1
|
Wang Z, Li Z, Wang H, Wu Q, Geng Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis in Mice by Regulating Th17/Treg. Foods 2024; 13:3183. [PMID: 39410218 PMCID: PMC11475350 DOI: 10.3390/foods13193183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study was to investigate the effects of the polysaccharides (PPM60-III) and sulfated polysaccharides (SPPM60-III) of pine pollen on the Th17/Treg balance, inflammatory cytokines, intestinal microbiota, and metabolite distribution in 3% DSS drinking water-induced UC mice. First of all, the physiological results showed that PPM60-III and SPPM60-III could alleviate UC, which was shown by the reduction in liver Treg cells, the rebalance of Th17/Treg, and the modulation of inflammatory cytokines. In addition, the 16S rRNA results showed that PPM60-III and SPPM60-III could decrease Beijerinck and Bifidobacterium, and increase Akkermansia, Escherichia coli, and Fidobacteria. Finally, the metabonomics results showed that PPM60-III and SPPM60-III also restored purine and glycerolipid metabolism, up-regulated nicotinate and nicotinamide metabolism and caffeine metabolism to inhibit inflammation. In conclusion, PPM60-III and SPPM60-III could inhibit UC by regulating gut bacteria composition and metabolite distribution; SPPM60-III showed better anti-colitis activity.
Collapse
Affiliation(s)
| | | | | | | | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, College of Life Science, Shandong Normal University, Jinan 250358, China; (Z.W.); (Z.L.); (H.W.); (Q.W.)
| |
Collapse
|
2
|
Yao J, Sun T, Zheng S, Ma J, Zeng Q, Liu K, Zhang W, Yu Y. The protective effect of teprenone in TNBS-induced ulcerative colitis rats by modulating the gut microbiota and reducing inflammatory response. Immunopharmacol Immunotoxicol 2024; 46:255-263. [PMID: 38252282 DOI: 10.1080/08923973.2024.2308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC), a chronic and refractory nonspecific inflammatory bowel disease, affects millions of patients worldwide and increases the risk of colorectal cancer. Teprenone is an acylic polyisoprenoid that exerts anti-inflammatory properties in rat models of peptic ulcer disease. This in vitro and in vivo study was designed to investigate the effects of teprenone on UC and to explore the underlying mechanisms. METHODS Human intestinal epithelial cells (Caco-2 cells) serve as the in vitro experimental model. Lipopolysaccharide (LPS, 1 μg/mL) was employed to stimulate the production of pro-inflammatory cytokines (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α), Toll-like receptor-4 (TLR4), MyD88 expression, and NF-κB activation. A trinitrobenzene sulfonic acid (TNBS)-induced chronic UC rat model was employed for the in vivo assay. RESULTS Pro-inflammatory cytokine stimulation by LPS in Caco-2 cells was inhibited by teprenone at 40 μg/mL through the TLR4/NF-κB signaling pathway. Teprenone attenuated TNBS-induced UC, decreased myeloperoxidase and malondialdehyde, induced TLR4 expression and NF-κB activation, and increased glutathione and zonula occludens-1 level in the rat colonic tissue. Moreover, Fusobacterium, Escherichia coli, Porphyromonas gingivalis elevation, and Mogibacterium timidum decline in UC rats were inhibited by teprenone. CONCLUSION Based on our results, the protective effects of teprenone for UC may be related to its ability to modulate the gut microbiota and reduce the inflammatory response.
