1
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Yang W, Hu P, Zuo C. Application of imaging technology for the diagnosis of malignancy in the pancreaticobiliary duodenal junction (Review). Oncol Lett 2024; 28:596. [PMID: 39430731 PMCID: PMC11487531 DOI: 10.3892/ol.2024.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
The pancreaticobiliary duodenal junction (PBDJ) is the connecting area of the pancreatic duct, bile duct and duodenum. In a broad sense, it refers to a region formed by the head of the pancreas, the pancreatic segment of the common bile duct and the intraduodenal segment, the descending and the horizontal part of the duodenum, and the soft tissue around the pancreatic head. In a narrow sense, it refers to the anatomical Vater ampulla. Due to its complex and variable anatomical features, and the diversity of pathological changes, it is challenging to make an early diagnosis of malignancy at the PBDJ and define the histological type. The unique anatomical structure of this area may be the basis for the occurrence of malignant tumors. Therefore, understanding and subclassifying the anatomical configuration of the PBDJ is of great significance for the prevention and treatment of malignant tumors at their source. The present review comprehensively discusses commonly used imaging techniques and other new technologies for diagnosing malignancy at the PBDJ, offering evidence for physicians and patients to select appropriate examination methods.
Collapse
Affiliation(s)
- Wanyi Yang
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| | - Pingsheng Hu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
3
|
Onoe M, Fukuba N, Kodama Y, Oka A, Kawashima K, Shibagaki K, Ishimura N, Kushiyama Y, Uchida Y, Furukawa T, Ishihara S. Multiple intraductal papillary neoplasms of bile duct diagnosed based on endoscopic ultrasonography and peroral cholangioscopy findings. Clin J Gastroenterol 2024; 17:962-969. [PMID: 38971959 PMCID: PMC11436404 DOI: 10.1007/s12328-024-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/02/2024] [Indexed: 07/08/2024]
Abstract
A man in his 30s was referred to our department for evaluation of bile duct stricture and removal of an intrahepatic bile duct stone. Five years before his presentation, he underwent left hepatectomy for a giant hepatic hemangioma. There were no abnormalities in blood biochemical tests. Magnetic resonance cholangiopancreatography showed one 5 mm oval defect in region B6 and two 8 mm semicircular defects in the hilar bile duct. Endoscopic ultrasound revealed a 3.5 mm hypoechoic focal raised lesion in the hilar bile duct. Oral cholangioscopy revealed his two lesions in the hilar bile duct as white papillary elevations with mucus production. The pathological diagnosis of intraductal papillary neoplasm was determined (low-grade dysplasia, type 1, gastric type). After 1 and a half years, no expansion of the bile duct lesion was observed. Initially, it was thought to be a benign stenosis after liver resection, but based on the results of endoscopic ultrasound, we suspected a tumorous lesion, and we were able to make an accurate diagnosis, including histological type, using transoral cholangioscopy.
Collapse
Affiliation(s)
- Masaki Onoe
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Nobuhiko Fukuba
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan.
| | - Yasuhide Kodama
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Akihiko Oka
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Kousaku Kawashima
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Kotaro Shibagaki
- Division of Endoscopy, Shimane University Hospital, Izumo, Japan
| | - Norihisa Ishimura
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Yoshinori Kushiyama
- Department of Gastroenterology, Matsue Red Cross Hospital, Izumo, Shimane, Japan
| | - Yasushi Uchida
- Department of Gastroenterology, Matsue Red Cross Hospital, Izumo, Shimane, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunji Ishihara
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| |
Collapse
|
4
|
Evans M, Kendall T. Practical considerations for pathological diagnosis and molecular profiling of cholangiocarcinoma: an expert review for best practices. Expert Rev Mol Diagn 2024; 24:393-408. [PMID: 38752560 DOI: 10.1080/14737159.2024.2353696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Advances in precision medicine have expanded access to targeted therapies and demand for molecular profiling of cholangiocarcinoma (CCA) patients in routine clinical practice. However, pathologists face challenges in establishing a definitive intrahepatic CCA (iCCA) diagnosis while preserving sufficient tissue for molecular profiling. Additionally, they frequently face challenges in optimal tissue handling to preserve nucleic acid integrity. AREAS COVERED This article first identifies the challenges in establishing a definitive diagnosis of iCCA in a lesional liver biopsy while preserving sufficient tissue for molecular profiling. Then, the authors explore the clinical value of molecular profiling, the basic principles of single gene and next-generation sequencing (NGS) techniques, and the challenges in tissue sampling for genomic testing. They also propose an algorithm for best practice in tissue management for molecular profiling of CCA. EXPERT OPINION Several practical challenges face pathologists during tissue sampling and processing for molecular profiling. Optimized tissue processing, careful tissue handling, and selection of appropriate approaches to molecular testing are essential to ensure that the highest possible quality of diagnostic information is provided in the greatest proportion of cases.
