1
|
Wang X, Gong M, Zhu Z, Zhang B, Han L, Li W, Wu Z, Ma Q, Wang Z, Qian W. Rutin protects the pancreas from inflammatory injury and oncogene-driven tumorigenesis by inhibiting acinar to ductal metaplasia. Eur J Pharmacol 2025; 998:177536. [PMID: 40120793 DOI: 10.1016/j.ejphar.2025.177536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Rutin is a valuable traditional Chinese medicine known for its anti-inflammatory and anticancer effects. It has been shown to be effective in treating various inflammation-associated diseases. Here, we investigated the influence of rutin on acute pancreatitis and tumorigenesis. Using C57BL/6J mice and Kras mutant transgenic mice, we induced pancreatitis and acinar regeneration models. Pancreatic malondialdehyde (MDA), superoxide dismutase (SOD) activity and reduced glutathione (GSH) contents were measured for oxidative stress. Histological staining and a pancreatic acinar 3D culture model were used to clarify the influence of rutin on ADM in vivo and in vitro. Western blotting was adopted to detect ADM markers amylase and CK19. We found that rutin ameliorated inflammatory injury to the pancreas in both caerulein- and arginine-induced AP. Then, we revealed that the anti-damage effect of rutin may be due to its inhibition of oxidative stress. In addition, an acinar 3D culture model showed that rutin inhibited the formation of ADM by activating AMPK in acinar cells. Finally, the activation of AMPK is believed to be a potential mechanism by which rutin exerts inhibitory effects on Kras-driven tumorigenesis. Rutin inhibited AP-induced pancreatic injury and oncogenic Kras-driven tumorigenesis by inhibiting ADM.
Collapse
Affiliation(s)
- Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Mengyuan Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Zhang X, Xu C, Ji L, Zhang H. Endoplasmic reticulum stress in acute pancreatitis: Exploring the molecular mechanisms and therapeutic targets. Cell Stress Chaperones 2025; 30:119-129. [PMID: 40107566 PMCID: PMC11995708 DOI: 10.1016/j.cstres.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Acute pancreatitis (AP) is associated with multiple cellular mechanisms that trigger and or are triggered by the inflammatory injury and death of the acinar cells. One of the key mechanisms is the endoplasmic reticulum (ER) stress, which manifests as an accumulation of misfolded proteins within ER, an event that has proinflammatory and proapoptotic consequences. Hence, the degree of cell insult during AP could considerably depend on the signaling pathways that are upregulated during ER stress and its resulting dyshomeostasis such as C/EBP homologous protein (CHOP), cJUN NH2-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and NOD-like receptor protein 3 (NLRP3) inflammasome. Exploring these molecular pathways is an interesting area for translational medicine as it may lead to identifying new therapeutic targets in AP. This review of the literature aims to shed light on the different roles of ER stress in the etiopathogenesis and pathogenesis of AP. Then, it specifically focuses on the therapeutic implications of ER stress in this context.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China
| | - Chenchen Xu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong, China
| | - LiJuan Ji
- Department of Internal Medicine, Weicheng People's Hospital, Weifang, Shandong, China
| | - Haiwei Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
3
|
Liu W, Wu DH, Wang T, Wang M, Xu Y, Ren Y, Lyu Y, Wu R. CIRP contributes to multiple organ damage in acute pancreatitis by increasing endothelial permeability. Commun Biol 2025; 8:403. [PMID: 40065057 PMCID: PMC11894170 DOI: 10.1038/s42003-025-07772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Acute pancreatitis can lead to systemic inflammation and multiple organ damage. Increased endothelial permeability is a hallmark of systemic inflammation. Several studies have demonstrated that cold-inducible RNA-binding protein (CIRP) functions as a proinflammatory factor in various diseases. However, its role in endothelial barrier dysfunction during acute pancreatitis remains unknown. To study this, acute pancreatitis was induced by two hourly intraperitoneal injections of 4.0 g/kg L-arginine in wild-type (WT) or CIRP knockout mice. Our results showed that CIRP levels in the pancreas, small intestine, lung, and liver were upregulated at 72 h after the induction of acute pancreatitis in WT mice. CIRP deficiency significantly attenuated tissue injury, edema, and extravasation of Evans blue in the pancreas, small intestine, lung, and liver at 72 h after L-arginine injection. Administration of C23, a specific antagonist of CIRP, at 2 h after the last injection of L-arginine also produced similar protective effects as CIRP knockout in mice. In vitro studies showed that recombinant CIRP caused a significant reduction in transcellular electric resistance in HUVEC monolayers. Immunocytochemical analysis of endothelial cells exposed to CIRP revealed an increased formation of actin stress fibers. VE-cadherin and β-catenin staining showed intercellular gaps were formed in CIRP-stimulated cells. Western blot analysis showed that CIRP induced SRC phosphorylation at TYR416. Exposure to the SRC inhibitor PP2 reduced CIRP-induced endothelial barrier dysfunction in HUVEC monolayers. In conclusion, blocking CIRP mitigates acute pancreatitis-induced multiple organ damage by alleviating endothelial hyperpermeability. Targeting CIRP may be a potential therapeutic option for acute pancreatitis.
Collapse
Affiliation(s)
- Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Derek H Wu
- Macaulay Honors College, CUNY Brooklyn College, Brooklyn, NY, USA
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujia Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Pinto JR, Deepika Bhat K, Bose B, Sudheer Shenoy P. Irisin: muscle's novel player in endoplasmic reticulum stress and disease. Mol Cell Biochem 2025:10.1007/s11010-025-05225-y. [PMID: 39984795 DOI: 10.1007/s11010-025-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Irisin, an exercise-induced myokine, exhibits elevated levels during physical activity, yet its role in modulating the unfolded protein response (UPR) remains poorly understood. This comprehensive review pioneers an in-depth examination of irisin-mediated endoplasmic reticulum (ER) stress mitigation across various diseases. We provide a nuanced characterization of irisin's molecular profile, biological activity, and significance as a skeletal muscle-derived cytokine analogue. Our discussion elucidates the complex interplay between exercise, irisin signalling, and metabolic outcomes, highlighting key molecular interactions driving salutary effects. Moreover, we delineate the UPR's role as a critical ER stress countermeasure and underscore irisin's pivotal function in alleviating this stress, revealing potential therapeutic avenues for disease management. Exercise-induced release of irisin ameliorates ER stress through AMPK phosphorylation during various diseases (Icon image source: www.flaticon.com ).
