1
|
Chan C, Kwan Sze NS, Suzuki Y, Ohira T, Suzuki T, Begley TJ, Dedon PC. Dengue virus exploits the host tRNA epitranscriptome to promote viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565734. [PMID: 37986976 PMCID: PMC10659268 DOI: 10.1101/2023.11.05.565734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The 40-50 RNA modifications of the epitranscriptome regulate posttranscriptional gene expression. Here we show that flaviviruses hijack the host tRNA epitranscriptome to promote expression of pro-viral proteins, with tRNA-modifying ALKBH1 acting as a host restriction factor in dengue virus infection. Early in the infection of human Huh-7 cells, ALKBH1 and its tRNA products 5-formylcytidine (f5C) and 2'-O-methyl-5-formylcytidine (f5Cm) were reduced. ALKBH1 knockdown mimicked viral infection, but caused increased viral NS3 protein levels during infection, while ALKBH1 overexpression reduced NS3 levels and viral replication, and increased f5C and f5Cm. Viral NS5, but not host FTSJ1, increased f5Cm levels late in infection. Consistent with reports of impaired decoding of leucine UUA codon by f5Cm-modified tRNALeu(CAA), ALKBH1 knockdown induced translation of UUA-deficient transcripts, most having pro-viral functions. Our findings support a dynamic ALKBH1/f5Cm axis during dengue infection, with virally-induced remodeling of the proteome by tRNA reprogramming and codon-biased translation.
Collapse
Affiliation(s)
- Cheryl Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuka Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Thomas J. Begley
- Department of Biological Sciences and The RNA Institute, College of Arts and Science, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Dwivedi M, Dwivedi A, Mukherjee D. An Insight into Hepatitis C Virus: In Search of Promising Drug Targets. Curr Drug Targets 2023; 24:1127-1138. [PMID: 37907492 DOI: 10.2174/0113894501265769231020031857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Hepatitis C Virus (HCV) is a global health concern, chronically infecting over 70 million people worldwide. HCV is a bloodborne pathogen that primarily affects the liver, and chronic HCV infection can lead to cirrhosis, liver cancer, and liver failure over time. There is an urgent need for more effective approaches to prevent and treat HCV. This review summarizes current knowledge on the virology, transmission, diagnosis, and management of HCV infection. It also provides an in-depth analysis of HCV proteins as promising targets for antiviral drug and vaccine development. Specific HCV proteins discussed as potential drug targets include the NS5B polymerase, NS3/4A protease, entry receptors like CD81, and core proteins. The implications of HCV proteins as diagnostic and prognostic biomarkers are also explored. Current direct-acting antiviral therapies are effective but have cost, genotype specificity, and resistance limitations. This review aims to synthesize essential information on HCV biology and pathogenesis to inform future research on improved preventive, diagnostic, and therapeutic strategies against this global infectious disease threat.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow- 226028, India
| | - Aditya Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow- 226028, India
| | | |
Collapse
|
3
|
Zitzmann C, Kaderali L, Perelson AS. Mathematical modeling of hepatitis C RNA replication, exosome secretion and virus release. PLoS Comput Biol 2020; 16:e1008421. [PMID: 33151933 PMCID: PMC7671504 DOI: 10.1371/journal.pcbi.1008421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) causes acute hepatitis C and can lead to life-threatening complications if it becomes chronic. The HCV genome is a single plus strand of RNA. Its intracellular replication is a spatiotemporally coordinated process of RNA translation upon cell infection, RNA synthesis within a replication compartment, and virus particle production. While HCV is mainly transmitted via mature infectious virus particles, it has also been suggested that HCV-infected cells can secrete HCV RNA carrying exosomes that can infect cells in a receptor independent manner. In order to gain insight into these two routes of transmission, we developed a series of intracellular HCV replication models that include HCV RNA secretion and/or virus assembly and release. Fitting our models to in vitro data, in which cells were infected with HCV, suggests that initially most secreted HCV RNA derives from intracellular cytosolic plus-strand RNA, but subsequently secreted HCV RNA derives equally from the cytoplasm and the replication compartments. Furthermore, our model fits to the data suggest that the rate of virus assembly and release is limited by host cell resources. Including the effects of direct acting antivirals in our models, we found that in spite of decreasing intracellular HCV RNA and extracellular virus concentration, low level HCV RNA secretion may continue as long as intracellular RNA is available. This may possibly explain the presence of detectable levels of plasma HCV RNA at the end of treatment even in patients that ultimately attain a sustained virologic