1
|
Adella A, Gommers LMM, Bos C, Leermakers PA, de Baaij JHF, Hoenderop JGJ. Characterization of intestine-specific TRPM6 knockout C57BL/6 J mice: effects of short-term omeprazole treatment. Pflugers Arch 2024:10.1007/s00424-024-03017-9. [PMID: 39266724 DOI: 10.1007/s00424-024-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The transient receptor potential melastatin type 6 (TRPM6) is a divalent cation channel pivotal for gatekeeping Mg2+ balance. Disturbance in Mg2+ balance has been associated with the chronic use of proton pump inhibitors (PPIs) such as omeprazole. In this study, we investigated if TRPM6 plays a role in mediating the effects of short-term (4 days) omeprazole treatment on intestinal Mg2+ malabsorption using intestine-specific TRPM6 knockout (Vill1-TRPM6-/-) mice. To do this, forty-eight adult male C57BL/6 J mice (50% TRPM6fl/fl and 50% Vill1-TRPM6-/-) were characterized, and the distal colon of these mice was subjected to RNA sequencing. Moreover, these mice were exposed to 20 mg/kg bodyweight omeprazole or placebo for 4 days. Vill1-TRPM6-/- mice had a significantly lower 25Mg2+ absorption compared to control TRPM6fl/fl mice, accompanied by lower Mg2+ serum levels, and urinary Mg2+ excretion. Furthermore, renal Slc41a3, Trpm6, and Trpm7 gene expressions were higher in these animals, indicating a compensatory mechanism via the kidney. RNA sequencing of the distal colon revealed a downregulation of the Mn2+ transporter Slc30a10. However, no changes in Mn2+ serum, urine, and feces levels were observed. Moreover, 4 days omeprazole treatment did not affect Mg2+ homeostasis as no changes in serum 25Mg2+ and total Mg2+ were seen. In conclusion, we demonstrate here for the first time that Vill1-TRPM6-/- mice have a lower Mg2+ absorption in the intestines. Moreover, short-term omeprazole treatment does not alter Mg2+ absorption in both Vill1-TRPM6-/- and TRPM6fl/fl mice. This suggests that TRPM6-mediated Mg2+ absorption in the intestines is not affected by short-term PPI administration.
Collapse
Affiliation(s)
- Anastasia Adella
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisanne M M Gommers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter A Leermakers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Chamniansawat S, Suksridechacin N, Thongon N. Current opinion on the regulation of small intestinal magnesium absorption. World J Gastroenterol 2023; 29:332-342. [PMID: 36687126 PMCID: PMC9846944 DOI: 10.3748/wjg.v29.i2.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023] Open
Abstract
Magnesium (Mg2+) has an important role in numerous biological functions, and Mg2+ deficiency is associated with several diseases. Therefore, adequate intestinal absorption of Mg2+ is vital for health. The small intestine was previously thought to absorb digested Mg2+ exclusively through an unregulated paracellular mechanism, which is responsible for approximately 90% of total Mg2+ absorption. Recent studies, however, have revealed that the duodenum, jejunum, and ileum absorb Mg2+ through both transcellular and paracellular routes. Several regulatory factors of small intestinal Mg2+ uptake also have been explored, e.g., parathyroid hormone, fibroblast growth factor-23, apical acidity, proton pump inhibitor, and pH-sensing channel and receptors. The mechanistic factors underlying proton pump inhibitor suppression of small intestinal Mg2+, such as magnesiotropic protein dysfunction, higher mucosal bicarbonate secretion, Paneth cell dysfunction, and intestinal inflammation, are currently being explored. The potential role of small intestinal microbiomes in Mg2+ absorption has also been proposed. In this article, we reviewed the current knowledge on the mechanisms and regulatory factors of small intestinal Mg2+ absorption.