Collapse
Affiliation(s)
- Joel Rimson Pinto
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - K Deepika Bhat
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
5
|
Tang N, Li W, Shang H, Yang Z, Chen Z, Shi G. Irisin-mediated KEAP1 degradation alleviates oxidative stress and ameliorates pancreatitis. Immunol Res 2025; 73:37. [PMID: 39821708 DOI: 10.1007/s12026-024-09588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive. Our study aims to elucidate irisin expression in AP patients and investigate its mechanism of action to propose a novel treatment strategy for AP. Serum irisin levels in 65 AP patients were quantified using an enzyme-linked immunosorbent assay and correlated with disease severity scores. Core genes implicated in AP-related oxidative stress were identified and screened via bioinformatics analysis. The therapeutic efficacy of irisin in AP was confirmed using a murine cerulein-induced AP model. The intrinsic mechanism of irisin's antioxidative stress action was investigated and verified in pancreatic AR42J cells (Supplementary Fig. 1). Common targets shared by irisin and AP were further validated using a molecular docking model which was constructed for virtual docking analysis. This study investigated alterations in redox status in AP and found a significant reduction in serum irisin levels, correlating inversely with AP severity. In a murine AP model, we showed that irisin triggers an antioxidative stress program via the KEAP1 gene; this process helps reestablish redox balance by decreasing the buildup of reactive oxygen species (ROS) and suppressing the secretion of inflammatory mediators within pancreatic tissues Notably, increased KEAP1 expression counteracted the antioxidative effects of irisin. Our findings unveil a novel therapeutic mechanism for AP, wherein irisin inhibits KEAP1 to alleviate OS. Increasing irisin levels in vivo presents a promising strategy for AP treatment.
Collapse
Affiliation(s)
- Nan Tang
- Dalian Medical University, Dalian, Liaoning, China
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Wendi Li
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hezhen Shang
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Zhen Yang
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Zengyin Chen
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Guangjun Shi
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China.
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
6
|
Lin J, Wei Y, Gu X, Liu M, Wang M, Zhou R, Zou D, Yin L, Zhou C, Hu D. Nanotherapeutics-mediated restoration of pancreatic homeostasis and intestinal barrier for the treatment of severe acute pancreatitis. J Control Release 2025; 377:93-105. [PMID: 39542256 DOI: 10.1016/j.jconrel.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/03/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas accompanied with intestinal injury, and effective therapeutic modalities are still highly lacking. Herein, a facile and effective nanotherapeutics (pHA@IBNCs) is developed to alleviate pancreatic inflammation and restore intestinal barrier for SAP treatment. Epigallocatechin gallate (EGCG, an anti-oxidant), interleukin-22 (IL-22, an anti-inflammatory and epithelial barrier-protecting cytokine), and bovine serum albumin (a framework protein), are assembled via non-covalent interactions to form nanocomplexes (IBNCs). Then, phenylboronic acid-modified hyaluronic acid (pHA) is synthesized and coated onto IBNCs via formation of the reversible boronate ester bonds to obtain pHA@IBNCs. Upon intravenous injection, pHA@IBNCs could efficiently accumulate at the lesion sites of sodium taurocholate (STC)-induced SAP mice, based on their prolonged blood circulation time and pHA-mediated targeting of activated intestinal epithelial cells and macrophages. Inside the inflammatory microenvironment, over-produced reactive oxygen species (ROS) trigger the shedding of the pHA layer and release of the drug payloads. Thereby, EGCG cooperates with IL-22 to attenuate pancreatitis and restore the intestinal barrier by scavenging ROS, suppressing pro-inflammatory cytokines secretion, and promoting the repair of intestinal epithelia. Such a nano-therapeutic approach targeting multiple pathological events may serve as a promising paradigm for the effective management of SAP.
Collapse
Affiliation(s)
- Juanhui Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yuansong Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaxian Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Miaoru Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Mengru Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Renxiang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hosptial, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hosptial, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
7
|
Paoletti I, Coccurello R. Irisin: A Multifaceted Hormone Bridging Exercise and Disease Pathophysiology. Int J Mol Sci 2024; 25:13480. [PMID: 39769243 PMCID: PMC11676223 DOI: 10.3390/ijms252413480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress. It promotes osteogenesis and mitigates bone loss in osteoporosis and sarcopenia. Irisin exhibits anti-inflammatory effects by inhibiting NF-κB signaling and countering insulin resistance. In the brain, it reduces amyloid-β toxicity, inflammation, and oxidative stress, enhancing brain-derived neurotrophic factor (BDNF) signaling, which improves cognition and synaptic health in AD models. It also regulates dopamine pathways, potentially alleviating neuropsychiatric symptoms like depression and apathy. By linking physical activity to systemic health, irisin emphasizes its role in the muscle-bone-brain axis. Its multifaceted benefits highlight its potential as a therapeutic target for AD and related disorders, with applications in prevention, in treatment, and as a complement to exercise strategies.