Collapse
Affiliation(s)
- Matt Evans
- Cellular Pathologist, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
5
|
Ward JD, Fowler M, Robledo-Gomez A, Goodyear SM, Kardosh A, Sasatomi E. PD-L1 expression in pancreaticobiliary adenosquamous carcinoma: a single-institution case series. J Gastrointest Oncol 2024; 15:768-779. [PMID: 38756636 PMCID: PMC11094501 DOI: 10.21037/jgo-24-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/31/2024] [Indexed: 05/18/2024] Open
Abstract
Background The programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is a potent negative regulator of T-cell-mediated immune response that is upregulated in many neoplasms. Pancreaticobiliary adenosquamous carcinoma (PB-ASC) is an aggressive cancer that carries a poorer prognosis compared with pure pancreaticobiliary adenocarcinoma (PB-AC). To date, there is little published information regarding PD-L1 expression in PB-ASC. The aim of the study was to examine the relationship between PD-L1 expression and tumor-infiltrating lymphocytes in PB-ASC and PB-AC. Methods We evaluated 15 PB-ASCs (10 pancreatic, 5 gallbladder) and 34 control PB-ACs (22 pancreatic ductal, and 12 gallbladder) for tumor expression of PD-L1 using anti-PD-L1 (E1L3N) antibody. All tumors were classified into three immune phenotypes: immune inflamed (II), immune excluded (IE), and immune desert (ID) according to the distribution of tumor-infiltrating lymphocytes in tumor tissues. Results The frequency of PD-L1 expression was significantly higher in PB-ASC (10/15; 66.7%) than in PB-AC (3/34; 8.8%). In PB-ASC, PD-L1 expression occurred exclusively in the squamous component in six cases, exclusively in the glandular component in one case, and in both the squamous and the glandular components in three cases. PD-L1 expression in PB-ASC was irrespective of the tumor immune status, whereas its expression in PB-AC was observed only in tumors with the II or IE phenotype. The ID phenotype was relatively rare (4/15; 26.7%) in PB-ASC compared with PB-AC (22/34; 65%; P=0.02). Conclusions PB-ASCs are notably enriched in inflammatory response and showed significantly higher PD-L1 expression than PB-AC (P<0.001), suggesting a potential therapeutic role for immune checkpoint inhibitors in managing patients with PB-ASC.
Collapse
Affiliation(s)
- Jeremy D. Ward
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Mark Fowler
- Department of Pathology, Community Memorial Hospital, Ventura, CA, USA
| | - Ariannette Robledo-Gomez
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Shaun M. Goodyear
- Knight Cancer Institute, OHSU, Portland, OR, USA
- Division of Hematology and Oncology, School of Medicine, OHSU, Portland, OR, USA
| | - Adel Kardosh
- Knight Cancer Institute, OHSU, Portland, OR, USA
- Division of Hematology and Oncology, School of Medicine, OHSU, Portland, OR, USA
| | - Eizaburo Sasatomi
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
6
|
Chi H, Yan X, Tong W, Tian Q. SpyGlass guided PDT for advanced intraductal papillary mucinous neoplasm of the bile tract: A case report and literature review. Photodiagnosis Photodyn Ther 2024; 46:104098. [PMID: 38642727 DOI: 10.1016/j.pdpdt.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Intraductal papillary mucinous neoplasm of the bile tract is a rare biliary tumor characterized by mucin growth within the bile duct. In the early stages, it often presents without significant obstruction, this often leads to its discovery in the advanced stages. We report a case of a 63-year-old female with an intraductal papillary mucinous neoplasm of the bile duct (IPMN-B). The patient had a history of intrahepatic bile duct stones and biliary ascariasis. She gradually developed symptoms such as jaundice and intermittent fever before admission, and a bile duct biopsy confirmed the diagnosis of IPMN-B. Currently, endoscopic photodynamic therapy (PDT) is considered an effective treatment for bile duct cancer. In this case, we performed two sessions of PDT guided by SpyGlass. The patient experienced complete remission postoperatively, and there has been no evidence of tumor recurrence or metastasis in the three years following the procedure.
Collapse
Affiliation(s)
- Hao Chi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300192, China
| | - Xiaodong Yan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300192, China
| | - Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300192, China
| | - Qing Tian
- Department of Hepatobiliary Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
7
|
Tian S, Shi H, Chen W, Li S, Han C, Du F, Wang W, Wen H, Lei Y, Deng L, Tang J, Zhang J, Lin J, Shi L, Ning B, Zhao K, Miao J, Wang G, Hou H, Huang X, Kong W, Jin X, Ding Z, Lin R. Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: a multicenter retrospective study. Int J Surg 2024; 110:1637-1644. [PMID: 38079604 PMCID: PMC10942157 DOI: 10.1097/js9.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND There are challenges for beginners to identify standard biliopancreatic system anatomical sites on endoscopic ultrasonography (EUS) images. Therefore, the authors aimed to develop a convolutional neural network (CNN)-based model to identify standard biliopancreatic system anatomical sites on EUS images. METHODS The standard anatomical structures of the gastric and duodenal regions observed by EUS was divided into 14 sites. The authors used 6230 EUS images with standard anatomical sites selected from 1812 patients to train the CNN model, and then tested its diagnostic performance both in internal and external validations. Internal validation set tests were performed on 1569 EUS images of 47 patients from two centers. Externally validated datasets were retrospectively collected from 16 centers, and finally 131 patients with 85 322 EUS images were included. In the external validation, all EUS images were read by CNN model, beginners, and experts, respectively. The final decision made by the experts was considered as the gold standard, and the diagnostic performance between CNN model and beginners were compared. RESULTS In the internal test cohort, the accuracy of CNN model was 92.1-100.0% for 14 standard anatomical sites. In the external test cohort, the sensitivity and specificity of CNN model were 89.45-99.92% and 93.35-99.79%, respectively. Compared with beginners, CNN model had higher sensitivity and specificity for 11 sites, and was in good agreement with the experts (Kappa values 0.84-0.98). CONCLUSIONS The authors developed a CNN-based model to automatically identify standard anatomical sites on EUS images with excellent diagnostic performance, which may serve as a potentially powerful auxiliary tool in future clinical practice.