response. Approximately 70 million people are chronically infected with hepatitis C virus (HCV), which if left untreated may lead to cirrhosis and liver cancer. However, modern drug therapy is highly effective and hepatitis C is the first chronic virus infection that can be cured with short-term therapy in almost all infected individuals. The within-host transmission of HCV occurs mainly via infectious virus particles, but experimental studies suggest that there may be additional receptor-independent cell-to-cell transmission by exosomes that carry the HCV genome. In order to understand the intracellular HCV lifecycle and HCV RNA spread, we developed a series of mathematical models that take both exosomal secretion and viral secretion into account. By fitting these models to in vitro data, we found that secretion of both HCV RNA as well as virus probably occurs and that the rate of virus assembly is likely limited by cellular co-factors on which the virus strongly depends for its own replication. Furthermore, our modeling predicted that the parameters governing the processes in the viral lifecycle that are targeted by direct acting antivirals are the most sensitive to perturbations, which may help explain their ability to cure this infection.
Collapse
Affiliation(s)
- Carolin Zitzmann
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes, Greifswald, Germany
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
4
|
The Host Factor Erlin-1 is Required for Efficient Hepatitis C Virus Infection. Cells 2019; 8:cells8121555. [PMID: 31810281 PMCID: PMC6953030 DOI: 10.3390/cells8121555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Development of hepatitis C virus (HCV) infection cell culture systems has permitted the identification of cellular factors that regulate the HCV life cycle. Some of these cellular factors affect steps in the viral life cycle that are tightly associated with intracellular membranes derived from the endoplasmic reticulum (ER). Here, we describe the discovery of erlin-1 protein as a cellular factor that regulates HCV infection. Erlin-1 is a cholesterol-binding protein located in detergent-resistant membranes within the ER. It is implicated in cholesterol homeostasis and the ER-associated degradation pathway. Silencing of erlin-1 protein expression by siRNA led to decreased infection efficiency characterized by reduction in intracellular RNA accumulation, HCV protein expression and virus production. Mechanistic studies revealed that erlin-1 protein is required early in the infection, downstream of cell entry and primary translation, specifically to initiate RNA replication, and later in the infection to support infectious virus production. This study identifies erlin-1 protein as an important cellular factor regulating HCV infection.
Collapse
|
5
|
Neuralized E3 Ubiquitin Protein Ligase 3 Is an Inducible Antiviral Effector That Inhibits Hepatitis C Virus Assembly by Targeting Viral E1 Glycoprotein. J Virol 2018; 92:JVI.01123-18. [PMID: 30111563 DOI: 10.1128/jvi.01123-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV can be sensed by host innate immunity to induce expression of interferons (IFNs) and a number of antiviral effectors. In this study, we found HCV infection induced the expression of neuralized E3 ubiquitin protein ligase 3 (NEURL3), a putative E3 ligase, in a manner that requires the involvement of innate immune sensing but is independent of the IFN action. Furthermore, we showed that NEURL3 inhibited HCV infection while it had little effect on other RNA viruses, including Zika virus (ZIKV), dengue virus (DENV), and vesicular stomatitis virus (VSV). Mechanistic studies demonstrated that NEURL3 inhibited HCV assembly by directly binding HCV envelope glycoprotein E1 to interfere with the E1/E2 heterodimerization, an important prerequisite for virion morphogenesis. Finally, we showed that knockout of NEURL3 significantly enhanced HCV infection. In summary, we identified NEURL3 as a novel inducible antiviral host factor that suppresses HCV assembly. Our results not only shed new insight into how host innate immunity acts against HCV but also revealed a new important biological function for NEURL3.IMPORTANCE The exact biological function of NEURL3, a putative E3 ligase, remains largely unknown. In this study, we found that NEURL3 could be upregulated upon HCV infection in a manner dependent on pattern recognition receptor-mediated innate immune response. NEURL3 inhibits HCV assembly by directly binding viral E1 envelope glycoprotein to disrupt its interaction with E2, an action that requires its Neuralized homology repeat (NHR) domain but not the RING domain. Furthermore, we found that NEURL3 has a pangenotypic anti-HCV activity and interacts with E1 of genotypes 2a, 1b, 3a, and 6a but does not inhibit other closely related RNA viruses, such as ZIKV, DENV, and VSV. To our knowledge, our study is the first report to demonstrate that NEURL3 functions as an antiviral host factor. Our results not only shed new insight into how host innate immunity acts against HCV, but also revealed a new important biological function for NEURL3.
