1
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
Affiliation(s)
| | - Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Palak J. Trivedi
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, UK
- Liver Unit, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, UK
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Maccauro V, Fianchi F, Gasbarrini A, Ponziani FR. Gut Microbiota in Primary Sclerosing Cholangitis: From Prognostic Role to Therapeutic Implications. Dig Dis 2024; 42:369-379. [PMID: 38527453 DOI: 10.1159/000538493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic cholestatic disease of unknown etiology characterized by biliary inflammation and periductal fibrosis. The gut microbiota plays a crucial role in the pathogenesis of PSC by regulating bile acid metabolism, inflammation, and immune response. On the other hand, liver disease progression affects the composition of the gut microbiota, fostering these mechanisms in a mutual detrimental way. SUMMARY Recent evidences described a specific pro-inflammatory microbial signature in PSC patients, with an overall reduced bacterial diversity and the loss of beneficial metabolites such as short-chain fatty acids. As effective therapies for PSC are still lacking, targeting the gut microbiota offers a new perspective in the management of this disease. To date, antibiotics, fecal microbiota transplantation, and probiotics are the most studied gut microbiota-targeted intervention in PSC, but new potential strategies such as vaccines and bacteriophages represent possible future therapeutic horizons. KEY MESSAGES In this review, we focus on the role of the gut microbiota in PSC, considering its pathogenetic and prognostic role and the therapeutic implications.
Collapse
Affiliation(s)
- Valeria Maccauro
- Liver Diseases Unit, CEMAD Centro Malattie dell'Apparato Digerente, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Francesca Fianchi
- Liver Diseases Unit, CEMAD Centro Malattie dell'Apparato Digerente, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Liver Diseases Unit, CEMAD Centro Malattie dell'Apparato Digerente, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Liver Diseases Unit, CEMAD Centro Malattie dell'Apparato Digerente, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy,
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy,
| |
Collapse
|
3
|
De Muynck K, Heyerick L, De Ponti FF, Vanderborght B, Meese T, Van Campenhout S, Baudonck L, Gijbels E, Rodrigues PM, Banales JM, Vesterhuus M, Folseraas T, Scott CL, Vinken M, Van der Linden M, Hoorens A, Van Dorpe J, Lefere S, Geerts A, Van Nieuwerburgh F, Verhelst X, Van Vlierberghe H, Devisscher L. Osteopontin characterizes bile duct-associated macrophages and correlates with liver fibrosis severity in primary sclerosing cholangitis. Hepatology 2024; 79:269-288. [PMID: 37535809 PMCID: PMC10789378 DOI: 10.1097/hep.0000000000000557] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.
Collapse
Affiliation(s)
- Kevin De Muynck
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lander Heyerick
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Federico F. De Ponti
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart Vanderborght
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Sanne Van Campenhout
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Leen Baudonck
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Eva Gijbels
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Mette Vesterhuus
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Charlotte L. Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Sander Lefere
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
5
|
Oyama A, Takaki A, Adachi T, Wada N, Takeuchi Y, Onishi H, Shiraha H, Okada H, Otsuka M. Oxidative stress-related markers as prognostic factors for patients with primary sclerosing cholangitis in Japan. Hepatol Int 2023; 17:1215-1224. [PMID: 37493884 PMCID: PMC10522747 DOI: 10.1007/s12072-023-10557-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/27/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND/PURPOSE Primary sclerosing cholangitis (PSC) is a rare chronic liver disease. The mechanisms and prediction of PSC progression are unclear. Recent investigations have shown that general conditions, such as oxidative stress, affect the course of chronic diseases. We investigated the clinical course and oxidative stress-related condition of PSC to determine prognostic factors. METHODS We recruited 58 patients with PSC (mean age; 37.4 years, mean observation period; 1382 days) who visited our department from 2003 to 2021. Clinical characteristics were investigated to define prognostic factors. Oxidative stress status was evaluated using two types of markers: an oxidative stress marker (serum reactive oxygen metabolite; dROM) and an antioxidant marker (serum OXY adsorbent test; OXY). RESULTS The revised Mayo risk, Child-Pugh, model for end-stage liver disease-sodium (MELD-Na) scores or fibrosis-related FIB-4 index significantly predicted poor overall survival. High intestinal immunoglobulin A (IgA) levels predicted poor survival. Among patients with high and intermediate revised Mayo risk scores, those with physiologically high dROM levels showed better survival than those with lower dROM levels. In this population, dROM was negatively correlated with AST and IgA, which are both correlated with survival. CONCLUSIONS High and intermediate revised Mayo risk score group predicted a poor clinical course in PSC. Additionally, the Child-Pugh score, MELD-Na score, FIB-4 index, and serum IgA were significantly correlated with survival. In patients with high and intermediate revised Mayo risk scores, physiologically high oxidative stress status correlated with low IgA levels and a good prognosis.
Collapse
Affiliation(s)
- Atsushi Oyama
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nozomu Wada
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
6
|
Russo MW. Noninvasive prognostic models, imaging, and elastography to predict clinical events in primary sclerosing cholangitis: A review. World J Hepatol 2023; 15:1013-1020. [PMID: 37900215 PMCID: PMC10600698 DOI: 10.4254/wjh.v15.i9.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Surrogate endpoints are needed to estimate clinical outcomes in primary sclerosing cholangitis (PSC). Serum alkaline phosphatase was among the first markers studied, but there is substantial variability in alkaline phosphatase levels during the natural history of PSC without intervention. The Mayo risk score incorporates noninvasive variables and has served as a surrogate endpoint for survival for more than two decades. Newer models have better test performance than the Mayo risk score, including the primary sclerosing risk estimate tool (PREsTo) model and UK-PSC score that estimate hepatic decompensation and transplant free survival, respectively. The c-statistics for transplant-free survival for the Mayo risk model and the long-term UK-PSC model are 0.68 and 0.85, respectively. The c-statistics for hepatic decompensation for the Mayo risk model and PREsTo model are 0.85 and 0.90, respectively. The Amsterdam-Oxford model included patients with large duct and small duct PSC and patients with PSC-autoimmune hepatitis overlap and had a c-statistic of 0.68 for transplant-free survival. Other noninvasive tests that warrant further validation include magnetic resonance imaging, elastography and the enhanced liver fibrosis score. Prognostic models, noninvasive tests or a combination of these surrogate endpoints may not only serve to be useful in clinical trials of investigational agents, but also serve to inform our patients about their prognosis.