Collapse
Affiliation(s)
- Siriporn Chamniansawat
- Division of Anatomy, Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Muang 20131, Chonburi, Thailand
| | - Nasisorn Suksridechacin
- Biodiversity Research Centre, Thailand Institute of Scientific and Technological Research, Khlong Luang 12120, Pathum Thani, Thailand
| | - Narongrit Thongon
- Division of Physiology, Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Muang 20131, Chonburi, Thailand
| |
Collapse
|
3
|
Hu W, Luo Y, Yang X. Inappropriate Use of Proton Pump Inhibitors Increases Cardiovascular Events in Patients with Coronary Heart Disease. Int J Gen Med 2022; 15:8685-8691. [PMID: 36578351 PMCID: PMC9792105 DOI: 10.2147/ijgm.s392767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Antiplatelet drugs, as the cornerstone of the treatment of coronary heart disease, control the progression of the disease, but bring a higher risk of gastrointestinal bleeding. Relevant guidelines recommend the use of proton pump inhibitors (PPIs) to minimize the risk of gastrointestinal bleeding in patients receiving dual antiplatelet therapy. But for people at low risk of gastrointestinal bleeding, the harms associated with routine use of PPIs may far outweigh the benefits. PPIs increase the risk of lower gastrointestinal bleeding, inhibit the effect of antiplatelet drugs, impair vascular endothelial function, meanwhile induce hypomagnesemia, iron deficiency, vitamins D and K deficiency, etc. Eventually, PPIs may lead to an increase in cardiovascular events. However, the situation is that PPIs are often overused. This review elucidates the mechanisms by which PPIs increase cardiovascular events, thereby reminding clinicians to rationally prescribe PPIs.
Collapse
Affiliation(s)
- Wen Hu
- Department of Cardiology, Chengdu Seventh People’s Hospital, Chengdu, People’s Republic of China
| | - Yunhao Luo
- Department of Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Xiujuan Yang
- Department of Cardiology, Chengdu Seventh People’s Hospital, Chengdu, People’s Republic of China,Correspondence: Xiujuan Yang, Email
| |
Collapse
|
4
|
Thongon N, Chamniansawat S. Hippocampal synaptic dysfunction and spatial memory impairment in omeprazole-treated rats. Metab Brain Dis 2022; 37:2871-2881. [PMID: 36181652 DOI: 10.1007/s11011-022-01088-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/13/2022] [Indexed: 10/07/2022]
Abstract
Although the association of prolonged use of proton pump inhibitors, such as omeprazole, with memory impairment has been reported more than two decades ago, its underlying molecular mechanism is yet to be determined. Thus, in this study, we aimed to determine the mechanisms underlying the effect of prolonged omeprazole treatment on hippocampal synaptic function and spatial memory in male rats. Adult rats were subcutaneously administered with omeprazole for 12 or 24 weeks. Spatial memory was assessed using the Morris water maze (MWM) test. We examined the hippocampal protein expression of synaptic plasticity proteins, including the AMPA receptor subunit GluA1, postsynaptic density-95 (PSD-95), and activity-regulated cytoskeleton-associated protein (Arc), and the hippocampal expression and localization of androgen receptor (AR). In the MWM test, the escape latency was found to be significantly higher, and the number of platform crossings and the time spent in the target quadrant were significantly lower in the rats treated with omeprazole compared to the control rats. Hypomagnesemia and lower bone and brain Mg2+ content were also detected in the omeprazole-treated groups compared with the control group. The expression of GluA1, PSD-95, and Arc in the hippocampus and the expression of AR in the dentate gyrus and CA1 of the hippocampus were significantly lower in the omeprazole-treated groups than in the control group. These results suggest that prolonged omeprazole treatment might lead to memory deficit by impairing glutamate receptor trafficking or synaptic anchoring. Hypomagnesemia and brain Mg2+ deficiency may be, at least in part, involved in omeprazole-induced memory impairment.
Collapse
Affiliation(s)
- Narongrit Thongon
- Faculty of Allied Health Sciences, Burapha University, 169 Long-Hard Bangsaen Road, SaenSook Sub-district, Mueang District, 20131, Chonburi, Thailand
| | - Siriporn Chamniansawat
- Faculty of Allied Health Sciences, Burapha University, 169 Long-Hard Bangsaen Road, SaenSook Sub-district, Mueang District, 20131, Chonburi, Thailand.
| |
Collapse
|
5
|
Viegas AF, Lopes AFM, Almeida CC, Ennis G, Tavares JP. Hypomagnesaemia - One Cause To Remember! Eur J Case Rep Intern Med 2022; 9:003637. [PMID: 36506733 PMCID: PMC9728218 DOI: 10.12890/2022_003637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
A 71-year-old female presented with 5 days of diarrhoea and asthenia. Past medical history of rheumatoid arthritis, arterial hypertension, hypertrophic cardiomyopathy and chronic gastritis was treated with leflunomide, deflazacort, esomeprazole, carvedilol and spironolactone. At admission, the patient's physical examination showed signs of dehydration. Lab results revealed leucocytosis, increased C-reactive protein, hypomagnesaemia, hypocalcaemia and hypokalaemia. A presumption of acute infectious diarrhoea causing hypomagnesaemia with hypocalcaemia and hypokalaemia was made. She was started on ciprofloxacin, IV hydration and electrolyte supplementation with an adequate response. However, magnesium levels fell repeatedly. After excluding other causes for hypomagnesaemia, chronic use of proton pump inhibitors (PPIs) was considered a plausible cause therefore PPI was discontinued, with normalisation of magnesium levels. Hypomagnesaemia is a common disturbance, mainly caused by diarrhoea, gastrointestinal malabsorption, medications, alcoholism and volume expansion. Clinical manifestations include neuromuscular symptoms, cardiovascular manifestations, hypokalaemia and changes in calcium metabolism. PPI-related hypomagnesaemia has been described in later years particularly in chronic use cases, with a medium prevalence of 27%, but further studies remain necessary to clarify its pathophysiologic mechanism. Since PPIs are widely used, it is essential to be aware of hypomagnesaemia as a possible side effect, particularly in refractory cases and after excluding other common causes. LEARNING POINTS PPIs-related hypomagnesaemia should be a concern, especially in cases with refractory hypomagnesaemia and after excluding other common causes.Formal indication for PPIs use should be revised in most patients.