Collapse
Affiliation(s)
- Ilaria Paoletti
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Research Council (C.N.R.), 00185 Rome, Italy
| |
Collapse
|
8
|
Tian Y, Sun D, Liu N, Zhao J, Zhao T, Liu X, Dong X, Dong L, Wang W, Jiao P, Ma J. Biomimetic mesenchymal stem cell membrane-coated nanoparticle delivery of MKP5 inhibits hepatic fibrosis through the IRE/XBP1 pathway. J Nanobiotechnology 2024; 22:741. [PMID: 39609656 PMCID: PMC11606114 DOI: 10.1186/s12951-024-03029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatic fibrosis is a common disease with high morbidity and mortality rates. The complex and poorly understood mechanisms underlying hepatic fibrosis represent a significant challenge for the development of more effective therapeutic strategies. MKP5 is a potential regulator of multiple fibrotic diseases. However, its precise role and mechanism of action in hepatic fibrosis remains unclear. This study identified a reduction in MKP5 expression in fibrotic liver tissues of mice treated with CCl4 and observed that MKP5 knockout mice exhibited a more pronounced development of hepatic fibrosis. In addition, RNA-seq data indicated activation of protein processing in the endoplasmic reticulum signalling pathway in fibrotic liver tissues of mice lacking MKP5. Mechanistically, MKP5 inhibits the activation of hepatic stellate cells (HSCs) and hepatocyte apoptosis through the regulation of the IRE/XBP1 pathway. Based on these findings, we developed PLGA-MKP5 nanoparticles coated with a mesenchymal stem cell membrane (MSCM). Our results demonstrated that MSCM-PLGA-MKP5 was most effective in attenuating hepatic inflammation and fibrosis in murine models by modulating the IRE/XBP1 axis. This study contributes to the current understanding of the pathogenesis of hepatic fibrosis, suggesting that the targeted delivery of MKP5 via a nano-delivery system may represent a promising therapeutic approach to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Jianan Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Tongjian Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Xiaonan Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Xinzhe Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Li Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China.
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
9
|
Pinkas M, Brzozowski T. The Role of the Myokine Irisin in the Protection and Carcinogenesis of the Gastrointestinal Tract. Antioxidants (Basel) 2024; 13:413. [PMID: 38671861 PMCID: PMC11047509 DOI: 10.3390/antiox13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Recently discovered irisin, a member of the myokines family, is a potential mediator of exercise-induced energy metabolism and a factor promoting browning of the white adipose tissue. Recent evidence indicates that this myokine, released from contracting muscles, can mediate the beneficial effects of exercise on health. Irisin may be a potential therapeutic agent against obesity and has been shown to play an important role in the protection of various cells, tissues, and organs due to its anti-inflammatory, antioxidative, and anti-cancer properties. Our aim was to review the recent experimental and clinical studies on irisin and its expression, release into the bloodstream, tissue targets, and potential contribution to the protective effects of exercise in the gastrointestinal tract. Particular emphasis was placed on inflammatory bowel disease, intestinal ischemia/reperfusion injury, periodontitis, and other digestive tract disorders, including carcinogenesis. Overall, irisin holds significant potential as a novel target molecule, offering a safe and therapeutic approach to treating various gastrointestinal diseases.
Collapse
Affiliation(s)
- Monika Pinkas
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland;
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland;
| |
Collapse
|
10
|
Cui Q, Liu HC, Liu WM, Ma F, Lv Y, Ma JC, Wu RQ, Ren YF. Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes. World J Gastroenterol 2024; 30:728-741. [PMID: 38515944 PMCID: PMC10950629 DOI: 10.3748/wjg.v30.i7.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvβ3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 μg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvβ3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVβ3/5.
Collapse
Affiliation(s)
- Qing Cui
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Hang-Cheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Wu-Ming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Feng Ma
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Cang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi-Fan Ren
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Canpolat Erkan RE, Tekin R. Investigation of new inflammatory biomarkers in patients with brucella. PLoS One 2024; 19:e0297550. [PMID: 38359069 PMCID: PMC10868832 DOI: 10.1371/journal.pone.0297550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/25/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Delayed diagnosis and inadequate treatment of infectious and inflammatory diseases, such as Brucella, lead to high rates of mortality and morbidity. The aim of our study was to investigate the association between serum levels of apelin, presepsin, and irisin with inflammation, laboratory parameters, and blood culture in patients with brucella. PATIENTS AND METHODS This prospective case-control study involves 30 patients with brucellosis and 30 healthy, matched control subjects. Thirty patients who were diagnosed with brucellosis were aged ≥ 18 years. Blood samples were taken from the patients on the first day they were diagnosed with brucellosis. The values of irisin, presepsin, and apelin were studied. In addition, blood samples were also taken from 30 healthy individuals for the control group. Irisin, presepsin, and apelin values that were measured in the patients on the first day were compared with those values measured in the control group. RESULTS The sex and age statuses of the subjects are matched among the groups. The levels of irisin were significantly higher in patients with brucellosis compared to the control group (p<0.045). There was no significant difference between the two groups in terms of apelin and presepsin levels (p values 0.087 and 0.162, respectively). There was a positive correlation between irisin levels and elevated ALT levels, as well as positive blood cultures. CONCLUSIONS It appears that the measurement of irisin levels may be beneficial in patients with brucellosis. Irisin can be used as a diagnostic marker for brucella infection and may greatly clinicians to predict the severity disease and treatment response.
Collapse
Affiliation(s)
| | - Recep Tekin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
12
|
Imran M, Ahsin S, Saeed GN, Ashraf H. Adipo-myokine Irisin, a Promising Antioxidant against Nicotine Induced Oxidative Stress in BALB/c mice. Pak J Med Sci 2024; 40:115-119. [PMID: 38196461 PMCID: PMC10772443 DOI: 10.12669/pjms.40.1.8140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 01/11/2024] Open
Abstract
Objectives To determine the role of r-irisin in attenuating nicotine-induced oxidative stress by estimating serum oxidative stress markers and antioxidant enzymes in BALB/c mice. Method This 18 month experimental study was carried out at Foundation University Islamabad and National Institute of Health starting in 2020. Thirty healthy BALB/c mice were divided into three groups. Group-I (control group) received normal saline 1ml/kg body weight intra-peritoneally daily for 28 days. Experimental group, Group-II received nicotine 2mg/kg body weight intra-peritoneally, for 28 days to induce oxidative stress. Experimental Group-III was given r-irisin 0.5 μg/g body weight/day via tail vein injection, for the last 14 days in addition to intraperitoneal nicotine for 28 days. On 29th day, intra-cardiac blood samples were taken for estimation of serum antioxidant enzymes [Superoxide dismutase (SOD), Reduced Glutathione (GSH) and Catalases (CAT)], and Thiobarbituric Acid-Reactive Substances (TBARS) levels as lipid peroxidation marker using ELISA. SPSS version 24 was used for statistical analysis. Significant difference in parameters across groups was calculated using one way ANOVA. P-value of < 0.05 was considered significant. Results Group-II showed statistically significant increase in serum lipid peroxidation marker (TBARS) levels (p<0.001) and reduction in serum anti-oxidative enzymes (SOD, CAT, GSH) levels (p< 0.001) as compared to Group-I. In Group-III, with co administration of r-irisin, significant improvement in antioxidant enzymes levels and reduction in TBARS levels was observed (p< 0.001) as compared to Group-II. Conclusion Irisin ameliorates nicotine induced oxidative stress by improving serum anti-oxidant enzyme levels and reducing serum lipid peroxidation marker.