Collapse
Affiliation(s)
- Mark W Russo
- Division of Hepatology, Atrium Health Wake Forest, Charlotte, NC 28204, United States.
| |
Collapse
|
7
|
Shan J, Liu S, Liu H, Yuan J, Lin J. Mechanism of Qingchang Suppository on repairing the intestinal mucosal barrier in ulcerative colitis. Front Pharmacol 2023; 14:1221849. [PMID: 37675045 PMCID: PMC10478270 DOI: 10.3389/fphar.2023.1221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, and the outcomes of conventional therapies of UC, including 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are not satisfied with patients and physicians with regard to adverse reactions and financial burden. The abnormality of the intestinal mucosal barrier in the pathogenesis of UC was verified. Qingchang Suppository (QCS) is an herbal preparation and is effective in treating ulcerative proctitis. The mechanism of QCS and its active ingredients have not been concluded especially in mucosal healing. This review elucidated the potential mechanism of QCS from the intestinal mucosal barrier perspective to help exploring future QCS research directions.
Collapse
Affiliation(s)
- Jingyi Shan
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyue Liu
- Department of Intensive Care Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Mammadov RA, Selten JW, Roest HP, Verhoeven CJ, Maroni L, Bril SI, Tolenaars D, Gadjradj PS, van de Graaf SFJ, Oude Elferink RPJ, Kwekkeboom J, Metselaar HJ, Peppelenbosch MP, Beuers U, IJzermans JNM, van der Laan LJW. Intestinal Bacteremia After Liver Transplantation Is a Risk Factor for Recurrence of Primary Sclerosing Cholangitis. Transplantation 2023; 107:1764-1775. [PMID: 36978227 DOI: 10.1097/tp.0000000000004563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic progressive pathological process, related to inflammatory bowel disease and subsequent bacterial translocation. Liver transplantation (LT) is the only curative therapy, but outcomes are compromised by recurrence of PSC (rPSC). The aim of the study was to investigate a potential link between intestinal bacteremia, fucosyltransferase-2 (FUT2), and rPSC after LT. METHODS LT recipients with PSC (n = 81) or without PSC (n = 271) were analyzed for clinical outcomes and positive bacterial blood cultures. A link between bacteremia and the genetic variant of the FUT2 gene was investigated. RESULTS The incidence of inflammatory bowel disease was significantly higher in PSC recipients but not associated with rPSC. Bacteremia occurred in 31% of PSC recipients. The incidence of rPSC was 37% and was significantly more common in patients with intestinal bacteremia versus no bacteremia (82% versus 30%; P = 0.003). The nonsecretor polymorphism of the FUT2 gene was identified as a genetic risk factor for both intestinal bacteremia and rPSC. Combined FUT2 genotype and intestinal bacteremia in recipients resulted in the highest risk for rPSC (hazard ratio, 15.3; P < 0.001). CONCLUSIONS Thus, in this article, we showed that bacterial translocation is associated with rPSC after LT and related to the FUT2 nonsecretor status.
Collapse
Affiliation(s)
- Ruslan A Mammadov
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Jasmijn W Selten
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
| | - Cornelia J Verhoeven
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
- Department of Otorhinolaryngology, University Medical Center Groningen, The Netherlands
| | - Luca Maroni
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Sandra I Bril
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
| | - Dagmar Tolenaars
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Pravesh S Gadjradj
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
9
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
10
|
Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023; 15:760. [PMID: 36771465 PMCID: PMC9921714 DOI: 10.3390/nu15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are rare immune-related cholangiopathies with still poorly explained pathogenesis. Although triggers of chronic inflammation with subsequent fibrosis that affect cholangiocytes leading to obliteration of bile ducts and conversion to liver cirrhosis are unclear, both disorders are regarded to be multifactorial. Different factors can contribute to the development of hepatocellular injury in the course of progressive cholestasis, including (1) body accumulation of bile acids and their toxicity, (2) decreased food intake and nutrient absorption, (3) gut microbiota transformation, and (4) reorganized host metabolism. Growing evidence suggests that intestinal microbiome composition not only can be altered by liver dysfunction, but in turn, it actively impacts hepatic conditions. In this review, we highlight the role of key factors such as the gut-liver axis, intestinal barrier integrity, bile acid synthesis and circulation, and microbiome composition, which seem to be strongly related to PBC and PSC outcome. Emerging treatments and future therapeutic strategies are also presented.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | | | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
11
|
Bowlus CL, Arrivé L, Bergquist A, Deneau M, Forman L, Ilyas SI, Lunsford KE, Martinez M, Sapisochin G, Shroff R, Tabibian JH, Assis DN. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2023; 77:659-702. [PMID: 36083140 DOI: 10.1002/hep.32771] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Christopher L Bowlus
- Division of Gastroenterology , University of California Davis Health , Sacramento , California , USA
| | | | - Annika Bergquist
- Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| | - Mark Deneau
- University of Utah , Salt Lake City , Utah , USA
| | - Lisa Forman
- University of Colorado , Aurora , Colorado , USA
| | - Sumera I Ilyas
- Mayo Clinic College of Medicine and Science , Rochester , Minnesota , USA
| | - Keri E Lunsford
- Rutgers University-New Jersey Medical School , Newark , New Jersey , USA
| | - Mercedes Martinez
- Vagelos College of Physicians and Surgeons , Columbia University , New York , New York , USA
| | | | | | - James H Tabibian
- David Geffen School of Medicine at UCLA , Los Angeles , California , USA
| | - David N Assis
- Yale School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|
12
|
Li ZJ, Gou HZ, Zhang YL, Song XJ, Zhang L. Role of intestinal flora in primary sclerosing cholangitis and its potential therapeutic value. World J Gastroenterol 2022; 28:6213-6229. [PMID: 36504550 PMCID: PMC9730442 DOI: 10.3748/wjg.v28.i44.6213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 02/06/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an autoimmune disease characterized by chronic cholestasis, a persistent inflammation of the bile ducts that leads to sclerotic occlusion and cholestasis. Gut microbes, consisting of microorganisms colonized in the human gut, play an important role in nutrient intake, metabolic homeostasis, immune regulation, and immune regulation; however, their presence might aid PSC development. Studies have found that gut-liver axis interactions also play an important role in the pathogenesis of PSC. Patients with PSC have considerably reduced intestinal flora diversity and increased abundance of potentially pathogenic bacteria. Dysbiosis of the intestinal flora leads to increased intestinal permeability, homing of intestinal lymphocytes, entry of bacteria and their associated metabolites, such as bile acids, into the liver, stimulation of hepatic immune activation, and promotion of PSC. Currently, PSC effective treatment is lacking. However, a number of studies have recently investigated the targeted modulation of gut microbes for the treatment of various liver diseases (alcoholic liver disease, metabolic fatty liver, cirrhosis, and autoimmune liver disease). In addition, antibiotics, fecal microbiota transplantation, and probiotics have been reported as successful PSC therapies as well as for the treatment of gut dysbiosis, suggesting their effectiveness for PSC treatment. Therefore, this review briefly summarizes the role of intestinal flora in PSC with the aim of providing new insights into PSC treatment.