Collapse
|
6
|
Kincaid RP, Lam VL, Chirayil RP, Randall G, Sullivan CS. RNA triphosphatase DUSP11 enables exonuclease XRN-mediated restriction of hepatitis C virus. Proc Natl Acad Sci U S A 2018; 115:8197-8202. [PMID: 30038017 PMCID: PMC6094126 DOI: 10.1073/pnas.1802326115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Seventy percent of people infected with hepatitis C virus (HCV) will suffer chronic infection, putting them at risk for liver disease, including hepatocellular carcinoma. The full range of mechanisms that render some people more susceptible to chronic infection and liver disease is still being elucidated. XRN exonucleases can restrict HCV replication and may help to resolve HCV infections. However, it is unknown how 5' triphosphorylated HCV transcripts, primary products of the viral polymerase, become susceptible to attack by 5' monophosphate-specific XRNs. Here, we show that the 5' RNA triphosphatase DUSP11 acts on HCV transcripts, rendering them susceptible to XRN-mediated attack. Cells lacking DUSP11 show substantially enhanced HCV replication, and this effect is diminished when XRN expression is reduced. MicroRNA-122 (miR-122), a target of current phase II anti-HCV drugs, is known to protect HCV transcripts against XRNs. We show that HCV replication is less dependent on miR-122 in cells lacking DUSP11. Combined, these results implicate DUSP11 as an important component of XRN-mediated restriction of HCV.
Collapse
Affiliation(s)
- Rodney P Kincaid
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
- LaMontagne Center for Infectious Disease, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
| | - Victor L Lam
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
- LaMontagne Center for Infectious Disease, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
| | - Rachel P Chirayil
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
- LaMontagne Center for Infectious Disease, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60637
| | - Christopher S Sullivan
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162;
- LaMontagne Center for Infectious Disease, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712-0162
| |
Collapse
|
7
|
Abstract
In summary, we show here that HCV infection is associated with an upregulation of ARF4, which promotes HCV replication. Upon HCV infection, CREB3 was redistributed to nucleus and activated ARF4 transcription. Our studies demonstrate a host factor ARF4 upregulated in HCV replication, which may provide new therapeutic targets for antiviral therapy.
Collapse
Affiliation(s)
- Na Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Youyang Ke
- Department of Emergency, 171st Hospital of PLA, Jiujiang, 332000, China.