Collapse
Affiliation(s)
- Madiha Imran
- Madiha Imran, MBBS, MPhil, ACMed, FCPS. Associate Professor of Physiology, Foundation University Islamabad, Islamabad, Pakistan
| | - Sadia Ahsin
- Sadia Ahsin, MBBS, FCPS, MHPE. Professor and Head of Department of Physiology, Foundation University Islamabad, Islamabad, Pakistan
| | - Gule-Naghma Saeed
- Gule-Naghma Saeed, MBBS, MPhil, ACMed, FCPS. Professor of Physiology, Foundation University Islamabad, Islamabad, Pakistan
| | - Hira Ashraf
- Hira Ashraf, MBBS, MPhil, ACMed. Assistant Professor of Physiology, Foundation University Islamabad, Islamabad, Pakistan
| |
Collapse
|
13
|
Zhang Y, Zhao L, Gao H, Zhai J, Song Y. Potential role of irisin in digestive system diseases. Biomed Pharmacother 2023; 166:115347. [PMID: 37625325 DOI: 10.1016/j.biopha.2023.115347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Digestive system diseases (DSD) are very complex conditions that severely threaten human health. Therefore, there is an urgent need to develop new pharmacological treatment strategies. Irisin, a myokine discovered in 2012, is produced by fibronectin type III domain-containing protein 5 (FNDC5), which is a transmembrane protein. Irisin is involved in promoting the browning of white adipose tissue, the regulation of energy metabolism, and the improvement of insulin resistance. Irisin is also an essential mediator of the inflammatory response, oxidative stress, and cell apoptosis. Recent studies have proved that irisin concentration is altered in DSD and exerts pivotal effects on the initiation, progression, and prognosis of these diseases through various mechanisms. Therefore, studying the expression and function of irisin may have great significance for the diagnosis and treatment of DSD. Here, we focus on irisin and explore the multiple molecular pathways targeted by irisin therapy. This review indicates that irisin can serve as a diagnostic marker or potential therapeutic agent for DSD. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Linxian Zhao
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Yanqing Song
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Cutuli D, Decandia D, Giacovazzo G, Coccurello R. Physical Exercise as Disease-Modifying Alternative against Alzheimer's Disease: A Gut-Muscle-Brain Partnership. Int J Mol Sci 2023; 24:14686. [PMID: 37834132 PMCID: PMC10572207 DOI: 10.3390/ijms241914686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial composition and diversity, thus providing the potential to alleviate neurological symptoms. There is bidirectional communication between the gut and muscle, with GM diversity modulation and short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and SCFA production. This gut-muscle and muscle-gut interplay can then modulate cognition. For instance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical activity against some aspects of AD pathophysiology through the interaction of exercise with the gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis. Understanding gut-muscle-brain interconnections hold promise for developing strategies to promote brain health, fight age-associated cognitive decline, and improve muscle health and longevity.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Davide Decandia
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo (UniTE), 64100 Teramo, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
| |
Collapse
|
15
|
Liu Q, Zhu Y, Li G, Guo T, Jin M, Xi D, Wang S, Liu X, Guo S, Liu H, Fan J, Liu R. Irisin ameliorates myocardial ischemia-reperfusion injury by modulating gut microbiota and intestinal permeability in rats. PLoS One 2023; 18:e0291022. [PMID: 37656700 PMCID: PMC10473488 DOI: 10.1371/journal.pone.0291022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Recently, myocardial ischemia-reperfusion (I/R) injury was suggested associated with intestinal flora. However, irisin has demonstrated beneficial effects on myocardial I/R injury, thus increasing interest in exploring its mechanism. Therefore, whether irisin interferes in gut microbiota and gut mucosal barrier during myocardial I/R injury was investigated in the present study. Irisin was found to reduce the infiltration of inflammatory cells and fracture in myocardial tissue, myocardial enzyme levels, and the myocardial infarction (MI) area. In addition, the data showed that irisin reverses I/R-induced gut dysbiosis as indicated by the decreased abundance of Actinobacteriota and the increased abundance of Firmicutes, and maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the production of proinflammatory cytokines interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Based on the results, irisin could be a good candidate for ameliorating myocardial I/R injury and associated diseases by alleviating gut dysbiosis, endothelial dysfunction and anti-inflammatory properties.