Collapse
Affiliation(s)
- Shuxin Tian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi
- National Health Commission Key Laboratory of Central Asia High Incidence Disease Prevention and Control, Shihezi
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Weigang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi
- National Health Commission Key Laboratory of Central Asia High Incidence Disease Prevention and Control, Shihezi
| | - Shijie Li
- National Health Commission Key Laboratory of Central Asia High Incidence Disease Prevention and Control, Shihezi
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing
| | - Chaoqun Han
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Hongxu Wen
- Department of Gastroenterology, Lanzhou Second People’s Hospital, Lanzhou
| | - Yali Lei
- Department of Gastroenterology, Weinan Central Hospital, Weinan
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Jing Tang
- Department of Gastroenterology, Fuling Hospital Affiliated to Chongqing University, Chongqing
| | - Jinjie Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou
| | - Bo Ning
- Department of Gastroenterology, The Second Affiliated Hospital Chongqing Medical University, Chongqing
| | - Kui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Chendu Medical College, Chengdu
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming
| | - Guobao Wang
- Department of endoscopy, Sun Yat-sen University Cancer Center,Guangzhou
| | - Hui Hou
- Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi
| | - Xiaoxi Huang
- Department of Gastroenterology, Haikou People’s Hospital, Haikou
| | - Wenjie Kong
- Department of Gastroenterology, People’s Hospital of Xinjiang Autonomous Region, Urumqi
| | - Xiaojuan Jin
- Department of Gastroenterology, Suining Central Hospital, Suining, People’s Republic of China
| | - Zhen Ding
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Endoscopy Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
8
|
Cardinale V, Paradiso S, Alvaro D. Biliary stem cells in health and cholangiopathies and cholangiocarcinoma. Curr Opin Gastroenterol 2024; 40:92-98. [PMID: 38320197 DOI: 10.1097/mog.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW This review discusses evidence regarding progenitor populations of the biliary tree in the tissue regeneration and homeostasis, and the pathobiology of cholangiopathies and malignancies. RECENT FINDINGS In embryogenesis biliary multipotent progenitor subpopulation contributes cells not only to the pancreas and gall bladder but also to the liver. Cells equipped with a constellation of markers suggestive of the primitive endodermal phenotype exist in the peribiliary glands, the bile duct glands, of the intra- and extrahepatic bile ducts. These cells are able to be isolated and cultured easily, which demonstrates the persistence of a stable phenotype during in vitro expansion, the ability to self-renew in vitro, and the ability to differentiate between hepatocyte and biliary and pancreatic islet fates. SUMMARY In normal human livers, stem/progenitors cells are mostly restricted in two distinct niches, which are the bile ductules/canals of Hering and the peribiliary glands (PBGs) present inside the wall of large intrahepatic bile ducts. The existence of a network of stem/progenitor cell niches within the liver and along the entire biliary tree inform a patho-biological-based translational approach to biliary diseases and cholangiocarcinoma since it poses the basis to understand biliary regeneration after extensive or chronic injuries and progression to fibrosis and cancer.
Collapse
Affiliation(s)
| | - Savino Paradiso
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
9
|
de Franchis V, Petrungaro S, Pizzichini E, Camerini S, Casella M, Somma F, Mandolini E, Carpino G, Overi D, Cardinale V, Facchiano A, Filippini A, Gaudio E, Fabrizi C, Giampietri C. Cholangiocarcinoma Malignant Traits Are Promoted by Schwann Cells through TGFβ Signaling in a Model of Perineural Invasion. Cells 2024; 13:366. [PMID: 38474330 PMCID: PMC10930666 DOI: 10.3390/cells13050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The term cholangiocarcinoma (CCA) defines a class of epithelial malignancies originating from bile ducts. Although it has been demonstrated that CCA patients with perineural invasion (PNI) have a worse prognosis, the biological features of this phenomenon are yet unclear. Our data show that in human intrahepatic CCA specimens with documented PNI, nerve-infiltrating CCA cells display positivity of the epithelial marker cytokeratin 7, lower with respect to the rest of the tumor mass. In an in vitro 3D model, CCA cells move towards a peripheral nerve explant allowing contact with Schwann cells (SCs) emerging from the nerve. Here, we show that SCs produce soluble factors that favor the migration, invasion, survival and proliferation of CCA cells in vitro. This effect is accompanied by a cadherin switch, suggestive of an epithelial-mesenchymal transition. The influence of SCs in promoting the ability of CCA cells to migrate and invade the extracellular matrix is hampered by a specific TGFβ receptor 1 (TGFBR1) antagonist. Differential proteomic data indicate that the exposure of CCA cells to SC secreted factors induces the upregulation of key oncogenes and the concomitant downregulation of some tumor suppressors. Taken together, these data concur in identifying SCs as possible promoters of a more aggressive CCA phenotype, ascribing a central role to TGFβ signaling in regulating this process.
Collapse
Affiliation(s)
- Valerio de Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Elisa Pizzichini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.)
