1
|
Emodin Alleviates Sodium Taurocholate-Induced Pancreatic Ductal Cell Damage by Inhibiting the S100A9/VNN1 Signaling Pathway. Pancreas 2022; 51:739-746. [PMID: 36395397 PMCID: PMC9722379 DOI: 10.1097/mpa.0000000000002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Because the pathogenesis of the disease is unclear, the treatment of patients with acute pancreatitis, especially severe acute pancreatitis, is still a major challenge for clinicians. Emodin is an anthraquinone compound extracted from rhubarb that can alleviate the damage to pancreatic ductal epithelial cells induced by adenosine triphosphate, but whether it has a similar protective effect on sodium taurocholate (STC)-stimulated pancreatic ductal cells and the underlying mechanism has not yet been reported. METHODS A model of STC-induced HPDE6-C7 human pancreatic ductal epithelial cell injury was established, and then apoptosis and the levels of reactive oxygen species (ROS), glutathione, gamma-glutamylcysteine synthetase, and inflammatory cytokines were assessed in the presence or absence of emodin pretreatment. S100 calcium binding protein A9 (S100A9) and Vanin1 (VNN1) protein expression was also measured. RESULTS Emodin significantly increased HPDE6-C7 cell viability, inhibited apoptosis and ROS release, and elevated glutathione levels and gamma-glutamylcysteine synthetase activity. Furthermore, emodin downregulated S100A9 and VNN1 protein expression and inhibited the production of inflammatory factors, such as interleukin (IL)-1β, IL-6, IL-8, and IL-18. CONCLUSIONS Emodin attenuates STC-induced pancreatic ductal cell injury possibly by inhibiting S100A9/VNN1-mediated ROS release. This finding provides evidence for the future development of emodin as a therapeutic agent.
Collapse
|
2
|
Zhang J, Li H, Hou L, Sun J, Wang W, Li H, Yang W, Rong P, Nan T, Kang L, Yang B. Pharmacokinetics and metabolites of glycosides and lignans of the stem bark of Magnolia officinalis in functional dyspepsia and normal rats using LC-MS/MS. J Sep Sci 2022; 45:3663-3678. [PMID: 35908283 DOI: 10.1002/jssc.202100982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
The stem bark of Magnolia officinalis is a traditional Chinese medicine for the treatment of abdominal distention and functional dyspepsia. The pharmacokinetics of three glycosides (magnoloside A, magnoloside B, and syringin) and two lignans (honokiol and magnolol) in both of normal and functional dyspepsia rats were firstly investigated by ultra-performance liquid chromatography-triple quadrupole mass spectrometry method and the influences of the coexisting compounds on the pharmacokinetic parameters of honokiol and magnolol were also studied. It was found that all of the five target compounds were quickly absorbed and eliminated in both of normal and functional dyspepsia rats, while, their residence time was significantly decreased in pathological states except magnoloside A. The coexisting compounds in the stem bark of M. officinalis significantly reduced absorption and increased elimination of honokiol in vivo. It's worth noticing that the volume of distribution of lignan was quite lower than that of glycoside. Moreover, the metabolic profiling of magnoloside A, honokiol, and magnolol in vivo was analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method, from which three prototypes were identified and thirty five metabolites were putatively characterized, and eighteen unknown metabolites were reasonably characterized for the first time. The results indicated that sulfation and glucuronidation were the main metabolic pathways of honokiol and magnolol. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jidan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Hongmei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Liwei Hou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jianhui Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Weihao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Hua Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Tiegui Nan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Liping Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| |
Collapse
|
3
|