Collapse
Affiliation(s)
- Qingqing Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Yu Zhu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Guangyao Li
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Tiantian Guo
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Mengtong Jin
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Duan Xi
- LinFen Central Hospital, LinFen, China
| | | | - Xuezhi Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Shuming Guo
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| | - Hui Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Jiamao Fan
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Ronghua Liu
- LinFen Central Hospital, LinFen, China
- Linfen Key Laboratory of Basic and Clinical Research on Coronary Heart Disease, Linfen Clinical Medical Research Center, LinFen, China
| |
Collapse
|
16
|
Liu W, Bi J, Ren Y, Chen H, Zhang J, Wang T, Wang M, Zhang L, Zhao J, Wu Z, Lv Y, Liu B, Wu R. Targeting extracellular CIRP with an X-aptamer shows therapeutic potential in acute pancreatitis. iScience 2023; 26:107043. [PMID: 37360693 PMCID: PMC10285643 DOI: 10.1016/j.isci.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute pancreatitis (AP) is associated with a high mortality rate. Cold-inducible RNA binding protein (CIRP) can be released from cells in inflammatory conditions and extracellular CIRP acts as a damage-associated molecular pattern. This study aims to explore the role of CIRP in the pathogenesis of AP and evaluate the therapeutic potential of targeting extracellular CIRP with X-aptamers. Our results showed that serum CIRP concentrations were significantly increased in AP mice. Recombinant CIRP triggered mitochondrial injury and ER stress in pancreatic acinar cells. CIRP-/- mice suffered less severe pancreatic injury and inflammatory responses. Using a bead-based X-aptamer library, we identified an X-aptamer that specifically binds to CIRP (XA-CIRP). Structurally, XA-CIRP blocked the interaction between CIRP and TLR4. Functionally, it reduced CIRP-induced pancreatic acinar cell injury in vitro and L-arginine-induced pancreatic injury and inflammation in vivo. Thus, targeting extracellular CIRP with X-aptamers may be a promising strategy to treat AP.
Collapse
Affiliation(s)
- Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
17
|
Han F, Ding ZF, Shi XL, Zhu QT, Shen QH, Xu XM, Zhang JX, Gong WJ, Xiao WM, Wang D, Chen WW, Hu LH, Lu GT. Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice. Redox Biol 2023; 64:102787. [PMID: 37392517 DOI: 10.1016/j.redox.2023.102787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
INTRODUCTION Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVβ5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.
Collapse
Affiliation(s)
- Fei Han
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zi-Fan Ding
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; International Sport Management, Health and Life Sciences, Northumbria University Newcastle, NE1 8ST, UK
| | - Xiao-Lei Shi
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qing-Tian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin-Hao Shen
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xing-Meng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Xian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Juan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Ming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Wang
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wei-Wei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Liang-Hao Hu
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Guo-Tao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
18
|
Vanhorebeek I, Gunst J, Casaer MP, Derese I, Derde S, Pauwels L, Segers J, Hermans G, Gosselink R, Van den Berghe G. Skeletal Muscle Myokine Expression in Critical Illness, Association With Outcome and Impact of Therapeutic Interventions. J Endocr Soc 2023; 7:bvad001. [PMID: 36726836 PMCID: PMC9879715 DOI: 10.1210/jendso/bvad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Context Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Michaël P Casaer
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Derde
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Johan Segers
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Van den Berghe
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Zhang P, Yin X, Wang X, Wang J, Na G, Ирина Павловна К. Paeonol protects against acute pancreatitis by Nrf2 and NF-κB pathways in mice. J Pharm Pharmacol 2022; 74:1618-1628. [PMID: 36170125 DOI: 10.1093/jpp/rgac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Paeonol (PAE) is an active ingredient with anti-inflammatory and antioxidant properties. This study was designed to investigate the effect of PAE on acute pancreatitis (AP). METHODS AP was induced by the intraperitoneal injection of 20% l-arginine (4 g/kg) for 6 h. Mice were pretreated with PAE (25, 50 or 100 mg/kg) intragastrically for 5 days. The histological damage and alterations of biochemical indicators, inflammatory cytokines and oxidative stress factors in AP mice were detected. The Nrf2 and NF-κB pathways were examined to illustrate the potential mechanism. KEY FINDINGS In AP model, we found that PAE attenuated histological injury of pancreatic tissues, reduced the serum levels of α-amylase and increased Ca2+ contents in a dose-dependent manner. The white blood cell content, and IL-1β, IL-6 and TNF-α levels in the serum of AP mice were reduced by PAE. Furthermore, PAE caused a reduction of MPO and MDA levels, accompanied by an increase in SOD activity in the pancreas of AP mice. We also demonstrated that the alterations of Nrf2 and NF-κB pathways in AP mice were reversed by PAE. CONCLUSIONS PAE attenuates inflammation and oxidative stress in the development of AP by the regulation of Nrf2 and NF-κB pathways.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China.,Animal Science and Veterinary Medicine Institute, Primorskaya State Academy of Agriculture, Ussuriysk, Russia
| | - Xing Yin
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Xinxin Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaqing Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Guangning Na
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Короткова Ирина Павловна
- Animal Science and Veterinary Medicine Institute, Primorskaya State Academy of Agriculture, Ussuriysk, Russia
| |
Collapse
|
20
|
The potential role of FNDC5/irisin in various liver diseases: awakening the sleeping beauties. Expert Rev Mol Med 2022; 24:e23. [PMID: 35695040 DOI: 10.1017/erm.2022.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) is a transmembrane protein and the precursor of irisin, which serves as a systemic exerkine/myokine with multiple origins. Since its discovery in 2012, this hormone-like polypeptide has rapidly evolved to a component significantly involved in a gamut of metabolic dysregulations and various liver diseases. After a decade of extensive investigation on FNDC5/irisin, we are still surrounded by lots of open questions regarding its diagnostic and therapeutic values. In this review, we first concentrated on the structure-function relationship of FNDC5/irisin. Next, we comprehensively summarised the current knowledge and research findings regarding pathogenic roles/therapeutic applications of FNDC5/irisin in the context of non-alcoholic fatty liver disease, fibrosis, liver injury due to multiple detrimental insults, hepatic malignancy and intrahepatic cholestasis of pregnancy. Moreover, the prominent molecules involved in the underlying mechanisms and signalling pathways were highlighted. As a result, emerging evidence reveals FNDC5/irisin may act as a proxy for diagnosing liver disease pathology, a sensitive biomarker for assessing damage severity, a predisposing factor for surveilling illness progression and a treatment option with protective/preventive impact, all of which are highly dependent on disease grading and contextually pathological features.