Collapse
Affiliation(s)
- Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Jing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
13
|
Tornai D, Ven PL, Lakatos PL, Papp M. Serological biomarkers for management of primary sclerosing cholangitis. World J Gastroenterol 2022; 28:2291-2301. [PMID: 35800183 PMCID: PMC9185217 DOI: 10.3748/wjg.v28.i21.2291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Clinical manifestations and progression of primary sclerosing cholangitis (PSC) are heterogeneous, and its pathogenesis is poorly understood. The importance of gut-liver interactions in the pathogenesis has been clinically confirmed and highlighted in different theories. Recent advances regarding biomarkers of biliary-gut crosstalk may help to identify clinically relevant PSC subgroups assisting everyday clinical work-up (e.g., diagnosis, disease stratification, or surveillance) and the exploration of potential therapeutic targets. Alkaline phosphatase produced by the biliary epithelium is consistently associated with prognosis. However, its level shows natural fluctuation limiting its use in individual patients. Inflammatory, cell activation, and tissue remodeling markers have been reported to predict clinical outcome. Elevated immunoglobulin (Ig) G4 level is associated with a shorter transplantation-free survival. IgG type atypical perinuclear anti-neutrophil cytoplasmic antibodies (P-ANCAs) are non-specific markers of various autoimmune liver diseases and may reflect an abnormal B-cell response to gut microbial antigens. IgG type atypical P-ANCA identifies PSC patients with particular clinical and genetic (for human leukocyte antigens) characteristics. The presence of IgA type anti-F-actin antibody (AAA) may predict a progressive disease course, and it is associated with enhanced mucosal immune response to various microbial antigens and enterocyte damage. IgA type anti-glycoprotein 2 (GP2) antibodies identify patients with a severe disease phenotype and poor survival due to enhanced fibrogenesis or development of cholangiocarcinoma. Elevated soluble vascular adhesion protein-1 (sVAP-1) level is associated with adverse disease outcomes in PSC. High sVAP-1 levels correlate with mucosal addressin cell adhesion molecule-1 (MAdCAM-1) expression in the liver that contributes to gut activated T-cell homing to the hepatobiliary tract. In the present paper, we review the evidence on these possible serological markers that could potentially help address the unmet clinical needs in PSC.
Collapse
Affiliation(s)
- David Tornai
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hajdu-Bihar, Hungary
- European Reference Network on Hepatological Diseases, ERN RARE-LIVER, Debrecen H-4032, Hajdu-Bihar, Hungary
| | - Peter Laszlo Ven
- The First Department of Medicine, Division of Gastroenterology, University of Pécs, Pécs H-7624, Baranya, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hajdu-Bihar, Hungary
| | - Peter Laszlo Lakatos
- Division of Gastroenterology, McGill University Health Centre, Montreal QC H4A 3J1, Quebec, Canada
- The First Department of Medicine, Semmelweis University, Budapest H-1083, Pest, Hungary
| | - Maria Papp
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hajdu-Bihar, Hungary
- European Reference Network on Hepatological Diseases, ERN RARE-LIVER, Debrecen H-4032, Hajdu-Bihar, Hungary
| |
Collapse
|
14
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
15
|
Weng YC, Chen WT, Lee JC, Huang YN, Yang CK, Hsieh HS, Chang CJ, Lu YB. Intestinal fatty acid-binding protein is a biomarker for diagnosis of biliary tract infection. JGH OPEN 2021; 5:1160-1165. [PMID: 34622002 PMCID: PMC8485399 DOI: 10.1002/jgh3.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 12/07/2022]
Abstract
Background and Aim Biliary tract infection (BTI) is an inflammatory disease and commonly associated with bacteremia. Delays in diagnosis or treatment of BTI cause high morbidity and mortality. However, an early diagnosis depends on appropriate clinical investigations. Appropriate biomarkers are urgently needed to improve the BTI diagnostic rate. We hypothesized that intestinal fatty acid‐binding protein (I‐FABP) might be a potential biomarker for BTI diagnosis. Methods We examined data from subjects aged ≥18 years diagnosed with BTI, including cholangitis and cholecystitis, whose blood samples were adequate for I‐FABP and zonulin assessment. We also collected blood samples from healthy volunteers as the control group. We excluded subjects in both groups who received steroids, antibiotics, or probiotics within 1 month before hospital admission (BTI cohort) or participation in this research (controls). The main study endpoint was to compare the diagnostic ability of I‐FABP to detect BTI in comparison with high‐sensitivity C‐reactive protein (hs‐CRP) and zonulin. Results The study collected the data of 51 patients with BTI and 35 healthy subjects. The receiver operating characteristic (ROC) area under the curve (AUC) for I‐FABP was 0.884 (95% confidence interval [CI]: 0.814–0.954), numerically higher than that for hs‐CRP (0.880; 0.785–0.976) and zonulin (0.570; 0.444–0.697). We estimated that the optimal cutoff value of I‐FABP was 2.1 ng/mL (sensitivity: 0.804; specificity: 0.829) for the diagnosis of BTI. Conclusions In summary, this study suggests that I‐FABP may be a potential alternative biomarker to hs‐CRP for diagnosing BTI. Further research should verify the use of I‐FABP as a marker for BTI diagnosis, but also for other inflammatory diseases.