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
8
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Affiliation(s)
- Diane E Griffin
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Sec24C-Dependent Transport of Claudin-1 Regulates Hepatitis C Virus Entry. J Virol 2017; 91:JVI.00629-17. [PMID: 28679754 DOI: 10.1128/jvi.00629-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
Claudin-1 is a hepatitis C virus (HCV) coreceptor required for viral entry. Although extensive studies have focused on claudin-1 as an anti-HCV target, little is known about how the level of claudin-1 at the cell surface is regulated by host vesicular transport. Here, we identified an interaction between claudin-1 and Sec24C, a cargo-sorting component of the coat protein complex II (COPII) vesicular transport system. By interacting with Sec24C through its C-terminal YV, claudin-1 is transported from the endoplasmic reticulum (ER) and is eventually targeted to the cell surface. Blocking COPII transport inhibits HCV entry by reducing the level of claudin-1 at the cell surface. These findings provide mechanistic insight into the role of COPII vesicular transport in HCV entry.IMPORTANCE Tight junction protein claudin-1 is one of the cellular receptors for hepatitis C virus, which infects 185 million people globally. Its cellular distribution plays important role in HCV entry; however, it is unclear how the localization of claudin-1 to the cell surface is controlled by host transport pathways. In this paper, we not only identified Sec24C as a key host factor for HCV entry but also uncovered a novel mechanism by which the COPII machinery transports claudin-1 to the cell surface. This mechanism might be extended to other claudins that contain a C-terminal YV or V motif.
Collapse
|
11
|
Mussabekova A, Daeffler L, Imler JL. Innate and intrinsic antiviral immunity in Drosophila. Cell Mol Life Sci 2017; 74:2039-2054. [PMID: 28102430 PMCID: PMC5419870 DOI: 10.1007/s00018-017-2453-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.
Collapse
Affiliation(s)
- Assel Mussabekova
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Laurent Daeffler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
| | - Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
- Faculté des Sciences de la Vie, Université de Strasbourg, 28 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
12
|
Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. J Virol 2017; 91:JVI.02505-16. [PMID: 28275194 DOI: 10.1128/jvi.02505-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment.IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments.
Collapse
|
13
|
Giovannoni F, Hemmerich P, García CC. How do host restriction factors influence dengue virus replication? Future Virol 2016. [DOI: 10.2217/fvl-2016-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Federico Giovannoni
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA) – Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Peter Hemmerich
- Leibniz Institute on Aging – Fritz-Lipman-Institut, Jena, Germany
| | - Cybele Carina García
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA) – Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Suppression of Kaposi's Sarcoma-Associated Herpesvirus Infection and Replication by 5'-AMP-Activated Protein Kinase. J Virol 2016; 90:6515-6525. [PMID: 27147746 DOI: 10.1128/jvi.00624-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/28/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The host intracellular antiviral restriction factors inhibit viral infection and replication. The 5'-AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. Activated AMPK inhibits the replication of numerous RNA viruses but enhances the entry of vaccinia virus. However, the role of AMPK in herpesvirus infection is unclear. In this study, we showed that the constitutive AMPK activity restricted Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in primary human umbilical vein endothelial cells while KSHV infection did not markedly affect the endogenous AMPK activity. Knockdown of the AMPKα1 considerably enhanced the expression of viral lytic genes and the production of infectious virions, while overexpression of a constitutively active AMPK had the opposite effects. Accordingly, an AMPK inhibitor, compound C, augmented viral lytic gene expressions and virion productions but an AMPK agonist, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), suppressed both. Furthermore, a common diabetes drug, metformin, which carries an AMPK-agonistic activity, drastically inhibited the expression of viral lytic genes and the production of infectious virions, suggesting the use of metformin as a therapeutic agent for KSHV infection and replication. Together, these results identify the host AMPK as a KSHV restriction factor that can serve as a potential therapeutic target. IMPORTANCE Host cells encode specific proteins to restrict viral infection and replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus associated with several cancers. In this study, we have identified 5'-AMP-activated protein kinase (AMPK), a cellular energy sensor, as a restriction factor of KSHV lytic replication during primary infection. Activation of AMPK suppresses, while inhibition of AMPK enhances, KSHV lytic replication by regulating the expression of viral genes. AICAR and metformin, both of which are AMPK agonists currently used in clinics for the treatment of conditions associated with metabolic disorders, inhibit KSHV lytic replication. Thus, our work has identified AMPK as a potential therapeutic target and AICAR and metformin as potential therapeutic agents for KSHV-associated cancers.
Collapse
|