Collapse
|
21
|
Effect of TRAF6 in acute pancreatitis-induced intestinal barrier injury via TLR4/NF-κB signal pathway. Tissue Cell 2022; 76:101792. [DOI: 10.1016/j.tice.2022.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
|
22
|
Antioxidant Effects of Irisin in Liver Diseases: Mechanistic Insights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3563518. [PMID: 35035659 PMCID: PMC8759828 DOI: 10.1155/2022/3563518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Oxidative stress is a crucial factor in the development of various liver diseases. Irisin, a metabolic hormone discovered in 2012, is mainly produced by proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) in skeletal muscles. Irisin is induced by physical exercise, and a rapidly growing body of literature suggests that irisin is, at least partially, responsible for the beneficial effects of regular exercise. The major biological function of irisin is believed to be involved in the maintenance of metabolic homeostasis. However, recent studies have suggested the therapeutic potential of irisin against a variety of liver diseases involving its antioxidative function. In this review, we aim to summarize the accumulating evidence demonstrating the antioxidative effects of irisin in liver diseases, with an emphasis on the current understanding of the potential molecular mechanisms.
Collapse
|
23
|
Ren Y, Liu W, Zhang J, Bi J, Fan M, Lv Y, Wu Z, Zhang Y, Wu R. MFG-E8 Maintains Cellular Homeostasis by Suppressing Endoplasmic Reticulum Stress in Pancreatic Exocrine Acinar Cells. Front Cell Dev Biol 2022; 9:803876. [PMID: 35096831 PMCID: PMC8795834 DOI: 10.3389/fcell.2021.803876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 01/25/2023] Open
Abstract
Excessive endoplasmic reticulum (ER) stress contributes significantly to the pathogenesis of exocrine acinar damage in acute pancreatitis. Our previous study found that milk fat globule EGF factor 8 (MFG-E8), a lipophilic glycoprotein, alleviates acinar cell damage during AP via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining cellular homeostasis. However, MFG-E8's role in ER stress in pancreatic exocrine acinar cells has not been evaluated. To study this, thapsigargin, brefeldin A, tunicamycin and cerulein + LPS were used to induce ER stress in rat pancreatic acinar cells in vitro. L-arginine- and cerulein + LPS-induced acute pancreatitis in mice were used to study ER stress in vivo. The results showed that MFG-E8 dose-dependently inhibited ER stress under both in vitro and in vivo conditions. MFG-E8 knockout mice suffered more severe ER stress and greater inflammatory response after L-arginine administration. Mechanistically, MFG-E8 increased phosphorylation of FAK and STAT3 in cerulein + LPS-treated pancreatic acinar cells. The presence of specific inhibitors of αvβ3/5 integrin, FAK or STAT3 abolished MFG-E8's effect on cerulein + LPS-induced ER stress in pancreatic acinar cells. In conclusion, MFG-E8 maintains cellular homeostasis by alleviating ER stress in pancreatic exocrine acinar cells.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yuanyuan Zhang, ; Rongqian Wu,
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yuanyuan Zhang, ; Rongqian Wu,
| |
Collapse
|
24
|
Cheng Y, Cui Y, Zhai Y, Xin W, Yu Y, Liang J, Li S, Sun H. Neuroprotective Effects of Exogenous Irisin in Kainic Acid-Induced Status Epilepticus. Front Cell Neurosci 2021; 15:738533. [PMID: 34658794 PMCID: PMC8517324 DOI: 10.3389/fncel.2021.738533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated reactive oxygen species (ROS) level is considered a crucial causative factor for neuronal damage in epilepsy. Irisin has been reported to ameliorate mitochondrial dysfunction and to reduce ROS levels; therefore, in this study, the effect of exogenous irisin on neuronal injury was evaluated in rats with kainic acid (KA)-induced status epilepticus (SE). Our results showed that exogenous irisin treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), and reduced the levels of neuronal injury and mitochondrial oxidative stress. Additionally, an inhibitor of UCP2 (genipin) was administered to investigate the underlying mechanism of irisin-induced neuroprotection; in rats treated with genipin, the neuroprotective effects of irisin on KA-induced SE were found to be partially reversed. Our findings confirmed the neuroprotective effects of exogenous irisin and provide evidence that these effects may be mediated via the BDNF/UCP2 pathway, thus providing valuable insights that may aid the development of exogenous irisin treatment as a potential therapeutic strategy against neuronal injury in epilepsy.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
25
|
Mu Y, Dai HG, Luo LB, Yang J. Irisin alleviates obesity-related spermatogenesis dysfunction via the regulation of the AMPKα signalling pathway. Reprod Biol Endocrinol 2021; 19:135. [PMID: 34496874 PMCID: PMC8424900 DOI: 10.1186/s12958-021-00821-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infertility is a common complication in obese men. Oxidative stress and testicular apoptosis play critical roles in obesity-induced spermatogenesis dysfunction. It has been reported that irisin, an exercise-induced myokine, may attenuate oxidative damage and testicular apoptosis in several diseases; however, its role in obesity-induced spermatogenesis dysfunction remains unclear. The purpose of this study was to investigate the role and underlying mechanism of irisin in obesity-induced dysfunction of spermatogenesis. METHODS Male mice were fed a high-fat diet (HFD) for 24 weeks to establish a model of obesity-induced spermatogenesis dysfunction. To explore the effects of irisin, mice were subcutaneously infused with recombinant irisin for 8 weeks beginning at 16 weeks after starting a HFD. To confirm the role of AMP-activated protein kinase α (AMPKα), AMPKα-deficient mice were used. RESULTS The data showed decreased serum irisin levels in obese patients, which was negatively correlated with sperm count and progressive motility. Irisin was downregulated in the plasma and testes of obese mice. Supplementation with irisin protected against HFD-induced spermatogenesis dysfunction and increased testosterone levels in mice. HFD-induced oxidative stress, endoplasmic reticulum (ER) stress and testicular apoptosis were largely attenuated by irisin treatment. Mechanistically, we identified that irisin activated the AMPKα signalling pathway. With AMPKα depletion, we found that the protective effects of irisin on spermatogenesis dysfunction were abolished in vivo and in vitro. CONCLUSIONS In conclusion, we found that irisin alleviated obesity-related spermatogenesis dysfunction via activation of the AMPKα signalling pathway. Based on these findings, we hypothesized that irisin is a potential therapeutic agent against obesity-related spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Huang-Guan Dai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital to Qingdao University, Yantai, Shandong, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
26
|
Jiang X, Hu Y, Zhou Y, Chen J, Sun C, Chen Z, Jing C, Xu L, Liu F, Ni W, Yu X, Chen L. Irisin protects female mice with LPS-induced endometritis through the AMPK/NF-κB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1247-1253. [PMID: 35083012 PMCID: PMC8751749 DOI: 10.22038/ijbms.2021.56781.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This research was designed to determine the role of irisin in lipopolysaccharide (LPS)-induced endometritis in female mice. MATERIALS AND METHODS Animals were randomly assigned into sham, sham + irisin, LPS, LPS + irisin (0.1, 1, 10 μg/kg), and LPS + irisin + compound C groups. Histological features and expression of AMPK, NF-κB, inflammatory mediators, and oxidative stress markers were compared among different groups. RESULTS The results showed that LPS resulted in obvious uterus damage, meanwhile, the inflammatory mediators (COX-2, iNOS, IL-1β, IL-6, and TNF-α), as well as NF-κB in the uterine tissue, were significantly increased and the level of adenosine monophosphate-activated protein kinase (AMPK) was reduced. Nevertheless, pretreatment with irisin reversed the phenomena caused by LPS. Interestingly, compound C (AMPK inhibitor) abolished irisin's effects on the uterus, which suggested that irisin's beneficial function was achieved through regulating the AMPK-NF-κB pathway. Moreover, LPS-induced alterations of oxidative factors (MnSOD, GSH, and MDA) were reversed significantly by pretreatment with irisin. This data indicated irisin's beneficial function was also related to antioxidation besides anti-inflammation. CONCLUSION Our study implies that irisin is a potential therapeutic agent for endometritis.