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Enrico Mandolini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Guido Carpino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Diletta Overi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy;
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| |
Collapse
|
10
|
Zheng J, Wang Q, Yan L, Pan Q, Chen X, Chen Q. The Biological Behavior and Clinical Application Prospects of Deoxythymidine Kinase Gene in Tumors. Technol Cancer Res Treat 2024; 23:15330338241265396. [PMID: 39420855 PMCID: PMC11497513 DOI: 10.1177/15330338241265396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant tumors have become a significant risk factor for human mortality. Although there have been notable advancements in the treatment of tumors, patient prognosis remains poor. In recent years, gene diagnosis and gene therapy have brought great benefits to patients. Deoxythymidine kinase (DTYMK) is a highly promising biomarker, has been studied by many scholars, and plays a crucial role in the occurrence and development of various types of cancer. The abnormal expression of DTYMK is involved in tumor occurrence and development, and may also serve as a biomarker for tumor diagnosis, treatment, and prognosis. Several experimental studies have shown that DTYMK can impact tumor progression by regulating mechanisms such as cell cycle, tumor microenvironment, immune infiltration, and signaling pathways. Therefore, this article focuses on clarifying the mechanism of DTYMK in tumors and exploring its clinical application value to help patients prolong their survival cycle and improve their quality of life.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingxin Yan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Pan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxu Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Quanfang Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Mocchegiani F, Vincenzi P, Conte G, Nicolini D, Rossi R, Cacciaguerra AB, Vivarelli M. Intraductal papillary neoplasm of the bile duct: The new frontier of biliary pathology. World J Gastroenterol 2023; 29:5361-5373. [PMID: 37900587 PMCID: PMC10600795 DOI: 10.3748/wjg.v29.i38.5361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Intraductal papillary neoplasms of the bile duct (IPNBs) represent a rare variant of biliary tumors characterized by a papillary growth within the bile duct lumen. Since their first description in 2001, several classifications have been proposed, mainly based on histopathological, radiological and clinical features, although no specific guidelines addressing their management have been developed. Bile duct neoplasms generally develop through a multistep process, involving different precursor pathways, ranging from the initial lesion, detectable only microscopically, i.e. biliary intraepithelial neoplasia, to the distinctive grades of IPNB until the final stage represented by invasive cholangiocarcinoma. Complex and advanced investigations, mainly relying on magnetic resonance imaging (MRI) and cholangioscopy, are required to reach a correct diagnosis and to define an adequate bile duct mapping, which supports proper treatment. The recently introduced subclassifications of types 1 and 2 highlight the histopathological and clinical aspects of IPNB, as well as their natural evolution with a particular focus on prognosis and survival. Aggressive surgical resection, including hepatectomy, pancreaticoduodenectomy or both, represents the treatment of choice, yielding optimal results in terms of survival, although several endoscopic approaches have been described. IPNBs are newly recognized preinvasive neoplasms of the bile duct with high malignant potential. The novel subclassification of types 1 and 2 defines the histological and clinical aspects, prognosis and survival. Diagnosis is mainly based on MRI and cholangioscopy. Surgical resection represents the mainstay of treatment, although endoscopic resection is currently applied to nonsurgically fit patients. New frontiers in genetic research have identified the processes underlying the carcinogenesis of IPNB, to identify targeted therapies.
Collapse
Affiliation(s)
- Federico Mocchegiani
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona 60126, Italy
| | - Paolo Vincenzi
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Grazia Conte
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Daniele Nicolini
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Roberta Rossi
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | | | - Marco Vivarelli
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
12
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
13
|
Dong M, Cao L, Cui R, Xie Y. The connection between innervation and metabolic rearrangements in pancreatic cancer through serine. Front Oncol 2022; 12:992927. [PMID: 36582785 PMCID: PMC9793709 DOI: 10.3389/fonc.2022.992927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a kind of aggressive tumor famous for its lethality and intractability, and pancreatic ductal adenocarcinoma is the most common type. Patients with pancreatic cancer often suffer a rapid loss of weight and abdominal neuropathic pain in their early stages and then go through cachexia in the advanced stage. These features of patients are considered to be related to metabolic reprogramming of pancreatic cancer and abundant nerve innervation responsible for the pain. With increasing literature certifying the relationship between nerves and pancreatic ductal adenocarcinoma (PDAC), more evidence point out that innervation's role is not limited to neuropathic pain but explore its anti/pro-tumor functions in PDAC, especially the neural-metabolic crosstalks. This review aims to unite pancreatic cancer's innervation and metabolic rearrangements with terminated published articles. Hopefully, this article could explore the pathogenesis of PDAC and further promote promising detecting or therapeutic measurements for PDAC according to the lavish innervation in PDAC.
