1
|
Ietto G, Iori V, Gritti M, Inversini D, Costantino A, Izunza Barba S, Jiang ZG, Carcano G, Dalla Gasperina D, Pettinato G. Multicellular Liver Organoids: Generation and Importance of Diverse Specialized Cellular Components. Cells 2023; 12:1429. [PMID: 37408262 PMCID: PMC10217024 DOI: 10.3390/cells12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Over 40,000 patients in the United States are estimated to suffer from end-stage liver disease and acute hepatic failure, for which liver transplantation is the only available therapy. Human primary hepatocytes (HPH) have not been employed as a therapeutic tool due to the difficulty in growing and expanding them in vitro, their sensitivity to cold temperatures, and tendency to dedifferentiate following two-dimensional culture. The differentiation of human-induced pluripotent stem cells (hiPSCs) into liver organoids (LO) has emerged as a potential alternative to orthotropic liver transplantation (OLT). However, several factors limit the efficiency of liver differentiation from hiPSCs, including a low proportion of differentiated cells capable of reaching a mature phenotype, the poor reproducibility of existing differentiation protocols, and insufficient long-term viability in vitro and in vivo. This review will analyze various methodologies being developed to improve hepatic differentiation from hiPSCs into liver organoids, paying particular attention to the use of endothelial cells as supportive cells for their further maturation. Here, we demonstrate why differentiated liver organoids can be used as a research tool for drug testing and disease modeling, or employed as a bridge for liver transplantation following liver failure.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Mattia Gritti
- Department of General Surgery, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Davide Inversini
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - Sofia Izunza Barba
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Infectious Diseases, ASST-Sette Laghi, 21100 Varese, Italy
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Luque LM, Carlevaro CM, Llamoza Torres CJ, Lomba E. Physics-based tissue simulator to model multicellular systems: A study of liver regeneration and hepatocellular carcinoma recurrence. PLoS Comput Biol 2023; 19:e1010920. [PMID: 36877741 PMCID: PMC10019748 DOI: 10.1371/journal.pcbi.1010920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2023] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
We present a multiagent-based model that captures the interactions between different types of cells with their microenvironment, and enables the analysis of the emergent global behavior during tissue regeneration and tumor development. Using this model, we are able to reproduce the temporal dynamics of regular healthy cells and cancer cells, as well as the evolution of their three-dimensional spatial distributions. By tuning the system with the characteristics of the individual patients, our model reproduces a variety of spatial patterns of tissue regeneration and tumor growth, resembling those found in clinical imaging or biopsies. In order to calibrate and validate our model we study the process of liver regeneration after surgical hepatectomy in different degrees. In the clinical context, our model is able to predict the recurrence of a hepatocellular carcinoma after a 70% partial hepatectomy. The outcomes of our simulations are in agreement with experimental and clinical observations. By fitting the model parameters to specific patient factors, it might well become a useful platform for hypotheses testing in treatments protocols.
Collapse
Affiliation(s)
- Luciana Melina Luque
- Instituto de Física de Líquidos y Sistemas Biológicos - CONICET. La Plata, Argentina
- * E-mail: (LML); (CMC)
| | - Carlos Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos - CONICET. La Plata, Argentina
- Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, La Plata, Argentina
- * E-mail: (LML); (CMC)
| | | | - Enrique Lomba
- Instituto de Química Física Rocasolano - CSIC. Madrid, España
| |
Collapse
|
3
|
Qiu C, Xie S, Sun Y, Yu Y, Zhang K, Wang X, Zhu J, Grimm R, Shen W. Multi-parametric magnetic resonance imaging of liver regeneration in a standardized partial hepatectomy rat model. BMC Gastroenterol 2022; 22:430. [PMID: 36210451 PMCID: PMC9549623 DOI: 10.1186/s12876-022-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We aimed to evaluate the correlation between the pathological changes and multi-parameter MRI characteristics of liver regeneration (LR) in a standard partial hepatectomy (PH) rat model.