Collapse
Affiliation(s)
- Yu-Chieh Weng
- Department of Digestive Disease Xiamen Chang Gung Hospital Xiamen China
| | - Wei-Ting Chen
- Department of Digestive Disease Xiamen Chang Gung Hospital Xiamen China.,Department of Gastroenterology and Hepatology Chang Gung Memorial Hospital, Linkou Medical Center Taoyuan City Taiwan
| | - Jung-Chieh Lee
- Department of Ultrasound Xiamen Chang Gung Hospital Xiamen China
| | - Yung-Ning Huang
- Department of Digestive Disease Xiamen Chang Gung Hospital Xiamen China
| | - Chih-Kai Yang
- Department of Emergency Clinic Xiamen Chang Gung Hospital Xiamen China
| | - Hui-Shan Hsieh
- Department of Otolaryngology-Head and Neck Surgery Sleep Center, Xiamen Chang Gung Hospital Xiamen China
| | - Chih-Jung Chang
- Department of Medical Research Center and Xiamen Chang Gung Allergology Consortium Xiamen Chang Gung Hospital Xiamen China.,Department of Dermatology and Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital, Linkou, Taipei and Keelung Taoyuan City Taiwan
| | - Yang-Bor Lu
- Department of Digestive Disease Xiamen Chang Gung Hospital Xiamen China.,Hepatobiliary and Pancreatic Unit Xiamen Chang Gung Hospital Xiamen China
| |
Collapse
|
16
|
Konnikova L, Robinson TO, Owings AH, Shirley JF, Davis E, Tang Y, Wall S, Li J, Hasan MH, Gharaibeh RZ, Mendoza Alvarez LB, Ryan LK, Doty A, Chovanec JF, O'Connell MP, Grunes DE, Daley WP, Mayer E, Chang L, Liu J, Snapper SB, Milner JD, Glover SC, Lyons JJ. Small intestinal immunopathology and GI-associated antibody formation in hereditary alpha-tryptasemia. J Allergy Clin Immunol 2021; 148:813-821.e7. [PMID: 33865872 DOI: 10.1016/j.jaci.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hereditary alpha-tryptasemia (HαT) is characterized by elevated basal serum tryptase due to increased copies of the TPSAB1 gene. Individuals with HαT frequently present with multisystem complaints, including anaphylaxis and seemingly functional gastrointestinal (GI) symptoms. OBJECTIVE We sought to determine the prevalence of HαT in an irritable bowel syndrome cohort and associated immunologic characteristics that may distinguish patients with HαT from patients without HαT. METHODS Tryptase genotyping by droplet digital PCR, flow cytometry, cytometry by time-of-flight, immunohistochemistry, and other molecular biology techniques was used. RESULTS HαT prevalence in a large irritable bowel syndrome cohort was 5% (N = 8/158). Immunophenotyping of HαT PBMCs (N ≥ 27) revealed increased total and class-switched memory B cells. In the small bowel, expansion of tissue mast cells with expression of CD203c, HLA-DR, and FcεRI, higher intestinal epithelial cell pyroptosis, and increased class-switched memory B cells were observed. IgG profiles in sera from individuals with HαT (N = 21) significantly differed from those in individuals with quiescent Crohn disease (N = 20) and non-HαT controls (N = 19), with increased antibodies directed against GI-associated proteins identified in individuals with HαT. CONCLUSIONS Increased mast cell number and intestinal epithelial cell pyroptosis in the small intestine, and class-switched memory B cells in both the gut and peripheral blood associated with IgG reactive to GI-related proteins, distinguish HαT from functional GI disease. These innate and adaptive immunologic findings identified in association with HαT are suggestive of subclinical intestinal inflammation in symptomatic individuals.
Collapse
Affiliation(s)
- Liza Konnikova
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Children's Hospital of UPMC, Pittsburgh, Pa; Department of Pediatrics, Yale University School of Medicine, New Haven, Conn
| | - Tanya O Robinson
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss
| | - Anna H Owings
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss
| | - James F Shirley
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla
| | - Elisabeth Davis
- Division of Gastroenterology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark
| | - Ying Tang
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass
| | - Sarah Wall
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass
| | - Jian Li
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla
| | - Mohammad H Hasan
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss
| | - Raad Z Gharaibeh
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla
| | - Lybil B Mendoza Alvarez
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, Fla
| | - Lisa K Ryan
- Division of Infectious Disease, Department of Medicine, University of Florida, Gainesville, Fla
| | - Andria Doty
- Interdisciplinary Center for Biotechnology Research Cytometry Core, University of Florida, Gainesville, Fla
| | - Jack F Chovanec
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dianne E Grunes
- Department of Pathology, University of Mississippi Medical Center, Jackson, Miss
| | - William P Daley
- Department of Pathology, University of Mississippi Medical Center, Jackson, Miss
| | - Emeran Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA, Los Angeles, Calif
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA, Los Angeles, Calif
| | - Julia Liu
- Morehouse School of Medicine, Atlanta, Ga
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass
| | - Joshua D Milner
- Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY
| | - Sarah C Glover
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss; Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla.