Collapse
Affiliation(s)
- Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Second Hospital of Jilin University, Changchun, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Peoples Hospital, Hangzhou, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Ranji Cui, ; Yingjun Xie,
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Second Hospital of Jilin University, Changchun, China,*Correspondence: Ranji Cui, ; Yingjun Xie,
| |
Collapse
|
14
|
Makler A, Narayanan R, Asghar W. An Exosomal miRNA Biomarker for the Detection of Pancreatic Ductal Adenocarcinoma. BIOSENSORS 2022; 12:831. [PMID: 36290970 PMCID: PMC9599289 DOI: 10.3390/bios12100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a difficult tumor to diagnose and treat. To date, PDAC lacks routine screening with no markers available for early detection. Exosomes are 40-150 nm-sized extracellular vesicles that contain DNA, RNA, and proteins. These exosomes are released by all cell types into circulation and thus can be harvested from patient body fluids, thereby facilitating a non-invasive method for PDAC detection. A bioinformatics analysis was conducted utilizing publicly available miRNA pancreatic cancer expression and genome databases. Through this analysis, we identified 18 miRNA with strong potential for PDAC detection. From this analysis, 10 (MIR31, MIR93, MIR133A1, MIR210, MIR330, MIR339, MIR425, MIR429, MIR1208, and MIR3620) were chosen due to high copy number variation as well as their potential to differentiate patients with chronic pancreatitis, neoplasms, and PDAC. These 10 were examined for their mature miRNA expression patterns, giving rise to 18 mature miRs for further analysis. Exosomal RNA from cell culture media was analyzed via RTqPCR and seven mature miRs exhibited statistical significance (miR-31-5p, miR-31-3p, miR-210-3p, miR-339-5p, miR-425-5p, miR-425-3p, and miR-429). These identified biomarkers can potentially be used for early detection of PDAC.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ramaswamy Narayanan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
15
|
Chazouilleres O, Beuers U, Bergquist A, Karlsen TH, Levy C, Samyn M, Schramm C, Trauner M. EASL Clinical Practice Guidelines on sclerosing cholangitis. J Hepatol 2022; 77:761-806. [PMID: 35738507 DOI: 10.1016/j.jhep.2022.05.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
Management of primary or secondary sclerosing cholangitis is challenging. These Clinical Practice Guidelines have been developed to provide practical guidance on debated topics including diagnostic methods, prognostic assessment, early detection of complications, optimal care pathways and therapeutic (pharmacological, endoscopic or surgical) options both in adults and children.
Collapse
|
16
|
Gerber TS, Goeppert B, Hausen A, Witzel HR, Bartsch F, Schindeldecker M, Gröger LK, Ridder DA, Cahyadi O, Esposito I, Gaida MM, Schirmacher P, Galle PR, Lang H, Roth W, Straub BK. N-Cadherin Distinguishes Intrahepatic Cholangiocarcinoma from Liver Metastases of Ductal Adenocarcinoma of the Pancreas. Cancers (Basel) 2022; 14:cancers14133091. [PMID: 35804866 PMCID: PMC9264797 DOI: 10.3390/cancers14133091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Carcinomas of the pancreatobiliary system confer an especially unfavorable prognosis. The differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and its subtypes versus liver metastasis of ductal adenocarcinoma of the pancreas (PDAC) is clinically important to allow the best possible therapy. We could previously show that E-cadherin and N-cadherin, transmembrane glycoproteins of adherens junctions, are characteristic features of hepatocytes and cholangiocytes. We therefore analyzed E-cadherin and N-cadherin in the embryonally related epithelia of the bile duct and pancreas, as well as in 312 iCCAs, 513 carcinomas of the extrahepatic bile ducts, 228 gallbladder carcinomas, 131 PDACs, and precursor lesions, with immunohistochemistry combined with image analysis, fluorescence microscopy, and immunoblots. In the physiological liver, N-cadherin colocalizes with E-cadherin in small intrahepatic bile ducts, whereas larger bile ducts and pancreatic ducts are positive for E-cadherin but contain decreasing amounts of N-cadherin. N-cadherin was highly expressed in most iCCAs, whereas in PDACs, N-cadherin was negative or only faintly expressed. E- and N-cadherin expression in tumors of the pancreaticobiliary tract recapitulate their expression in their normal tissue counterparts. N-cadherin is a helpful marker for the differential diagnosis between iCCA and PDAC, with a specificity of 96% and a sensitivity of 67% for small duct iCCAs and 50% for large duct iCCAs.
Collapse
Affiliation(s)
- Tiemo S. Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany; (B.G.); (P.S.)
| | - Anne Hausen
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Hagen R. Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Lisa-Katharina Gröger
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Dirk A. Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Oscar Cahyadi
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Irene Esposito
- Institute of Pathology, University Clinic Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Peter Schirmacher
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany; (B.G.); (P.S.)
| | - Peter R. Galle
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Beate K. Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
- Correspondence:
| |
Collapse
|
17
|
Facciorusso A, Crinò SF, Ramai D, Marchegiani G, Lester J, Singh J, Lisotti A, Fusaroli P, Cannizzaro R, Gkolfakis P, Papanikolaou IS, Triantafyllou K, Singh S. Association between pancreatic intraductal papillary mucinous neoplasms and extrapancreatic malignancies: A systematic review with meta-analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2022; 48:632-639. [PMID: 34620511 DOI: 10.1016/j.ejso.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND It is unclear whether patients with intraductal papillary mucinous neoplasia harbor a higher risk of developing extrapancreatic malignancies. AIMS We performed a pooled estimate of the incidence of extrapancreatic malignancies in patients with intraductal papillary mucinous neoplasia, with a particular focus on the comparison to the general population. METHODS Computerized bibliographic search of main databases was performed through February 2021. The primary endpoint was the pooled incidence of extrapancreatic malignancies in patients with intraductal papillary mucinous neoplasms. Additional outcome was the comparison between intraductal papillary mucinous neoplasia patients and the general population, expressed in terms of standardized incidence ratio along with 95% confidence intervals. RESULTS Eighteen studies with 8709 patients were included. The pooled rate of metachronous extrapancreatic malignancies was 10 (6-13)/1000 persons-year. No difference was observed according to intraductal papillary mucinous neoplasia histology and sex, whereas a significantly superior incidence of extrapancreatic malignancies was observed in patients with main-duct (36.7%, 25.4%-48%) as compared to branch-duct intraductal papillary mucinous neoplasia (26.2%, 17.6%-34.8%; p = 0.03). Pooled standardized incidence ratio comparing expected rates in the general population was 1.01 (0.79-1.29); no difference was observed concerning rates of metachronous gastric cancer (standardized incidence ratio 1.60, 0.72-3.54) and colorectal cancer (1.29, 0.92-1.18), whereas biliary cancer was observed more frequently in intraductal papillary mucinous neoplasia patients (2.29, 1.07-4.93). CONCLUSION Patients with intraductal papillary mucinous neoplasia harbor an overall rate of extrapancreatic malignancies as high as 27.3%. The rate of metachronous extrapancreatic malignancies is not superior to the general population.