Collapse
Affiliation(s)
- Jianfeng Yao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Tao Sun
- Department of Endoscopy, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Songbai Zheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jianxia Ma
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qinglian Zeng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Kangwei Liu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yang Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang R, Chen J, Liu L, Li X, Qiu C. Gut microbiota-based discriminative model for patients with ulcerative colitis: A meta-analysis and real-world study. Medicine (Baltimore) 2024; 103:e37091. [PMID: 38457570 PMCID: PMC10919464 DOI: 10.1097/md.0000000000037091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 03/10/2024] Open
Abstract
Gut microbiota directly interacts with intestinal epithelium and is a significant factor in the pathogenesis of ulcerative colitis (UC). A meta-analysis was performed to investigate gut microbiota composition of patients with UC in the United States. We also collected fecal samples from Chinese patients with UC and healthy individuals. Gut microbiota was tested using 16S ribosomal RNA gene sequencing. Meta-analysis and 16S ribosomal RNA sequencing revealed significant differences in gut bacterial composition between UC patients and healthy subjects. The Chinese UC group had the highest scores for Firmicutes, Clostridia, Clostridiales, Streptococcaceae, and Blautia, while healthy cohort had the highest scores for P-Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae, and Prevotella_9. A gut microbiota-based discriminative model trained on an American cohort achieved a discrimination efficiency of 0.928 when applied to identify the Chinese UC cohort, resulting in a discrimination efficiency of 0.759. Additionally, a differentiation model was created based on gut microbiota of a Chinese cohort, resulting in an area under the receiver operating characteristic curve of 0.998. Next, we applied the model established for the Chinese UC cohort to analyze the American cohort. Our findings suggest that the diagnostic efficiency ranged from 0.8794 to 0.9497. Furthermore, a combined analysis using data from both the Chinese and US cohorts resulted in a model with a diagnostic efficacy of 0.896. In summary, we found significant differences in gut bacteria between UC individuals and healthy subjects. Notably, the model from the Chinese cohort performed better at diagnosing UC patients compared to healthy subjects. These results highlight the promise of personalized and region-specific approaches using gut microbiota data for UC diagnosis.
Collapse
Affiliation(s)
- Rong Zhang
- Department of General Surgery, The Third People’s Hospital of Chengdu, Chengdu 610014, Sichuan Province, China
| | - Jing Chen
- Department of Gastroenterology, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| | - Li Liu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, Chengdu 610014, Sichuan Province, China
| | - Xiankun Li
- Department of Pharmacy, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| | - Changwei Qiu
- Department of Gastroenterology, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| |
Collapse
|
4
|
Rosso AD, Aguilera P, Quesada S, Mascardi F, Mascuka SN, Cimolai MC, Cerezo J, Spiazzi R, Conlon C, Milano C, Iraola GM, Penas-Steinhardt A, Belforte FS. Comprehensive Phenotyping in Inflammatory Bowel Disease: Search for Biomarker Algorithms in the Transkingdom Interactions Context. Microorganisms 2022; 10:2190. [PMID: 36363782 PMCID: PMC9698371 DOI: 10.3390/microorganisms10112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Inflammatory bowel disease (IBD) is the most common form of intestinal inflammation associated with a dysregulated immune system response to the commensal microbiota in a genetically susceptible host. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), both of which are remarkably heterogeneous in their clinical presentation and response to treatment. This translates into a notable diagnostic challenge, especially in underdeveloped countries where IBD is on the rise and access to diagnosis or treatment is not always accessible for chronic diseases. The present work characterized, for the first time in our region, epigenetic biomarkers and gut microbial profiles associated with UC and CD patients in the Buenos Aires Metropolitan area and revealed differences between non-IBD controls and IBD patients. General metabolic functions associated with the gut microbiota, as well as core microorganisms within groups, were also analyzed. Additionally, the gut microbiota analysis was integrated with relevant clinical, biochemical and epigenetic markers considered in the follow-up of patients with IBD, with the aim of generating more powerful diagnostic tools to discriminate phenotypes. Overall, our study provides new insights into data analysis algorithms to promote comprehensive phenotyping tools using quantitative and qualitative analysis in a transkingdom interactions network context.