Zhan L, Peng X, Lin J, Zhang Y, Gao H, Zhu Y, Huan Y, Zhao G. Honokiol Reduces Fungal Load, Toll-Like Receptor-2, and Inflammatory Cytokines in Aspergillus fumigatus Keratitis. Invest Ophthalmol Vis Sci 2020; 61:48. [PMID: 32347916 PMCID: PMC7401949 DOI: 10.1167/iovs.61.4.48] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose We characterized the effects of Honokiol (HNK) on Aspergillus fumigatus-caused keratomycosis and the underlying mechanisms. HNK is known to have anti-inflammatory and antifungal properties, but the influence on fungal keratitis (FK) remains unknown. Methods In ex vivo, minimum inhibitory concentration and Cell Count Kit-8 assay were carried out spectrophotometrically to provide preferred concentration applied in vivo. Time kill assay pointed that HNK was fungicidal and fungistatic chronologically. Adherence assay, crystal violet staining, and membrane permeability assay tested HNK effects on different fungal stages. In vivo, clinical scores reflected the improvement degree of keratitis outcome. Myeloperoxidase (MPO) assay, flow cytometry (FCM), and immunohistofluorescence staining (IFS) were done to evaluate neutrophil infiltration. Plate count detected HNK fungicidal potentiality. RT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) verified the anti-inflammatory activity of HNK collaboratively. Results In vitro, MIC90 HNK was 8 µg/mL (no cytotoxicity), and Minimal Fungicidal Concentration (MFC) was 12 µg/mL for A. fumigatus. HNK played the fungistatic and fungicidal roles at 6 and 24 hours, respectively, inhibiting adherence at the beginning, diminishing biofilms formation, and increasing membrane permeability all the time. In vivo, HNK improved C57BL/6 mice outcome by reducing disease severity (clinical scores), neutrophil infiltration (MPO, FCM, and IFS), and fungal loading (plate count). RT-PCR, Western blot, and ELISA revealed that HNK downregulated mRNA and protein expression levels of Toll-like receptor-2 (TLR-2), high mobility group box 1 (HMGB1), IL-1β, and TNF-α. Conclusions Our study suggested HNK played antifungal and anti-inflammatory roles on keratomycosis by reducing survival of fungi, infiltration of leucocytes, and expression of HMGB1, TLR-2, and proinflammatory cytokines, providing a potential treatment for FK.
Collapse
|
4
|
Luo Y, Feng X, Wu D, Wang J, Lyv Z, Zheng J, Lim KT, Li Y. A randomized controlled trial of Chinese traditional medicine Dachengqi Decoction in the treatment of postoperative intestinal function recovery. Transl Cancer Res 2020; 9:4498-4506. [PMID: 35117815 PMCID: PMC8797330 DOI: 10.21037/tcr-19-2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/08/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intestinal dysfunction is not conducive to the recovery of patients after surgery. It is particularly important to restore the intestinal function as soon as possible. In recent years, ultrasonic drug penetration therapy as a new type of non-invasive therapy has been used to solve this problem, but its efficacy has not been confirmed. METHODS Single-centre, parallel, randomized controlled clinical trial in China that included 184 patients undergoing laparoscopic gastrointestinal surgery. Ninety-one participants were randomly assigned to low-frequency ultrasound and electric pulses for transdermal drug delivery with Dachengqi Decoction (DCQD) (intervention group), and 90 were assigned to the control group after laparoscopic gastrointestinal surgery. The primary outcome was time to first flatus after surgery (by patient's subjective feeling). Secondary outcomes assessed the recovery time of bowel movement, time of the first defecation, postoperative gastrointestinal complications (e.g., nausea, vomit, and bloating), days of hospitalization and treatment costs. RESULTS Of 184 patients, 181 (98.4%) completed the trial. The sociodemographic characteristics and efficiency data were comparable in the two groups at baseline. The intervention group had a shorter mean time of bowel movement recovery than the control group [29.4 h (IQR, 22.0-35.0 h) vs. 33.7 h (IQR, 24.0-40.0 h; P=0.005)] and a shorter mean time to first flatus after surgery [35.8 h (IQR, 23.1-46.6 h) vs. 46.7 h (IQR, 25.9-61.3 h; P=0.012)]. Postoperative gastrointestinal reactions (e.g., nausea, vomit, and bloating) occurred in 28.6% in the intervention group and 43.3% in the control group (P=0.038). Two patients in the intervention group had electrical tingling sensations, and one patient had a skin rash during the treatment. There were no significant differences in the occurrence rates of AEs or SAE, days of hospitalization and treatment costs between the two groups. CONCLUSIONS Low-frequency ultrasound and electric pulses for transdermal drug delivery with DCQD can shorten the time of bowel movement recovery and accelerate first anal exhaust after laparoscopic gastrointestinal surgery. TRAIL REGISTRATION Chictr.org.cn Identifier: ChiCTR-IPR-17013630.