Collapse
|
6
|
Kampuang N, Thongon N. Mass spectrometric analysis of TRPM6 and TRPM7 from small intestine of omeprazole-induced hypomagnesemic rats. Front Oncol 2022; 12:947899. [PMID: 36110961 PMCID: PMC9468766 DOI: 10.3389/fonc.2022.947899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Disruption of small intestinal Mg2+ absorption has been reported as the underlying mechanism of proton pump inhibitor-induced hypomagnesemia (PPIH); hence, this study evaluated the expression, localization, phosphorylation, and oxidation of transient receptor potential melastatin 6 (TRPM6) and TRPM7 in the small intestine of rats subjected to PPIH. The expression and localization of cyclin M4 (CNNM4) was also analyzed. We show that, compared to control rats, membrane expression of the TRPM6/7 heterodimer and TRPM7 was markedly lower in the duodenum and the jejunum of PPIH rats; in contrast, expression of membrane TRPM6 and CNNM4 was higher in these organs. Mass spectrometric analysis of TRPM6 demonstrated hyper-phosphorylation, especially T1851, and hyper-oxidation at M1755, both of which can suppress its channel permeability. Further, hypo-phosphorylation of S141 and the dimerization motif domain of TRPM6 in PPIH rats might be involved in lower TRPM6/7 heterodimer expression. Hypo-phosphorylation, especially at S138 and S1360 in TRPM7 from PPIH rats disrupted stability of TRPM7 at the cell membrane; hyper-oxidation of TRPM7 was also observed. These results help explain the mechanism underlying the disruption of small intestinal Mg2+ absorption in PPIH.
Collapse
|
7
|
Gommers LMM, Hoenderop JGJ, de Baaij JHF. Mechanisms of proton pump inhibitor-induced hypomagnesemia. Acta Physiol (Oxf) 2022; 235:e13846. [PMID: 35652564 PMCID: PMC9539870 DOI: 10.1111/apha.13846] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Proton pump inhibitors (PPIs) reliably suppress gastric acid secretion and are therefore the first-line treatment for gastric acid-related disorders. Hypomagnesemia (serum magnesium [Mg2+ ] <0.7 mmol/L) is a commonly reported side effect of PPIs. Clinical reports demonstrate that urinary Mg2+ excretion is low in PPI users with hypomagnesemia, suggesting a compensatory mechanism by the kidney for malabsorption of Mg2+ in the intestines. However, the exact mechanism by which PPIs cause impaired Mg2+ absorption is still unknown. In this review, we show that current experimental evidence points toward reduced Mg2+ solubility in the intestinal lumen. Moreover, the absorption pathways in both the small intestine and the colon may be reduced by changes in the expression and activity of key transporter proteins. Additionally, the gut microbiome may contribute to the development of PPI-induced hypomagnesemia, as PPI use affects the composition of the gut microbiome. In this review, we argue that the increase of the luminal pH during PPI treatment may contribute to several of these mechanisms. Considering the fact that bacterial fermentation of dietary fibers results in luminal acidification, we propose that targeting the gut microbiome using dietary intervention might be a promising treatment strategy to restore hypomagnesemia in PPI users.