Collapse
Affiliation(s)
- Ayelén D. Rosso
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| | - Pablo Aguilera
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Sofía Quesada
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Florencia Mascardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de Buenos Aires (HIBA), Ciudad Autónoma de Buenos Aires C1199, Argentina
| | - Sebastian N. Mascuka
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| | - María C. Cimolai
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| | - Jimena Cerezo
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Renata Spiazzi
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Carolina Conlon
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Claudia Milano
- Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, Ciudad Autónoma de Buenos Aires 1704, Argentina
| | - Gregorio M. Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay
- Centro de Biología Integrativa, Universidad Mayor, Santiago 7510041, Chile
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire CB10 1SA, UK
| | - Alberto Penas-Steinhardt
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Ciudad Autónoma de Buenos Aires 1127, Argentina
| | - Fiorella S. Belforte
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina
| |
Collapse
|
5
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
6
|
Liu H, Liu W, Huang X, Feng Y, Lu J, Gao F. Intestinal flora differences between patients with ulcerative colitis of different ethnic groups in China. Medicine (Baltimore) 2021; 100:e26932. [PMID: 34397940 PMCID: PMC8360419 DOI: 10.1097/md.0000000000026932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
To determine the differences in intestinal flora between Uygur and Han patients with ulcerative colitis (UC).Microbial diversity and structural composition of fecal bacteria from patients with UC and their matched healthy spouses or first-degree relatives were analyzed using high-throughput sequencing technology.The fecal microbial diversity and abundance index of Uygur patients with UC (UUC) were significantly lower compared with the Uygur normal control group, while there was no significant difference between the Han UC patients (HUC) and the Han normal control group (HN). Compared with their respective control groups, Uygur UC patients and Han UC patients had a different main composition of human intestinal flora (P < .05). The abundance of Burkholderia, Caballeronia, Paraburkholderia in the UUC group were higher compared with the HUC group, while Faecalibacterium, Bifidobacterium, and Blautia in the HUC group were higher than those in the UUC group (P < .05). Veillonella in the UUC group was higher than that in the Uygur normal control group group, while Subdoligranulum and Ruminococcaceae_UCG-002 were significantly lower (P < .05). Prevotella_9 in the HUC group was significantly higher than that in HN group, while Blautia, Anaerostipes, and [Eubacterium]_hallii_group were significantly lower. Moreover, the top 6 species in order of importance were Christensenellaceae_R_7_group, Ruminococcae_ucg_005, Ruminococcae_ucg_010, Ruminococcae_ucg_013, Haemophilus, and Ezakiella.The difference in intestinal microflora structure may be one of the reasons for the clinical heterogeneity between Uygur and Han patients with UC. Christensenellaceae_R_7_group, Ruminococcae_ucg_005, Ruminococcae_ucg_010, Ruminococcae_ucg_013, Haemophilus, and Ezakiella could be used as potential biomarkers for predicting UC.
Collapse
Affiliation(s)
- Huan Liu
- College of Clinical Medicine, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Jiajie Lu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| | - Feng Gao
- College of Clinical Medicine, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang, China
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
He XX, Li YH, Yan PG, Meng XC, Chen CY, Li KM, Li JN. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis. World J Gastroenterol 2021; 27:4722-4737. [PMID: 34366632 PMCID: PMC8326252 DOI: 10.3748/wjg.v27.i28.4722] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dysbacteriosis may be a crucial environmental factor for ulcerative colitis (UC). Further study is required on microbiota alterations in the gastrointestinal tract of patients with UC for better clinical management and treatment.
AIM To analyze the relationship between different clinical features and the intestinal microbiota, including bacteria and fungi, in Chinese patients with UC.
METHODS Eligible inpatients were enrolled from January 1, 2018 to June 30, 2019, and stool and mucosa samples were collected. UC was diagnosed by endoscopy, pathology, Mayo Score, and Montreal classification. Gene amplicon sequencing of 16S rRNA gene and fungal internal transcribed spacer gene was used to detect the intestinal microbiota composition. Alpha diversity, principal component analysis, similarity analysis, and Metastats analysis were employed to evaluate differences among groups.
RESULTS A total of 89 patients with UC and 33 non-inflammatory bowel disease (IBD) controls were enrolled. For bacterial analysis, 72 stool and 48 mucosa samples were obtained from patients with UC and 21 stool and 12 mucosa samples were obtained from the controls. For fungal analysis, stool samples were obtained from 43 patients with UC and 15 controls. A significant difference existed between the fecal and mucosal bacteria of patients with UC. The α-diversity of intestinal bacteria and the relative abundance of some families, such as Lachnospiraceae and Ruminococcaceae, decreased with the increasing severity of bowel inflammation, while Escherichia-Shigella showed the opposite trend. More intermicrobial correlations in UC in remission than in active patients were observed. The bacteria-fungi correlations became single and uneven in patients with UC.