Collapse
Affiliation(s)
- Yuwen Luo
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingyu Feng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Deqing Wu
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junjiang Wang
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zejian Lyv
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiabin Zheng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kheng Tian Lim
- Department of Surgery, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Yong Li
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Yao JQ, Zhu L, Miao YF, Zhu L, Chen H, Yuan L, Hu J, Yi XL, Wu QT, Yang XJ, Wan MH, Tang WF. Optimal dosing time of Dachengqi decoction for protection of extrapancreatic organs in rats with experimental acute pancreatitis. World J Gastroenterol 2020; 26:3056-3075. [PMID: 32587448 PMCID: PMC7304110 DOI: 10.3748/wjg.v26.i22.3056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a pancreatic inflammatory disorder that is commonly complicated by extrapancreatic organ dysfunction. Dachengqi decoction (DCQD) has a potential role in protecting the extrapancreatic organs, but the optimal oral administration time remains unclear.
AIM To screen the appropriate oral administration time of DCQD for the protection of extrapancreatic organs based on the pharmacokinetics and pharmacodynamics of AP rats.
METHODS This study consisted of two parts. In the first part, 24 rats were divided into a sham-operated group and three model groups. The four groups were intragastrically administered with DCQD (10 g/kg) at 4 h, 4 h, 12 h, and 24 h postoperatively, respectively. Tail vein blood was taken at nine time points after administration, and then the rats were euthanized and the extrapancreatic organ tissues were immediately collected. Finally, the concentrations of the major DCQD components in all samples were detected. In the second part, 84 rats were divided into a sham-operated group, as well as 4 h, 12 h, and 24 h treatment groups and corresponding control groups (4 h, 12 h, and 24 h control groups). Rats in the treatment groups were intragastrically administered with DCQD (10 g/kg) at 4 h, 12 h, and 24 h postoperatively, respectively, and rats in the control groups were administered with normal saline at the same time points. Then, six rats from each group were euthanized at 4 h and 24 h after administration. Serum amylase and inflammatory mediators, and pathological scores of extrapancreatic organ tissues were evaluated.
RESULTS For part one, the pharmacokinetic parameters (C max, T max, T 1/2, and AUC 0 → t) of the major DCQD components and the tissue distribution of most DCQD components were better when administering DCQD at the later (12 h and 24 h) time points. For part two, delayed administration of DCQD resulted in lower IL-6 and amylase levels and relatively higher IL-10 levels, and pathological injury of extrapancreatic organ tissues was slightly less at 4 h after administration, while the results were similar between the treatment and corresponding control groups at 24 h after administration.
CONCLUSION Delayed administration of DCQD might reduce pancreatic exocrine secretions and ameliorate pathological injury in the extrapancreatic organs of AP rats, demonstrating that the late time is the optimal dosing time.
