutant colorectal cancer.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reid T Powell
- Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Sung Park
- Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Manu Sebastian
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexey V Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|