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
17
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
18
|
Abstract
Biliary atresia (BA) is a fibro-obliterative condition of the biliary tree, presenting in infancy. The bilioenteric conduit formed at Kasai portoenterostomy (KPE), achieves restoration of bile flow in approximately 60% of infants. Even if the operation is successful, cirrhosis and its associated complications are, however, common. BA remains the leading cause for liver transplantation (LT) in children. Antibiotic, choleretic, and steroid therapy post-KPE have not convincingly reduced LT rates. Advances in molecular technology have enabled characterisation of the encoded genes of the gut microbiota (gut microbiome). The gut microbiome plays an important role in host metabolism, nutrition, and immune function, with alterations in its diversity and/or composition, known as dysbiosis, being described in disease states, including liver disease. Liver-gut microbiome exploration in adulthood largely focuses on nonalcoholic liver disease, cirrhosis (mainly alcohol- or viral-based aetiology) and cholestatic liver diseases (eg, primary sclerosing cholangitis), with microbial signatures correlating to disease severity. Investigation of the gut microbiota in BA had been limited to culture-based methodology, but molecular studies are emerging, and although in their infancy, highlight a potential pathogenic role for Enterobacteriaceae and Streptococcus, and a potential beneficial role for Bifidobacteria. Bacterial translocation, and the production of gut microbiome-derived metabolites, are key host-microbiome-mechanistic pathways in liver disease pathogenesis. Microbiome-targeted therapeutics for liver disease are in development, with faecal microbiota transplantation showing promise in cirrhosis. Could the gut microbiome be a novel modifiable risk factor in BA, reducing the need for LT?
Collapse
|
19
|
Chopyk DM, Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology 2020; 159:849-863. [PMID: 32569766 PMCID: PMC7502510 DOI: 10.1053/j.gastro.2020.04.077] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Intestinal barrier dysfunction and dysbiosis contribute to development of diseases in liver and other organs. Physical, immunologic, and microbiologic (bacterial, fungal, archaeal, viral, and protozoal) features of the intestine separate its nearly 100 trillion microbes from the rest of the human body. Failure of any aspect of this barrier can result in translocation of microbes into the blood and sustained inflammatory response that promote liver injury, fibrosis, cirrhosis, and oncogenic transformation. Alterations in intestinal microbial populations or their functions can also affect health. We review the mechanisms that regulate intestinal permeability and how changes in the intestinal microbiome contribute to development of acute and chronic liver diseases. We discuss individual components of the intestinal barrier and how these are disrupted during development of different liver diseases. Learning more about these processes will increase our understanding of the interactions among the liver, intestine, and its flora.
Collapse
Affiliation(s)
- Daniel M. Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
20
|
Abstract
Primary sclerosing cholangitis (PSC) is a rare, immune-mediated, chronic cholestatic liver disease associated with a unique phenotype of inflammatory bowel disease that frequently manifests as pancolitis with right-sided predominance. Available data suggest a bidirectional interplay of the gut-liver axis with critical roles for the gastrointestinal microbiome and circulating bile acids (BAs) in the pathophysiology of PSC. BAs shape the gut microbiome, whereas gut microbes have the potential to alter BAs, and there are emerging data that alterations of BAs and the microbiome are not simply a consequence but the cause of PSC. Clustering of PSC in families may suggest that PSC occurs in genetically susceptible individuals. After exposure to an environmental trigger (e.g., microbial byproducts or BAs), an aberrant or exaggerated cholangiocyte-induced immune cascade occurs, ultimately leading to bile duct damage and progressive fibrosis. The pathophysiology can be conceptualized as a triad of (1) gut dysbiosis, (2) altered BA metabolism, and (3) immune-mediated biliary injury. Immune activation seems to be central to the disease process, but immunosuppression does not improve clinical outcomes or alter the natural history of PSC. Currently, orthoptic liver transplantation is the only established life-saving treatment, whereas antimicrobial therapy or fecal transplantation is an emerging therapeutic option for PSC. The beneficial effects of these microbiome-based therapies are likely mediated by a shift of the gut microbiome with favorable effects on BA metabolism. In the future, personalized approaches will allow to better target the interdependence between microbiome, immune function, and BA metabolism and potentially cure patients with PSC.
Collapse
|
21
|
Giuffrè M, Campigotto M, Campisciano G, Comar M, Crocè LS. A story of liver and gut microbes: how does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol 2020; 318:G889-G906. [PMID: 32146836 DOI: 10.1152/ajpgi.00161.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each individual is endowed with a unique gut microbiota (GM) footprint that mediates numerous host-related physiological functions, such as nutrient metabolism, maintenance of the structural integrity of the gut mucosal barrier, immunomodulation, and protection against microbial pathogens. Because of increased scientific interest in the GM, its central role in the pathophysiology of many intestinal and extraintestinal conditions has been recognized. Given the close relationship between the gastrointestinal tract and the liver, many pathological processes have been investigated in the light of a microbial-centered hypothesis of hepatic damage. In this review we introduce to neophytes the vast world of gut microbes, including prevalent bacterial distribution in healthy individuals, how the microbiota is commonly analyzed, and the current knowledge of the role of GM in liver disease pathophysiology. Also, we highlight the potentials and downsides of GM-based therapy.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Michele Campigotto
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Giuseppina Campisciano
- Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Manola Comar
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Lory Saveria Crocè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Clinica Patologie del Fegato, Azienda Sanitaria Universitaria Integrata di Trieste, Italy.,Fondazione Italiana Fegato, Trieste, Italy
| |
Collapse
|
22
|
Maroni L, Ninfole E, Pinto C, Benedetti A, Marzioni M. Gut-Liver Axis and Inflammasome Activation in Cholangiocyte Pathophysiology. Cells 2020; 9:cells9030736. [PMID: 32192118 PMCID: PMC7140657 DOI: 10.3390/cells9030736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
The Nlrp3 inflammasome is a multiprotein complex activated by a number of bacterial products or danger signals and is involved in the regulation of inflammatory processes through caspase-1 activation. The Nlrp3 is expressed in immune cells but also in hepatocytes and cholangiocytes, where it appears to be involved in regulation of biliary damage, epithelial barrier integrity and development of fibrosis. Activation of the pathways of innate immunity is crucial in the pathophysiology of hepatobiliary diseases, given the strong link between the gut and the liver. The liver secretes bile acids, which influence the bacterial composition of the gut microbiota and, in turn, are heavily modified by microbial metabolism. Alterations of this balance, as for the development of dysbiosis, may deeply influence the composition of the bacterial products that reach the liver and are able to activate a number of intracellular pathways. This alteration may be particularly important in the pathogenesis of cholangiopathies and, in particular, of primary sclerosing cholangitis, given its strong association with inflammatory bowel disease. In the present review, we summarize current knowledge on the gut–liver axis in cholangiopathies and discuss the role of Nlrp3 inflammasome activation in cholestatic conditions.