CONCLUSION The intestinal bacteria flora of patients with UC differs significantly in terms of various sample types and disease activities. The intermicrobial correlations change in patients with UC compared with non-IBD controls.
Collapse
Affiliation(s)
- Xu-Xia He
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Ying-He Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Peng-Guang Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiang-Chen Meng
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Chu-Yan Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Ke-Min Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Jing-Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
8
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
9
|
Liu X, Zhao F, Liu H, Xie Y, Zhao D, Li C. Transcriptomics and metabolomics reveal the adaption of Akkermansia muciniphila to high mucin by regulating energy homeostasis. Sci Rep 2021; 11:9073. [PMID: 33907216 PMCID: PMC8079684 DOI: 10.1038/s41598-021-88397-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
In gut, Akkermansia muciniphila (A. muciniphila) probably exerts its probiotic activities by the positive modulation of mucus thickness and gut barrier integrity. However, the potential mechanisms between A. muciniphila and mucin balance have not been fully elucidated. In this study, we cultured the bacterium in a BHI medium containing 0% to 0.5% mucin, and transcriptome and gas chromatography mass spectrometry (GC-MS) analyses were performed. We found that 0.5% (m/v) mucin in a BHI medium induced 1191 microbial genes to be differentially expressed, and 49 metabolites to be changed. The metabolites of sorbose, mannose, 2,7-anhydro-β-sedoheptulose, fructose, phenylalanine, threonine, lysine, ornithine, asparagine, alanine and glutamic acid were decreased by 0.5% mucin, while the metabolites of leucine, valine and N-acetylneuraminic acid were increased. The association analysis between transcriptome and metabolome revealed that A. muciniphila gave strong responses to energy metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways to adapt to high mucin in the medium. This finding showed that only when mucin reached a certain concentration in a BHI medium, A. muciniphila could respond to the culture environment significantly at the level of genes and metabolites, and changed its metabolic characteristics by altering the effect on carbohydrates and amino acids.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Lin YF, Sung CM, Ke HM, Kuo CJ, Liu WA, Tsai WS, Lin CY, Cheng HT, Lu MJ, Tsai IJ, Hsieh SY. The rectal mucosal but not fecal microbiota detects subclinical ulcerative colitis. Gut Microbes 2021; 13:1-10. [PMID: 33525983 PMCID: PMC7872041 DOI: 10.1080/19490976.2020.1832856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is characterized by repetitive remission and relapse. Gut microbiome is critically involved in pathogenesis of UC. The shifts in microbiome profile during disease remission remain under-investigated. Recent studies revealed that UC pathogenesis is likely to originate in the mucosal barrier. Therefore, we investigated the effectiveness of mucosal tissue microbiomes to differentiate patients with subclinical UC from healthy individuals. The microbiomes of cecal and rectal biopsies and feces were characterized from 13 healthy individuals and 45 patients with subclinical UC. Total genomic DNA was extracted from the samples, and their microbial communities determined using next-generation sequencing. We found that changes in relative abundance of subclinical UC were marked by a decrease in Proteobacteria and an increase in Bacteroidetes phyla in microbiome derived from rectal tissues but not cecal tissue nor feces. Only in the microbiome of rectal tissue had significantly higher community richness and evenness in subclinical UC patients than controls. Twenty-seven operational taxonomic units were enriched in subclinical UC cohort with majority of the taxa from the Firmicutes phylum. Inference of putative microbial functional pathways from rectal biopsy microbiome suggested a differential increase in interleukin-17 signaling and T-helper cell differentiation pathways. Rectal biopsy tissue was suggested to be more suitable than fecal samples for microbiome assays to distinguish patients with subclinical UC from healthy adults. Assessment of the rectal biopsy microbiome may offer clinical insight into UC disease progression and predict relapse of the diseases.