Collapse
Affiliation(s)
- Antonio Facciorusso
- Department of Medical and Surgical Sciences, Section of Gastroenterology, University of Foggia, Foggia, Italy
| | - Stefano Francesco Crinò
- Department of Medicine, Gastroenterology and Digestive Endoscopy Unit, The Pancreas Institute, University Hospital of Verona, Verona, Italy
| | - Daryl Ramai
- Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA.
| | - Giovanni Marchegiani
- Department of Surgery, Unit of Surgery, The Pancreas Institute, University Hospital of Verona, Verona, Italy
| | - Janice Lester
- Health Science Library, Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY, USA
| | - Jameel Singh
- Department of Internal Medicine, Mather Hospital, Northwell Health, Port Jefferson, NY, USA
| | - Andrea Lisotti
- Gastroenterology Unit, Hospital of Imola, University of Bologna, Italy
| | - Pietro Fusaroli
- Gastroenterology Unit, Hospital of Imola, University of Bologna, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paraskevas Gkolfakis
- Department of Gastroenterology, Hepatopancreatology, And Digestive Oncology, CUB Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ioannis S Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, ''Attikon" University General Hospital, Athens 12462, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, ''Attikon" University General Hospital, Athens 12462, Greece
| | - Siddharth Singh
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Desjonqueres E, Campani C, Marra F, Zucman-Rossi J, Nault JC. Preneoplastic lesions in the liver: Molecular insights and relevance for clinical practice. Liver Int 2022; 42:492-506. [PMID: 34982503 DOI: 10.1111/liv.15152] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the most frequent primary liver cancers, accounting for approximately 80% and 15%, respectively. HCC carcinogenesis occurs mostly in cirrhosis and is a complex multi-step process, from precancerous lesions (low-grade and high-grade dysplastic nodules) to progressed HCC. During the different stages of liver carcinogenesis, there is an accumulation of pathological, genetic and epigenetic changes leading to initiation, malignant transformation and finally tumour progression. In contrast, a small subset of HCC occurs in normal liver from the transformation of hepatocellular adenoma (HCA), a benign hepatocellular tumour. The recent molecular classification enables to stratify HCAs according to their risk of complication, in particular malignant transformation, associated with mutations in exon 3 of the catenin beta 1 (CTNNB1) gene. Cholangiocarcinoma (CCA) derives from the multistep malignant transformation of preneoplastic lesions, like biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB), for which a pre-operative diagnosis remains difficult. Different genetic alterations are involved in BilIN and IPNB progression, leading to the development of tubular or intestinal adenocarcinoma. The aims of this review are to describe the main clinical and molecular features of preneoplastic lesions leading to the development of HCC and CCA, their implications in clinical practice and the perspectives for future research.
Collapse
Affiliation(s)
- Elvire Desjonqueres
- Service d'hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Claudia Campani
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France.,Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Jean-Charles Nault
- Service d'hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| |
Collapse
|
19
|
Sato H, Liss AS, Mizukami Y. Large-duct pattern invasive adenocarcinoma of the pancreas–a variant mimicking pancreatic cystic neoplasms: A minireview. World J Gastroenterol 2021; 27:3262-3278. [PMID: 34163110 PMCID: PMC8218369 DOI: 10.3748/wjg.v27.i23.3262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer currently has no subtypes that inform clinical decisions; hence, there exists an opportunity to rearrange the morphological and molecular taxonomy that guides a better understanding of tumor characteristics. Nonetheless, accumulating studies to date have revealed the large-duct type variant, a unique subtype of pancreatic ductal adenocarcinoma (PDA) with cystic features. This subtype often radiographically mimics intraductal papillary mucinous neoplasms (IPMNs) and involves multiple small cysts occasionally associated with solid masses. The “bunch-of-grapes” sign, an imaging characteristic of IPMNs, is absent in large-duct PDA. Large-duct PDA defines the mucin profile, and genetic alterations are useful in distinguishing large-duct PDA from IPMNs. Histologically, neoplastic ducts measure over 0.5 mm, forming large ductal elements. Similar to classic PDAs, this subtype is frequently accompanied by perineural invasion and abundant desmoplastic reactions, and KRAS mutations in codon 12 are nearly ubiquitous. Despite such morphological similarities with IPMNs, the prognosis of large-duct PDA is equivalent to that of classic PDA. Differential diagnosis is therefore essential.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 0788510, Hokkaido, Japan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Yusuke Mizukami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 0788510, Hokkaido, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 0650033, Hokkaido, Japan
| |
Collapse
|
20
|
Sarcognato S, Sacchi D, Fassan M, Fabris L, Cadamuro M, Zanus G, Cataldo I, Covelli C, Capelli P, Furlanetto A, Guido M. Benign biliary neoplasms and biliary tumor precursors. Pathologica 2021; 113:147-157. [PMID: 34294933 PMCID: PMC8299320 DOI: 10.32074/1591-951x-251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Benign biliary tumor are common lesions that are often an incidental finding in subjects who undergo medical imaging tests for other conditions. Most are true neoplasms while few result from reactive or malformative proliferation. Benign tumors have no clinical consequences, although the premalignant nature or potential for malignant transformation is of concern in some cases. The main practical problem for pathologists is the need to differentiate them from malignant biliary tumours, which is not always straightforward. Premalignant lesions of the bile duct have been described, although their incidence has been poorly characterized. These lesions include biliary mucinous cystic neoplasms, intraductal papillary neoplasms of the bile duct, and biliary intraepithelial neoplasia. In this article, histopathology of benign biliary tumors and biliary tumor precursors is discussed, with a focus on the main diagnostic criteria.