Collapse
Affiliation(s)
- Xi Jiang
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China ,Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China,Corresponding author: Xi Jiang. Department of Pharmacy Zhejiang University Mingzhou Hospital, No.168 Tai’an Road, Ningbo, 315000, China, Tel: 86-574-65571658,
| | - Ying Hu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Yingjie Zhou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Jin Chen
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China
| | - Chonglu Sun
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Changfeng Jing
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China
| | - Lexing Xu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Wenjuan Ni
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| |
Collapse
|
27
|
Ren Y, Cui Q, Zhang J, Liu W, Xu M, Lv Y, Wu Z, Zhang Y, Wu R. Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice. Front Pharmacol 2021; 12:707259. [PMID: 34421598 PMCID: PMC8375434 DOI: 10.3389/fphar.2021.707259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic fibrosis is an important pathophysiological feature of chronic pancreatitis (CP). Our recent study has shown that milk fat globule-EGF factor 8 (MFG-E8) is beneficial in acute pancreatitis. However, its role in CP remained unknown. To study this, CP was induced in male adult Mfge8-knockout (Mfge8-KO) mice and wild type (WT) mice by six intraperitoneal injections of cerulein (50 μg/kg/body weight) twice a week for 10 weeks. The results showed that knockout of mfge8 gene aggravated pancreatic fibrosis after repeated cerulein injection. In WT mice, pancreatic levels of MFG-E8 were reduced after induction of CP and administration of recombinant MFG-E8 alleviated cerulein-induced pancreatic fibrosis. The protective effect of MFG-E8 in CP was associated with reduced autophagy and oxidative stress. In human pancreatic stellate cells (PSCs), MFG-E8 inhibited TGF-β1-induced ER stress and autophagy. MFG-E8 downregulated the expression of lysosomal associated membrane protein 2A (LAMP2A), a key factor in ER stress-induced chaperone-mediated autophagy (CMA). QX77, an activator of CMA, eliminated the effects of MFG-E8 on TGF-β1-induced PSC activation. In conclusion, MFG-E8 appears to mitigate pancreatic fibrosis via inhibiting ER stress-induced chaperone-mediated autophagy. Recombinant MFG-E8 may be developed as a novel treatment for pancreatic fibrosis in CP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qing Cui
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Zhang
- Department of Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Zhao ZF, Zhang Y, Sun Y, Zhang CH, Liu MW. Protective effects of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating oxidative stress through miR-136-5p downregulation. Sci Prog 2021; 104:368504211026118. [PMID: 34176350 PMCID: PMC10305831 DOI: 10.1177/00368504211026118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Baicalin, the main active component of Scutellaria baicalensis, has antioxidant and anti-apoptotic effects and is used to treat acute pancreatitis; however, its specific mechanism is unclear. This study aims to determine the protective effect and underlying mechanism of baicalin on AR42J pancreatic acinar cell injury. AR42J acinar cells (caerulein, 10 nmol/L) were induced in vitro to establish a cell model for acute pancreatitis. Cell relative survival was measured by thiazolyl blue tetrazolium bromide, and cell apoptosis and death were examined by flow cytometry. The expression levels of superoxide dismutase1 (SOD1), Bax, survivin, Bcl-2, caspase-3, and caspase-7 proteins were analyzed by Western blot, and those of SOD1 mRNA and miR-136-5p were determined by RT-PCR. The activities of GSH, SOD1, ROS, and MDA were also investigated. Compared with those of the caerulein group, the relative survival rate and activity of AR42J pancreatic acinar cells with different baicalin concentrations were significantly increased (p < 0.05), and the supernatant amylase level was markedly decreased (p < 0.05). In addition, the ROS and MDA activities and mir-136-5p expression were significantly decreased, and the GSH activities and SOD1 gene and protein expression levels were markedly increased (p < 0.05). These results suggest that baicalin reduced the caerulein-induced death of AR42J acinar cells and alleviated the caerulein-induced injury in pancreatic acinar cells by inhibiting oxidative stress. The mechanism may be related to the decreased expression of Mir-136-5p and the increased expression of SOD1 gene and protein.