Collapse
Affiliation(s)
- Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chang Mu Sung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-an Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sy Tsai
- Division of Colorectal Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hao-Tsai Cheng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meiyeh J Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Isheng. J. Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Schierová D, Březina J, Mrázek J, Fliegerová KO, Kvasnová S, Bajer L, Drastich P. Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells 2020; 9:cells9102283. [PMID: 33066233 PMCID: PMC7602113 DOI: 10.3390/cells9102283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, and intestinal bacteria are implicated in the pathogenesis of this disorder. The administration of aminosalicylates (5-ASA) is a conventional treatment that targets the mucosa, while fecal microbial transplantation (FMT) is a novel treatment that directly targets the gut microbiota. The aim of this study was to identify changes in fecal bacterial composition after both types of treatments and evaluate clinical responses. Sixteen patients with active left-sided UC underwent enema treatment using 5-ASA (n = 8) or FMT (n = 8) with a stool from a single donor. Fecal microbiota were analyzed by 16S rDNA high-throughput sequencing, and clinical indices were used to assess the efficacy of treatments. 5-ASA therapy resulted in clinical remission in 50% (4/8) of patients, but no correlation with changes in fecal bacteria was observed. In FMT, remission was achieved in 37.5% (3/8) of patients and was associated with a significantly increased relative abundance of the families Lachnospiraceae, Ruminococcaceae, and Clostridiaceae of the phylum Firmicutes, and Bifidobacteriaceae and Coriobacteriaceae of the phylum Actinobacteria. At the genus level, Faecalibacterium, Blautia, Coriobacteria, Collinsela, Slackia, and Bifidobacterium were significantly more frequent in patients who reached clinical remission. However, the increased abundance of beneficial taxa was not a sufficient factor to achieve clinical improvement in all UC patients. Nevertheless, our preliminary results indicate that FMT as non-drug-using method is thought to be a promising treatment for UC patients.
Collapse
Affiliation(s)
- Dagmar Schierová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Jan Březina
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Kateřina Olša Fliegerová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Lukáš Bajer
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Pavel Drastich
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| |
Collapse
|
12
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Yang G, Yan Y, Zhang L, Ruan Z, Hu X, Zhang S, Li X. Porcine circovirus type 2 (PCV2) and Campylobacter infection induce diarrhea in piglets: Microbial dysbiosis and intestinal disorder. ACTA ACUST UNITED AC 2020; 6:362-371. [PMID: 33005770 PMCID: PMC7503086 DOI: 10.1016/j.aninu.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Diarrhea is considered to be associated with microbial dysbiosis caused by infection of pathogens but poorly understood. We herein characterized the colonic microbiota of diarrheal early-weaning piglets infected with porcine circovirus type 2 (PCV2) and Campylobacter. Campylobacter infection significantly decreased species richness and Shannon diversity index of colonic microbiota together with a significant increase in the proportion of Campylobacter and Enterobacteriaceae, whereas no significant difference on the above indexes was observed in piglets infected with PCV2 compared with healthy piglets. PCV2 and Campylobacter infection could disturb the homeostasis of colonic microbiota through deterioration of ecological network within microbial community, and specially Campylobacter performed as a module hub in ecological networks. The microbial dysbiosis caused metabolic dysfunction and led to a remarkable reduction in production of short chain fatty acids, following by a higher pH level in colon cavity. Campylobacter infection disturbed the function of colonic tract barrier observed in terms of significant lower relative expression of claudin-1, occluding, and zonula occludens protein-1 genes, and PCV2 infection induced intestinal inflammation together with a higher permeability of colon. Generally, these results suggested that PCV2 and Campylobacter infection could induce microbial dysbiosis and metabolic dysfunction, and cause intestinal disorder, all of which finally were associated to contribute to the diarrhea of early-weaning piglets.