Collapse
Affiliation(s)
| | - Diana Sacchi
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine - DMM, University of Padova, Padova, Italy
| | | | - Giacomo Zanus
- 4 Surgery Unit, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padova, Padova, Italy
| | - Ivana Cataldo
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Claudia Covelli
- Pathology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San GiovanniRotondo, Italy
| | - Paola Capelli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
21
|
Sarcognato S, Sacchi D, Fassan M, Fabris L, Cadamuro M, Zanus G, Cataldo I, Capelli P, Baciorri F, Cacciatore M, Guido M. Cholangiocarcinoma. Pathologica 2021; 113:158-169. [PMID: 34294934 PMCID: PMC8299326 DOI: 10.32074/1591-951x-252] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Liver cancer represents the third leading cause of cancer-related death worldwide. Cholangiocarcinoma (CCA) is the second most common type of liver cancer after hepatocellular carcinoma, accounting for 10-15% of all primary liver malignancies. Both the incidence and mortality of CCA have been steadily increasing during the last decade. Moreover, most CCAs are diagnosed at an advanced stage, when therapeutic options are very limited. CCA may arise from any tract of the biliary system and it is classified into intrahepatic, perihilar, and distal CCA, according to the anatomical site of origin. This topographical classification also reflects distinct genetic and histological features, risk factors, and clinical outcomes. This review focuses on histopathology of CCA, its differential diagnoses, and its diagnostic pitfalls.
Collapse
Affiliation(s)
| | - Diana Sacchi
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine - DMM, University of Padova, Padova, Italy
| | | | - Giacomo Zanus
- 4th Surgery Unit, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padova, Padova, Italy
| | - Ivana Cataldo
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Paola Capelli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Yi D, Zhao LJ, Ding XB, Wang TW, Liu SY. Clinical characteristics of intrahepatic biliary papilloma: A case report. World J Clin Cases 2021; 9:3185-3193. [PMID: 33969107 PMCID: PMC8080758 DOI: 10.12998/wjcc.v9.i13.3185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrahepatic bile duct papilloma (IPNB) is a rare benign tumour from the bile duct epithelium and has a high malignant transformation rate. Early radical resection can obviously improve the prognosis of patients, but it is difficult to be sure of the diagnosis of IPNB before operating.
CASE SUMMARY This study included 28 patients with intraductal papilloma admitted to the First Hospital of Jilin University from January 2010 to November 2020 and recorded their clinical manifestations, imaging features, complications and prognosis. There were 12 males and 16 females with an average age of 61.36 ± 8.03 years. Most patients had symptoms of biliary obstruction. Biliary dilatation and cystic mass could be seen on imaging. After surgery, IPNB was diagnosed by pathology.
CONCLUSION IPNB is a rare benign tumour in the bile duct. Early diagnosis and timely R0 resection can improve the prognosis of IPNB.
Collapse
Affiliation(s)
- Dan Yi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Li-Jing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130012, Jilin Province, China
| | - Xiao-Bo Ding
- Department of Radiology, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| | - Tai-Wei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130012, Jilin Province, China
| | - Song-Yang Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130012, Jilin Province, China
| |
Collapse
|
23
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
24
|
Lorenzo N, Sabina DM, Guido C, Ilaria Grazia Z, Samira S, Valeria A, Daniele C, Diletta O, Antonella G, Marco M, Daniela B, Valerio DP, Andrea O, Agostino Maria DR, Fabio M, Maria Consiglia B, Jessica F, Sara M, Gian Luca G, Pierluigi Benedetti P, Paquale Bartomeo B, Felice G, Vincenzo C, Pietro I, Giuseppina C, Eugenio G, Domenico A. DCLK1, a Putative Stem Cell Marker in Human Cholangiocarcinoma. Hepatology 2021; 73:144-159. [PMID: 32978808 PMCID: PMC8243252 DOI: 10.1002/hep.31571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a very aggressive cancer showing the presence of high cancer stem cells (CSCs). Doublecortin-like kinase1 (DCLK1) has been demonstrated as a CSC marker in different gastroenterological solid tumors. Our aim was to evaluate in vitro the expression and the biological function of DCLK1 in intrahepatic CCA (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS Specimens surgically resected of human CCA were enzymatically digested, submitted to immunosorting for specific CSC markers (LGR5 [leucine-rich repeat-containing G protein-coupled receptor], CD [clusters of differentiation] 90, EpCAM [epithelial cell adhesion molecule], CD133, and CD13), and primary cell cultures were prepared. DCLK1 expression was analyzed in CCA cell cultures by real-time quantitative PCR, western blot, and immunofluorescence. Functional studies have been performed by evaluating the effects of selective DCLK1 inhibitor (LRRK2-IN-1) on cell proliferation (MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, cell population doubling time), apoptosis, and colony formation capacity. DCLK1 was investigated in situ by immunohistochemistry and real-time quantitative PCR. DCLK1 serum concentration was analyzed by enzyme-linked immunosorbent assay. We describe DCLK1 in CCA with an increased gene and protein DCLK1 expression in pCCALGR5+ and in iCCACD133+ cells compared with unsorted cells. LRRK2-IN-1 showed an anti-proliferative effect in a dose-dependent manner. LRRK2-IN-1 markedly impaired cell proliferation, induced apoptosis, and decreased colony formation capacity and colony size in both iCCA and pCCA compared with the untreated cells. In situ analysis confirmed that DCLK1 is present only in tumors, and not in healthy tissue. Interestingly, DCLK1 was detected in the human serum samples of patients with iCCA (high), pCCA (high), HCC (low), and cirrhosis (low), but it was almost undetectable in healthy controls. CONCLUSIONS DCLK1 characterizes a specific CSC subpopulation of iCCACD133+ and pCCALGR5+ , and its inhibition exerts anti-neoplastic effects in primary CCA cell cultures. Human DCLK1 serum might represent a serum biomarker for the early CCA diagnosis.