Collapse
Affiliation(s)
- Luca Maroni
- Correspondence: ; Tel.: +39-071-220-6043; Fax: +39-071-220-6044
| | | | | | | | | |
Collapse
|
23
|
Intrahepatic biliary strictures after liver transplantation are morphologically similar to primary sclerosing cholangitis but immunologically distinct. Eur J Gastroenterol Hepatol 2020; 32:276-284. [PMID: 31895887 DOI: 10.1097/meg.0000000000001649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Biliary strictures are an important cause of morbidity and mortality in primary hepatic disease and after liver transplantation (LT). We aimed to characterize inflammatory cytokines in biliary fluids in biliary strictures to investigate their immunological origin. METHODS We conducted a retrospective study on 72 patients with strictures after LT, eight patients with primary sclerosing cholangitis (PSC) and 15 patients with secondary sclerosing cholangitis (SSC). We measured cytokines interleukin (IL)-2, -4, -6, -10, -17, monocyte chemoattractant protein (MCP)-1, fibroblast growth factor (FGF)-2 and interferon (IFN)-γ as well as biochemical components such as protein and phospholipids in biliary fluid obtained from endoscopic retrograde cholangiography (ERC). Cell viability assays were performed on human cholangiocytes (H69) after being treated with IL-6, IL-4 and IFN-γ. RESULTS Bile of patients with diffuse strictures after LT or due to SSC showed low values of all measured cytokines except for IL-6 levels, which were largely elevated in patients with diffuse strictures after LT. Patients high in biliary IL-6 showed an increase in profibrotic markers FGF-2 and MCP-1. In contrast, PSC bile was dominated by a Th1/Th17 profile with elevated IL-2, IL-17 and IFN-γ. In LT patients with biliary strictures, biliary IL-6 negatively predicted retransplantation-free survival after ERC. CONCLUSION PSC patients showed a biliary Th1/Th17 cytokine profile, while SSC and diffuse strictures showed low values of cytokines except IL-6. In diffuse intrahepatic strictures after LT, biliary IL-6 is strongly associated with retransplantation-free survival after ERC.
Collapse
|
24
|
Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019; 68:1516-1526. [PMID: 31076401 PMCID: PMC6790068 DOI: 10.1136/gutjnl-2019-318427] [Citation(s) in RCA: 558] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Blockade of Stellate Ganglion Remediates Hemorrhagic Shock-Induced Intestinal Barrier Dysfunction. J Surg Res 2019; 244:69-76. [PMID: 31279996 DOI: 10.1016/j.jss.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/13/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acute hemorrhage-induced excessive excitation of sympathetic-adrenal-medullary system (SAS) leads to gut hypoperfusion and barrier dysfunction, which is a critical event during hemorrhagic shock-induced multiple organ injury. Stellate ganglion blockade (SGB) has been widely used for suppression of sympathetic-adrenal-medullary system in the clinical practice. However, whether SGB improves intestinal barrier function after hemorrhagic shock remains unclear. Here, we hypothesized that the implementation of SGB restores intestinal barrier function and reduces gut injury. MATERIALS AND METHODS Male rats received the SGB pretreatment and underwent hemorrhagic shock followed by resuscitation. The 96-h survival rate, intestinal permeability and morphology, D-lactic acid concentration and diamine oxidase activity in plasma, and expressions of F-actin, Claudin-1, and E-cadherin in intestinal tissues were observed. RESULTS Pretreatment with SGB significantly enhances the 96-h survival rate in rats subjected to hemorrhagic shock (from 8.3% to 66.7%). Hemorrhagic shock reduced the coverage scale of intestinal mucus and intestinal villus width and height, enhanced the intestinal permeability to fluorescein isothiocyanate-dextran 4 and D-lactic acid concentration in plasma, and decreased the expressions of F-actin, Claudin-1, and E-Cadherin in intestinal tissue. These hemorrhagic shock-induced adverse effects were abolished by SGB treatment. CONCLUSIONS SGB treatment has a beneficial effect during hemorrhagic shock, which is associated with the improvement of intestine barrier function. SGB may be considered as a new therapeutic strategy for treatment of hemorrhagic shock.