Collapse
Affiliation(s)
- Gang Yang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yali Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Zhang
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| | - Xiaozhen Li
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| |
Collapse
|
14
|
Wu ZY, Sang LX, Chang B. Isoflavones and inflammatory bowel disease. World J Clin Cases 2020; 8:2081-2091. [PMID: 32548137 PMCID: PMC7281056 DOI: 10.12998/wjcc.v8.i11.2081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Isoflavones constitute a class of plant hormones including genistein, daidzein, glycitein, formononetin, biochanin A, and irilone, and the major source of human intake is soybeans. Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease including ulcerative colitis, Crohn’s disease, and indeterminate colitis, which seriously affects the quality of life of patients and has become a global health problem. Although the pathogenesis of IBD is not very clear, many factors are thought to be related to the occurrence and development of IBD such as genes, immunity, and intestinal flora. How to control IBD effectively for a long time is still a problem for gastroenterologists. Diet has an important effect on IBD. Patients with IBD should pay more attention to diet. To date, many studies have reported that isoflavones have both good and bad effects on IBD. Isoflavones have many activities such as regulating the inflammatory signal pathways and affecting intestinal barrier functions and gut flora. They can also act through estrogen receptors, as they have a similar structure to estrogen. Isoflavones are easy to get from diet for human. Whether they are valuable to be applied to the treatment of IBD is worth studying. This review summarizes the relationship between isoflavones and IBD.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
15
|
Zhu L, Xu LZ, Zhao S, Shen ZF, Shen H, Zhan LB. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. Appl Microbiol Biotechnol 2020; 104:5449-5460. [PMID: 32322944 DOI: 10.1007/s00253-020-10527-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
Abstract
Baicalin is reported as an effective drug for ulcerative colitis (UC). However, its effect on gut microbiota and short-chain fatty acids (SCFAs) remains unknown. In this study, we investigated the role of baicalin on Th17/Treg balance, gut microbiota community, and SCFAs levels in trinitrobenzene sulphonic acid (TNBS)-induced UC rat model. We found the DAI scores were significantly increased in the TNBS-treated rats, while reduced in the baicalin-treated group in a dose-dependent manner, accompanied with the alleviation of mucosal injury, the reduction of ZO-1, Occludin, and MUC2 expression. At the meanwhile, baicalin repressed the increased levels of reactive oxygen species (ROS) and MDA, while deceased the GSH and SOD levels in colon tissue of rats treated with TNBS. On the other hand, administration of baicalin attenuated the TNBS-induced upregulations of Th17/Treg ratio, indicating a strong amelioration in the colorectal inflammation. More importantly, pyrosequencing of the V4 regions of 16S rRNA genes in rat feces revealed a deviation of the gut microbiota in response to baicalin treatment. In particular, the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin-bearing Proteobacteria levels indicated that baicalin reversed TNBS-induced gut dysbiosis OTUs. In addition, we further investigated the fecal levels of major SCFAs in rats and found that baicalin significantly resorted the fecal butyrate levels in rats treated with TNBS. The increased butyrate levels were in consistent with the higher abundance of butyrate-producing species such as Butyricimonas spp., Roseburia spp., Subdoligranulum spp., and Eubacteriu spp. in baicalin-treated group. In conclusion, our findings suggest that baicalin possibly protected rats against ulcerative colitis by regulation of Th17/Treg balance, and modulation of both gut microbiota and SCFAs. Baicalin may be used as a prebiotic agent to treat ulcerative colitis-associated inflammation and gut dysbiosis.