Collapse
Affiliation(s)
- Nevi Lorenzo
- Department of BiosciencesUniversity of MilanMilanItaly,Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Di Matteo Sabina
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly,Department of ImmunologyBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Carpino Guido
- Department of MovementHuman and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | | | - Safarikia Samira
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Ambrosino Valeria
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Costantini Daniele
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Overi Diletta
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Giancotti Antonella
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Monti Marco
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Bosco Daniela
- Department of Pathological Anatomy and CytodiagnosticSapienza University of RomeRomeItaly
| | - De Peppo Valerio
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Oddi Andrea
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - De Rose Agostino Maria
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Melandro Fabio
- Department of General Surgery and Organ TransplantationSapienza University of RomeRomeItaly
| | | | - Faccioli Jessica
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Massironi Sara
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly,European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | - Grazi Gian Luca
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Panici Pierluigi Benedetti
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | | | - Giuliante Felice
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Cardinale Vincenzo
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Invernizzi Pietro
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly,European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | | | - Gaudio Eugenio
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Alvaro Domenico
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
25
|
Multifocal pancreatobiliary malignancies: A diagnostic and therapeutic challenge. Radiol Case Rep 2020; 16:289-294. [PMID: 33299511 PMCID: PMC7708658 DOI: 10.1016/j.radcr.2020.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The synchronous presentation of multifocal pancreatobiliary tumors is a rare occurrence and can prove to be a significant diagnostic and therapeutic challenge. We describe the case of a 70-year-old female who presented with a 2-week history of jaundice, reduced appetite, and mild epigastric discomfort of insidious onset. Radiological evaluation with computed tomography and magnetic resonance imaging demonstrated features consistent with a hilar cholangiocarcinoma , also known as a Klatskin tumor, involving both the cystic duct and gallbladder neck. In addition to this, a pancreatic neoplasm with associated splenic vein occlusion and metastatic deposits in the liver and lung were identified. The patient was managed with percutaneous transhepatic external biliary drainage and stenting by interventional radiology. Cytology results from the brushings obtained from the aforementioned procedure were nondiagnostic. Core biopsies were performed of the pancreatic lesion; the histopathological results of which were in keeping with pancreatic ductal adenocarcinoma . The patient was scheduled for chemotherapy however unfortunately deteriorated clinically prior to commencement. This case highlights the diagnostic and management challenges of synchronous pancreatobiliary malignancies.
Collapse
|
26
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
27
|
Vav1 Sustains the In Vitro Differentiation of Normal and Tumor Precursors to Insulin Producing Cells Induced by all-Trans Retinoic Acid (ATRA). Stem Cell Rev Rep 2020; 17:673-684. [PMID: 33165749 PMCID: PMC8036226 DOI: 10.1007/s12015-020-10074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
All-trans retinoic acid (ATRA) promotes the development and the function of insulin producing cells and induces partial differentiation of pancreatic tumor cells. A number of evidences clearly indicate that the ATRA mediated signaling may have a substantial role in therapeutic approaches based on restoration of functional β-cells. Among the proteins up-regulated by ATRA, Vav1 is involved in maturation and function of haematopoietic cells and is essential for retinoids induced differentiation of tumor promyelocytes. The presence of Vav1 in solid tissues, including pancreas, is considered ectopic and no role in the differentiation of human epithelial cells has so far been described. We demonstrated here that Vav1 sustains the maturation to β-cells of the normal precursors human Biliary Tree Stem/progenitor Cells (hBTSCs) induced by a differentiation medium containing ATRA and that, in the mature normal pancreas, insulin-producing cells express variable levels of Vav1. Using pancreatic ductal adenocarcinoma (PDAC)-derived cells, we also revealed that the ATRA induced up-modulation of Vav1 is essential for the retinoid-induced trans-differentiation of neoplastic cells into insulin producing cells. The results of this study identify Vav1 as crucial molecule in ATRA induced maturation of insulin producing cells and suggest this protein as a marker for new strategies ended to restore functional β-cells. Graphical abstract ![]()
Collapse
|