Collapse
Affiliation(s)
- Zhu-fen Zhao
- Department of Emergency Medicine, First
Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ye Zhang
- Department of Traditional Chinese
Medicine, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Yang Sun
- Department of Nephrology, The Sixth
Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Chun-hai Zhang
- Department of Emergency Medicine, First
Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency Medicine, First
Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
29
|
The "irisin system": From biological roles to pharmacological and nutraceutical perspectives. Life Sci 2020; 267:118954. [PMID: 33359670 DOI: 10.1016/j.lfs.2020.118954] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The scientific interest in irisin, a myokine discovered in 2012, has grown exponentially in recent years. Irisin, which is mainly produced in skeletal muscle, influences the browning process of adipose tissue and lipid and energy metabolism. Recent discoveries highlight that the potential of this hormone may have been underestimated. In the first part of this review, reports on irisin structure and molecules involved in its metabolic pathway are shown. Furthermore, data related to unclear aspects are also reported: distribution, different gene expression of its precursors in different tissues, physiological levels of circulating irisin, and pharmacokinetic and pharmacodynamic profile. The second part of this work focuses on exogenous stimuli and pharmacological agents which regulate the metabolic pathway of irisin and its serum concentration. In addition to physical exercise and exposure to low temperatures, which were early recognized as exogenous stimuli able to promote the production of this myokine, preclinical and clinical evidence demonstrates the ability of natural and synthetic molecules to interfere with this metabolic pathway. Current experimental data on irisin cannot dissolve all doubts related to this interesting molecule, but they certainly underline its potential for therapeutic purposes. Thus, identification of new pharmacological tools able to act on the irisin pathway is a challenging issue for biomedical research.
Collapse
|
30
|
Jiang X, Shen Z, Chen J, Wang C, Gao Z, Yu S, Yu X, Chen L, Xu L, Chen Z, Ni W. Irisin Protects Against Motor Dysfunction of Rats with Spinal Cord Injury via Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase-Nuclear Factor Kappa-B Pathway. Front Pharmacol 2020; 11:582484. [PMID: 33312127 PMCID: PMC7701590 DOI: 10.3389/fphar.2020.582484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
The aim of the present research was to investigate the effects of irisin, a skeletal muscle-derived myokine, on spinal cord injury (SCI) in rats and explore the possible mechanisms. SCI model was constructed in male SD rats. The effects of irisin on SCI rats were assessed via behavior tests including Basso, Beattie, and Bresnahan (BBB) scoring method and inclined plane test, followed by histomorphology tests including HE staining, Nissl staining, and transmission electron microscope examination. Biochemical analyses including PCR, Western blots and ELISA were employed to further evaluate the changes at molecular level of SCI rats. In addition, lipopolysaccharide (LPS)-induced cell damage model was established in PC12 cells to verify the mechanism of irisin's effect on nerve cells in vitro. Results showed that the BBB score and the angle of incline significantly decreased after SCI surgery, however, chronic irisin treatment improved SCI-induced motor dysfunction. HE and Nissl staining assays showed that SCI surgery induced histological injury of spinal cord, which could be reversed by irisin treatment. Morphological abnormality of nerve cells caused by SCI also could be alleviated by irisin. Further biochemical analyses showed that irisin inhibited SCI-induced overexpression of Interleukin-1β (IL-1β), Interleukin- 6 (IL-6), tumor necrosis factor alpha (TNF-α), inducible nitricoxidesynthase (iNOS) and Cyclooxygenase-2 (COX-2)], as well as nuclear factor kappa-B (NF-κB)p65 in rats, and the positive function of irisin could be reversed by Compound C treatment. In our in vitro study, LPS-induced declines of cell viability and neurite length of PC12 cell were inhibited by irisin treatment, and irisin inhibited LPS-induced overexpression of NF-κBp65, IL-1β, IL-6, TNF-α, iNOS and COX-2. These changes could be reversed by activated protein kinase (AMPK) siRNA pre-treatment. Taken together, irisin could protect the rats from SCI, and its protection is associated with the regulation of adenosine 5'-monophosphate-activated protein kinase (AMPK)- NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xi Jiang
- Zhejiang University Mingzhou Hospital, Ningbo, China
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | | | - Jin Chen
- Zhejiang University Mingzhou Hospital, Ningbo, China
| | - Chao Wang
- Zhejiang University Mingzhou Hospital, Ningbo, China
| | - Zhan Gao
- Zhejiang University Mingzhou Hospital, Ningbo, China
| | - Songling Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Lexing Xu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Wenjuan Ni
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
31
|
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) outbreak in China has become the
world's leading health headline and is causing major panic and public concerns. After emerging in the
City of Wuhan, China, COVID-19 has spread to several countries becoming a worldwide pandemia.
Among the studies on COVID-19, it has been demonstrated that novel coronavirus pneumonia is closely
associated with inflammatory storms. Controlling the inflammatory response may be as important as
targeting the virus. Irisin is a muscle-contraction-induced immunomodulatory myokine related to physical
activity. Irisin drives the “browning” of white adipocytes, so enhancing metabolic uncoupling and
hence caloric expenditure. Irisin has been clearly shown to be a handyman molecule by exerting beneficial
effects on adipose tissues, pancreas, and bone through “cross-talk” between skeletal muscleadipocyte,
skeletal muscle-pancreas, and skeletal muscle-bone, respectively. Irisin has been proposed as
a promising strategy for early diagnosis and treatment of various types of cancers, neurological diseases
and inflammatory conditions. Irisin has been demonstrated to suppress the immune response, too. The
importance of irisin is demonstrated by the increase in the number of scientific papers and patents in
recent years. The identification of irisin receptor should greatly facilitate the understanding of irisin’s
function in exercise and human health. This review examines the structure and recent advances in activities
of irisin, suggesting it for further studies on the prevention and cure of COVID-19. Nowadays, studies
on irisin plasma levels and physical activity may be useful tools to further investigate the prevention
of COVID-19. Irisin may be suggested as a potential novel intervention for COVID-19 by mitigating
inflammatory storms, suppressing the immune response and simultaneously alleviating neurological disorders
such as depression and anxiety.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari, 70126, Bari, Italy
| |
Collapse
|