Collapse
Affiliation(s)
- Lisanne M. M. Gommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen the Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen the Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen the Netherlands
| |
Collapse
|
8
|
Suksridechacin N, Thongon N. Fibroblast growth factor-23 and parathyroid hormone suppress small intestinal magnesium absorption. Physiol Rep 2022; 10:e15247. [PMID: 35385223 PMCID: PMC8985197 DOI: 10.14814/phy2.15247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 04/12/2023] Open
Abstract
In the present study, we examined the systemic and direct effects of parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23) on duodenal, jejunal, and ileal Mg2+ absorption. The rats were injected with FGF-23 or PTH for 5 h before collecting the duodenum, jejunum, and ileum for Mg2+ transport analysis in Ussing chambers. The duodenum, jejunum, and ileum were directly exposed to FGF-23, PTH, or FGF-23 plus PTH with or without cell signaling inhibitors for 150 min in Ussing chambers prior to performing the Mg2+ transport study. The small intestinal tissues were also subjected to western blot analyses for FGF receptor (FGFR), PTH receptor (PTHR), Klotho, transient receptor potential melastatin 6 (TRPM6), and cyclin as well as the cystathionine β-synthase domain divalent metal cation transport mediator 4 (CNNM4) expression. The small intestine abundantly expressed FGFR and PTHR proteins, whereas, Klotho was not expressed in rat small intestine. Systemic PTH or FGF-23 injection significantly suppressed transcellular Mg2+ transport in the duodenum and jejunum. Direct FGF-23-, PTH-, or FGF-23 plus PTH exposure also suppressed transcellular Mg2+ absorption in the duodenum and jejunum. There was no additional inhibitory effect of PTH and FGF-23 on intestinal Mg2+ absorption. The inhibitory effect of PTH, FGF-23, or FGF-23 plus PTH was abolished by Gö 6850. Systemic PTH- or FGF-23-injection significantly decreased membranous TRPM6 expression, but increased cytosolic CNNM4 expression in the duodenum, jejunum, and ileum. In the present study, we propose a novel magnesiotropic action of PTH and FGF-23 by modulating small intestinal Mg2+ absorption.
Collapse
Affiliation(s)
- Nasisorn Suksridechacin
- Division of PhysiologyDepartment of Biomedical SciencesFaculty of Allied Health SciencesBurapha UniversityChonburiThailand
- Biodiversity Research CentreThailand Institute of Scientific and Technological ResearchPathumthaniThailand
| | - Narongrit Thongon
- Division of PhysiologyDepartment of Biomedical SciencesFaculty of Allied Health SciencesBurapha UniversityChonburiThailand
| |
Collapse
|
9
|
Schietzel S, Moor MB, Fuster DG. Severe hypomagnesemia. J Nephrol 2021; 34:2123-2126. [PMID: 33687698 DOI: 10.1007/s40620-021-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Simeon Schietzel
- Division of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Matthias B Moor
- Division of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Division of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Chamniansawat S, Kampuang N, Suksridechacin N, Thongon N. Ultrastructural intestinal mucosa change after prolonged inhibition of gastric acid secretion by omeprazole in male rats. Anat Sci Int 2021; 96:142-156. [PMID: 32931001 DOI: 10.1007/s12565-020-00572-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Omeprazole is a potent inhibitor of gastric acid secretion. It was reported that omeprazole induced dramatic gastric mucosa morphologic changes from the resting state to the stimulated state. However, the effect of omeprazole administration on the ultrastructure and absorptive function of small intestines was largely unknown. Here, male Sprague-Dawley rats were daily treated with a single dose of omeprazole for 12 or 24 weeks. Ultrastructure intestinal mucosal change in duodenum, jejunum, and ileum was observed. We also determined small intestine inflammation, using intraepithelial lymphocytes activation. Finally, magnesium levels were measured in plasma, urine, feces, muscle, and bone to determine systemic magnesium balance. Omeprazole-treated rats had significantly decreased the width of tight junction, villous length, and absorptive area of duodenum, jejunum, and ileum compared to control rats. The small intestine of the omeprazole-treated group showed significantly higher intraepithelial lymphocytes activation levels compared with the control group. Lower secretory granules of Paneth cells at the base of the crypts were showed in omeprazole-treated rats. They also had significantly lower plasma, urinary, bone, and muscle Mg2+ contents indicating hypomagnesemia with systemic magnesium deficiency. In conclusion, prolonged omeprazole treatment-induced small intestinal inflammation and villous atrophy, which led to decrease small intestinal magnesium absorption in the condition of proton pump inhibitor-induced hypomagnesemia.
Collapse
Affiliation(s)
- Siriporn Chamniansawat
- Division of Anatomy, Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, 169 Long-Hard Bangsaen Rd., Saensook, Muang, Chon Buri, 20131, Thailand
| | - Nattida Kampuang
- Division of Physiology, Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Nasisorn Suksridechacin
- Division of Physiology, Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Narongrit Thongon
- Division of Physiology, Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand.
| |
Collapse
|