Collapse
|
26
|
Chen S, Li X, Wang Y, Mu P, Chen C, Huang P, Liu D. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway. Mol Med Rep 2019; 19:3633-3641. [PMID: 30864725 PMCID: PMC6471656 DOI: 10.3892/mmr.2019.10018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study aimed to evaluate the effects of GRb1 on IIR injury and determine the mechanisms involved in these effects. Sprague Dawley rats were subjected to 75 min of superior mesenteric artery occlusion, followed by 3 h of reperfusion. GRb1 (15 mg/kg) was administered intraperitoneally 1 h prior to the induction of IIR, with or without intravenous administration of Wortmannin [WM; a phosphoinositide 3-kinase (PI3K) inhibitor, 0.6 mg/kg]. The degree of intestinal injury and oxidative stress-induced damage was determined by histopathologic evaluation and measurement of the serum activity levels of D-lactate, diamine oxidase and endotoxin, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and 8-iso-prostaglandin F2α (8-iso-PGF2α). The protein expression levels of p85, phosphorylated (p)-p85, protein kinase B (Akt), p-Akt and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined via western blotting, and the concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 were measured via ELISA. It was revealed that IIR led to severe intestinal injury (as determined by significant increases in intestinal Chiu scores), which was accompanied with disruptions in the integrity of the intestinal mucosal barrier. IIR also increased the expression levels of TNF-α, IL-1β, IL-6, MDA and 8-iso-PGF2α in the intestine, and decreased those of SOD. GRb1 reduced intestinal histological injury, and suppressed inflammatory responses and oxidative stress. Additionally, the protective effects of GRb1 were eliminated by WM. These findings indicated that GRb1 may ameliorate IIR injury by activating the PI3K/protein kinase B/Nrf2 pathway.
Collapse
Affiliation(s)
- Sufang Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Panwei Mu
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pinjie Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dezhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
27
|
Sato K, Meng F, Fava G, Glaser S, Alpini G. Functional roles of gut bacteria imbalance in cholangiopathies. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Dhillon AK, Kummen M, Trøseid M, Åkra S, Liaskou E, Moum B, Vesterhus M, Karlsen TH, Seljeflot I, Hov JR. Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver Int 2019; 39:371-381. [PMID: 30269440 DOI: 10.1111/liv.13979] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS One important hypothesis in primary sclerosing cholangitis pathophysiology suggests that bacterial products from an inflamed leaky gut lead to biliary inflammation. We aimed to investigate whether circulating markers of bacterial translocation were associated with survival in a Norwegian primary sclerosing cholangitis cohort. METHODS Serum levels of zonulin, intestinal fatty acid binding protein, soluble CD14, lipopolysaccharide and lipopolysaccharide-binding protein were measured in 166 primary sclerosing cholangitis patients and 100 healthy controls. RESULTS Lipopolysaccharide-binding protein and soluble CD14 were elevated in primary sclerosing cholangitis compared with healthy controls (median 13 662 vs 12 339 ng/mL, P = 0.010 and 1657 vs 1196 ng/mL, P < 0.001, respectively). High soluble CD14 and lipopolysaccharide-binding protein (values >optimal cut-off using receiver operating characteristics) were associated with reduced liver transplantation-free survival (P < 0.001 and P = 0.005, respectively). The concentration of soluble CD14 was higher in patients with hepatobiliary cancer compared to other primary sclerosing cholangitis patients and healthy controls. Zonulin was lower in primary sclerosing cholangitis than controls, but when excluding primary sclerosing cholangitis patients with increased prothrombin time zonulin concentrations were similar in primary sclerosing cholangitis and healthy controls. Concomitant inflammatory bowel disease did not influence the results, while inflammatory bowel disease patients without primary sclerosing cholangitis (n = 40) had lower concentration of soluble CD14. In multivariable Cox regression, high soluble CD14 and high lipopolysaccharide-binding protein were associated with transplantation-free survival, independent from Mayo risk score (HR: 2.26 [95% CI: 1.15-4.43], P = 0.018 and HR: 2.00 [95% CI: 1.17-3.43], P = 0.011, respectively). CONCLUSIONS Primary sclerosing cholangitis patients show increased levels of circulating markers of bacterial translocation. High levels are associated with poor prognosis measured by transplantation-free survival, indicating that ongoing gut leakage could have clinical impact in primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Amandeep K Dhillon
- Norwegian PSC Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Martin Kummen
- Norwegian PSC Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway
| | - Evaggelia Liaskou
- Centre for Liver Research, NIHR Birmingham Liver Biomedical Research Centre, Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Bjørn Moum
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Division of Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Mette Vesterhus
- Norwegian PSC Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tom H Karlsen
- Norwegian PSC Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway
| | - Johannes R Hov
- Norwegian PSC Center, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
29
|
Laborda TJ, Jensen MK, Kavan M, Deneau M. Treatment of primary sclerosing cholangitis in children. World J Hepatol 2019; 11:19-36. [PMID: 30705716 PMCID: PMC6354124 DOI: 10.4254/wjh.v11.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare disease of stricturing and destruction of the biliary tree with a complex genetic and environmental etiology. Most patients have co-occurring inflammatory bowel disease. Children generally present with uncomplicated disease, but undergo a variable progression to end-stage liver disease. Within ten years of diagnosis, 50% of children will develop clinical complications including 30% requiring liver transplantation. Cholangiocarcinoma is a rare but serious complication affecting 1% of children. Ursodeoxycholic acid and oral vancomycin therapy used widely in children as medical therapy, and may be effective in a subset of patients. Gamma glutamyltransferase is a potential surrogate endpoint for disease activity, with improved survival in patients who achieve a normal value. Endoscopic retrograde cholangiopancreatography is a necessary adjunct to medical therapy to evaluate mass lesions or dominant strictures for malignancy, and also to relieve biliary obstruction. Liver transplantation remains the only option for patients who progress to end-stage liver disease. We review special considerations for patients before and after transplant, and in patients with inflammatory bowel disease. There is presently no published treatment algorithm or guideline for the management of children with PSC. We review the evidence for drug efficacy, dosing, duration of therapy, and treatment targets in PSC, and provide a framework for endoscopic and medical management of this complex problem.