Collapse
Affiliation(s)
- Jia-Qi Yao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin Zhu
- Digestive System Department, Sichuan Integrative Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Yi-Fan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing Hu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Lin Yi
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiu-Ting Wu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
6
|
Sun W, Chen Y, Li H, Liu H, Li J, Chen J, Feng D. Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed Pharmacother 2019; 121:109656. [PMID: 31810129 DOI: 10.1016/j.biopha.2019.109656] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dachengqi decoction (DCQD) is a classical prescription in traditional Chinese medicine (TCM). It has been used to treat abdominal pain and acute pancreatitis (AP) for thousands of years in China. OBJECTIVE To predict the active components and signaling pathway of DCQD and to further explore the potential molecular mechanism of DCQD as a treatment of AP using network pharmacology. METHODS Network pharmacology and bioinformatics were used to determine the active components of DCQD and its potential target in the treatment of AP. The AP model was induced by Cerulein (Cer) combined with lipopolysaccharide (LPS). The pharmacodynamic basis of DCQD in the treatment of AP was evaluated in vitro and in vivo and Western blot analysis and immunofluorescence were used to determine the molecular mechanism of DCQD. RESULTS Screening using relevant databases and topological analysis revealed 71 active components and 535 potential target proteins in DCQD. In addition, 445 differential genes for AP were also screened. Pathway enrichment analysis, PPI network analysis and transcription factor prediction showed that DCQD played an important role in the PI3K-Akt signal pathway, and 17 DCQD monomers were found in this signal pathway. In the AP model, DCQD promoted pancreatic acinar cell apoptosis, reduction in inflammation, and regulation of the PI3K-AKT signaling pathway. DCQD inhibited the expression of p-AKT and p- NF-kB proteins in pancreatic tissue of the AP model both in vitro and in vivo. CONCLUSION This study reveals that 17 active components of DCQD improve AP by regulating the PI3K/AKT signaling pathway and promoting apoptosis and suppressing pathological injury and inflammation.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yafeng Chen
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hongchang Li
- Department of general surgery, Minhang District Central Hospital, Shanghai 201100, China
| | - Huan Liu
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Li
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jian Chen
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai 200082, China; Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Dianxu Feng
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
7
|
Da-Cheng-Qi Decoction Alleviates Intestinal Injury in Rats with Severe Acute Pancreatitis by Inhibiting the JAK2-STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3909468. [PMID: 31485245 PMCID: PMC6710798 DOI: 10.1155/2019/3909468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Objective To investigate the effect of Da-Cheng-Qi decoction (DCQD) on treating intestinal injury in rats with severe acute pancreatitis (SAP), based on the Janus kinase 2 (JAK2)/signal transducers and transcription 3 (STAT3) signaling pathway. Methods Rats were randomly divided into the SAP group, SAP + ruxolitinib (JAK2 inhibitor) group, SAP + Stattic (STAT3 inhibitor) group, SAP + DCQD group, and sham operation group. They were further divided into 3-hour, 6-hour, 12-hour, and 18-hour subgroups. Levels of amylase and the inflammatory cytokines tumor necrosis factor-α, interleukin 6, interleukin 10, and interleukin 4 in plasma were tested. The messenger ribonucleic acid (mRNA) expression of JAK2 and STAT3 and the protein expression of phosphorylated JAK2 (p-JAK2) and phosphorylated STAT3 (p-STAT3) in the pancreas and terminal ileum tissues were examined. Results Rats with SAP had severe changes in plasma levels of amylase and inflammatory cytokines and showed an overexpression of JAK2 mRNA, STAT3 mRNA, p-JAK2 protein, and p-STAT3 protein in the pancreas and terminal ileum. The events could be downregulated by treatment with DCQD, JAK2 inhibitor, and STAT3 inhibitor. Conclusions In rats with SAP, DCQD ameliorated inflammatory cytokines and intestinal injury, which may be closely associated with the inhibition of the JAK2/STAT3 signaling pathway.
Collapse
|
8
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance. Int J Mol Sci 2019; 20:E2794. [PMID: 31181644 PMCID: PMC6600324 DOI: 10.3390/ijms20112794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease associated with high morbidity and mortality. Clinical studies can provide some data concerning the etiology, pathophysiology, and outcomes of this disease. However, the study of early events and new targeted therapies cannot be performed on humans due to ethical reasons. Experimental murine models can be used in the understanding of the pancreatic inflammation, because they are able to closely mimic the main features of human AP, namely their histologic glandular changes and distant organ failure. These models continue to be important research tools for the reproduction of the etiological, environmental, and genetic factors associated with the pathogenesis of this inflammatory pathology and the exploration of novel therapeutic options. This review provides an overview of several murine models of AP. Furthermore, special focus is made on the most frequently carried out models, the protocols used, and their advantages and limitations. Finally, examples are provided of the use of these models to improve knowledge of the mechanisms involved in the pathogenesis, identify new biomarkers of severity, and develop new targeted therapies.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - António Gouveia
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal.
| |
Collapse
|