Collapse
Affiliation(s)
- Lei Zhu
- Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, 210029, Jiangsu, China.,Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Lu-Zhou Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Song Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zhao-Feng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
16
|
A Preliminary Study of Biliary Microbiota in Patients with Bile Duct Stones or Distal Cholangiocarcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1092563. [PMID: 31662965 PMCID: PMC6778921 DOI: 10.1155/2019/1092563] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023]
Abstract
Background and Objective The distal cholangiocarcinoma (dCCA) is associated with many factors: genes, environment, infection, etc. The current changes in biliary flora are thought to be involved in the formation of many gastrointestinal tract (GIT) diseases, like colon adenocarcinoma. Therefore we want to investigate whether the dCCA has a certain correlation with biliary microecology, and to detect specific strains. Methods A total of 68 adults were enrolled, of whom 8 with dCCA, 16 with recurrent choledocholithiasis, and 44 with the onset of common bile duct stones. Endoscopic Retrograde Cholangiopancretography (ERCP) was utilized to collect bile samples for DNA extraction and 16S rRNA gene sequencing, followed by analysis of bile microbiota composition. Results First, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are the most dominant phyla in the bile of patients with dCCA and the onset of common bile duct stoes. Secondly, compared with the onset of common bile duct stones patients, we got a significant increase in the phylum Gemmatimonadetes, Nitrospirae, Chloroflexi, Latescibacteria, and Planctomycetes in dCCA patients. Finally, at the genus level, we obtained sequencing results of 252 bacterial genera from patients with dCCA, recurrent choledocholithiasis, and the new onset of common bile duct stones, revealing heterogeneity among individuals. Conclusion To the best of our knowledge, this is the first study of the dysbiosis of bile flora in patients with dCCA. This micro-ecological disorder may be a decisive factor in the formation of dCCA. At the same time, for the first time, this study provides a test chart of biliary microbial populations that may be associated with recurrent choledocholithiasis. The compositional changes of the core microbial group of the biliary tract have potentially important biological and medical significance for the microbiological biliary disorders of dCCA.
Collapse
|
17
|
Gut Microbiota-Mediated NLRP12 Expression Drives the Attenuation of Dextran Sulphate Sodium-Induced Ulcerative Colitis by Qingchang Wenzhong Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9839474. [PMID: 31061672 PMCID: PMC6466890 DOI: 10.1155/2019/9839474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/13/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Qingchang Wenzhong Decoction (QCWZD) is a newly developed, effective traditional Chinese herbal formulation for ulcerative colitis (UC). In earlier studies, we found that QCWZD could relieve the clinical symptoms of UC patients, reduce inflammation, and improve the intestinal barrier function in dextran sulphate sodium (DSS)-induced UC rats. However, the relationship between QCWZD and the gut microbiota in colitis was not clarified. In this study, we established a rat model of DSS-induced UC and then investigated the regulatory effects of QCWZD on the gut microbiota using 16S rRNA analysis. We also determined the expression of NLRP12 after QCWZD administration. Our findings suggested that QCWZD administration could modulate gut microbiota composition and selectively promote the protective strains such as Butyricimonas, Blautia, and Odoribacter, whereas the enteric pathogens including Clostridium and Dorea were significantly reduced after QCWZD treatment. It is noteworthy that QCWZD administration was identified to promote gut microbiota-mediated NLRP12 expression by inhibiting the activity of the TLR4/Blimp-1 axis. In conclusion, our study supports the potential of QCWZD administration as a beneficial therapeutic strategy for UC.
Collapse
|
18
|
Long T, Yu ZJ, Wang J, Liu J, He BS. Orally Administered Chitooligosaccharides Modulate Colon Microbiota in Normal and Colitis Mice. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.291.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Sorrentino D. Microbial dysbiosis in spouses of ulcerative colitis patients: Any clues to disease pathogenesis? World J Gastroenterol 2017; 23:6747-6749. [PMID: 29085220 PMCID: PMC5645610 DOI: 10.3748/wjg.v23.i37.6747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/30/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
A number of alterations have been found within the gut microbial profile of patients with inflammatory bowel diseases when compared with the healthy population; however, it is unclear whether such dysbiosis is the cause or simply the consequence of the disease state. In ulcerative colitis, the environment seems to play a crucial role in disease etiology since monozygotic twins show a concordance rate of only 8%-10% - though it is unclear whether it does so by acting through the microbiome. In this study, the authors investigated the influence of cohabitation on the gut microbial community in healthy partners of ulcerative colitis patients - with the intent of clarifying some of these issues. As expected, ulcerative colitis patients had a significant dysbiosis and alterations in microbial metabolism. Interestingly, these abnormal fecal microbial communities were relatively similar amongst patients and their spouses. Thus, this study shows that the microbial profile might be partially transferred from ulcerative colitis patients to healthy individuals. Whether this finding impacts on disease development or has any implication for the role of the microbiome in inflammatory bowel disease etiology remains to be determined.
Collapse
Affiliation(s)
- Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
- Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, 33100 Udine, Italy
| |
Collapse
|