Collapse
Affiliation(s)
- Trevor J Laborda
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84113, United States
| | - M Kyle Jensen
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84113, United States
| | - Marianne Kavan
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84113, United States
| | - Mark Deneau
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84113, United States
| |
Collapse
|
30
|
González-González M, Díaz-Zepeda C, Eyzaguirre-Velásquez J, González-Arancibia C, Bravo JA, Julio-Pieper M. Investigating Gut Permeability in Animal Models of Disease. Front Physiol 2019; 9:1962. [PMID: 30697168 PMCID: PMC6341294 DOI: 10.3389/fphys.2018.01962] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
A growing number of investigations report the association between gut permeability and intestinal or extra-intestinal disorders under the basis that translocation of gut luminal contents could affect tissue function, either directly or indirectly. Still, in many cases it is unknown whether disruption of the gut barrier is a causative agent or a consequence of these conditions. Adequate experimental models are therefore required to further understand the pathophysiology of health disorders associated to gut barrier disruption and to develop and test pharmacological treatments. Here, we review the current animal models that display enhanced intestinal permeability, and discuss (1) their suitability to address mechanistic questions, such as the association between gut barrier alterations and disease and (2) their validity to test potential treatments for pathologies that are characterized by enhanced intestinal permeability.
Collapse
Affiliation(s)
- Marianela González-González
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camilo Díaz-Zepeda
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Johana Eyzaguirre-Velásquez
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Javier A Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
31
|
Dinya T, Tornai T, Vitalis Z, Tornai I, Balogh B, Tornai D, Antal-Szalmas P, Sumegi A, Andrikovics H, Bors A, Tordai A, Papp M. Functional polymorphisms of innate immunity receptors are not risk factors for the non-SBP type bacterial infections in cirrhosis. Liver Int 2018; 38:1242-1252. [PMID: 29235260 DOI: 10.1111/liv.13664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pattern recognition receptors (PRRs) have a key role in the innate host defense. Functional polymorphisms of various PRRs have been established to contribute to an increased susceptibility to spontaneous bacterial peritonitis (SBP). Their role in the development of cirrhosis-associated bacterial infections (BI), beyond SBP or progressive disease course related to pathological bacterial translocation (BT) remains unknown. METHODS Three hundred and forty-nine patients with cirrhosis were genotyped for common NOD2 (R702W, G908R and L1007PfsinsC), TLR2 (-16934T>A), and TLR4 (D299G) variants. Incidence of BIs, decompensating events and liver-related death were assessed in a 5-year follow-up observational study. Pathological BT was assessed based on the presence of antimicrobial antibodies or lipopolysaccharide-binding protein (LBP) level. RESULTS In patients with ascites (n = 88) only NOD2 gene variants were associated with an increased cumulative probability of SBP (76.9% ± 19.9%) compared to wild-type (30.9% ± 6.9%, PLogRank = .047). Individual or combined PRR genetic profiles were associated with the risk of non-SBP type BI. Advanced disease stage (HR [95% CI]: 2.11 [1.38-3.25]) and prior history of a BI episode (HR: 2.42 [1.58-3.72]) were the major clinical risk factors of a subsequent BI. The risk of a non-SBP type BI in patients with advanced disease and a prior BI was even higher (HR: 4.74 [2.68-8.39]). The frequency of antimicrobial antibodies and LBP levels did not differ between various PRR genotypes. Correspondingly, PRR genetic profile was not able to predict the long-term disease course. CONCLUSIONS In cirrhosis, functional polymorphisms of PRRs did not improve the identification of patients with high risk of BI beyond SBP or progressive diseases course.
Collapse
Affiliation(s)
- Tamas Dinya
- Faculty of Medicine, Institute of Surgery, University of Debrecen, Debrecen, Hungary
| | - Tamas Tornai
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Vitalis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Tornai
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Boglárka Balogh
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Tornai
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Antal-Szalmas
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Sumegi
- Vascular Biology, Thrombosis and Haemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | | | - Andras Bors
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Attila Tordai
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Maria Papp
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
32
|
Mateer SW, Mathe A, Bruce J, Liu G, Maltby S, Fricker M, Goggins BJ, Tay HL, Marks E, Burns G, Kim RY, Minahan K, Walker MM, Callister RC, Foster PS, Horvat JC, Hansbro PM, Keely S. IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1625-1639. [DOI: 10.1016/j.ajpath.2018.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/25/2018] [Accepted: 03/23/2018] [Indexed: 02/08/2023]
|
33
|
Loss of tolerance to gut immunity protein, glycoprotein 2 (GP2) is associated with progressive disease course in primary sclerosing cholangitis. Sci Rep 2018; 8:399. [PMID: 29321484 PMCID: PMC5762861 DOI: 10.1038/s41598-017-18622-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
Abstract
Glycoprotein 2[GP2] is a specific target of pancreatic autoantibodies[PAbs] in Crohn’s disease(CD) and is involved in gut innate immunity processes. Our aim was to evaluate the prevalence and prognostic potential of PAbs in primary sclerosing cholangitis(PSC). Sixty-five PSC patients were tested for PAbs by indirect immunofluorescence and compared with healthy (n = 100) and chronic liver disease controls(CLD, n = 488). Additionally, a panel of anti-microbial antibodies and secretory (s)IgA levels were measured, as markers of bacterial translocation and immune dysregulation. PAbs were more frequent in PSC(46.2%) compared to controls(healthy:0% and CLD:4.5%), [P < 0.001, for each]. Occurrence of anti-GP2 antibody was 30.8% (20/65) and was exclusively of IgA isotype. Anti-GP2 IgA positive patients had higher sIgA levels (P = 0.021). With flow-cytometry, 68.4% (13/19) of anti-GP2 IgA antibodies were bound with secretory component, suggesting an active retro-transportation of anti-GP2 from the gut lumen to the mucosa. Anti-GP2 IgA was associated with shorter transplant-free survival [PLogRank < 0.01] during the prospective follow-up (median, IQR: 87 [9–99] months) and remained an independent predictor after adjusting for Mayo risk score(HR: 4.69 [1.05–21.04], P = 0.043). These results highlight the significance of gut-liver interactions in PSC. Anti-GP2 IgA might be a valuable tool for risk stratification in PSC and considered as a potential therapeutic target.
Collapse
|