Methods
Seventy Sprague–Dawley rats were randomly divided into two groups: MR scan group (n = 14) and pathologic analysis (PA) group (n = 56). All 14 rats in the MR group underwent liver T1 mapping, T2 mapping, and diffusion kurtosis imaging before and the 1st, 2nd, 3rd, 5th, 7th, 14th, and 21st day after 70% hepatectomy. Seven rats in the PA group were euthanized at each time point to determine Ki-67 indices, hepatocyte size (HTS), steatosis grade, and inflammation score.
Results
Liver T1 and T2 values increased to maximum on day 2 (P < 0.001 vs. baseline), D and K values decreased to minimum on day 3 and 2, respectively (P < 0.001 vs. baseline), then all parameters returned to baseline gradually. Hepatocyte Ki-67, hepatocyte size, steatosis grade, and inflammation score initially increased after surgery (P < 0.05 vs. baseline), followed by a gradual decline over time. Both T2 and K values correlated well with Ki-67 indices (r = 0.765 and − 0.807, respectively; both P < 0.001), inflammation (r = 0.809 and − 0.724, respectively; both P < 0.001), steatosis grade (r = 0.814 and − 0.725, respectively; both P < 0.001), and HTS (r = 0.830 and − 0.615, respectively; both P < 0.001).
Conclusions
PH induced liver changes that can be observed on MRI. The MRI parameters correlate with the LR activity and allow monitoring of LR process.
Collapse
|
4
|
Dias ML, Paranhos BA, Goldenberg RCDS. Liver scaffolds obtained by decellularization: A transplant perspective in liver bioengineering. J Tissue Eng 2022; 13:20417314221105305. [PMID: 35756167 PMCID: PMC9218891 DOI: 10.1177/20417314221105305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation is the only definitive treatment for many diseases that affect this organ, however, its quantity and viability are reduced. The study of liver scaffolds based on an extracellular matrix is a tissue bioengineering strategy with great application in regenerative medicine. Collectively, recent studies suggest that liver scaffold transplantation may assist in reestablishing hepatic function in preclinical diseased animals, which represents a great potential for application as a treatment for patients with liver disease in the future. This review focuses on useful strategies to promote liver scaffold transplantation and the main open questions about this context. We outline the current knowledge about ex vivo bioengineered liver transplantation, including the surgical techniques, recipient survival time, scaffold preparation before transplantation, and liver disease models. We also highlight the current limitations and future directions regarding in vivo bioengineering techniques.
Collapse
Affiliation(s)
- Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruno Andrade Paranhos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
5
|
Kozlova MA, Kirillov YA, Makartseva LA, Chernov I, Areshidze DA. Morphofunctional State and Circadian Rhythms of the Liver under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2021; 22:ijms222313007. [PMID: 34884810 PMCID: PMC8657715 DOI: 10.3390/ijms222313007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
A study of the influence of chronic alcohol intoxication, constant illumination and their combined effects on the morphofunctional state of the rat liver and the circadian rhythms (CR) of the studied parameters of the organism was carried out. It was found that both alcohol and constant illumination caused significant changes in the structure of the liver, as well as in the circadian rhythmicity of micromorphometric parameters of hepatocytes, ALT, and total and direct bilirubin rhythms; however, the combined effects of ethanol and constant illumination had the most significant effect on the studied parameters of the organism. These two factors caused disturbances in the circadian rhythms of the micromorphometric parameters of hepatocytes, disruption of the circadian rhythms of total protein, albumin, AST, ALT, and direct and total bilirubin, as well as disturbances in the expression and rhythmicity of the studied clock genes against a background of the development of an inflammatory process in the liver.
Collapse
Affiliation(s)
- Maria A. Kozlova
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Yuri A. Kirillov
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Lyudmila A. Makartseva
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Igor Chernov
- Department of Pathological Anatomy, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - David A. Areshidze
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
- Experimental Tumor Chemotherapy Group, Center for Screening and Preclinical Testing, Institute of Problems of Chemical Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia
- Correspondence: ; Tel.: +7-909-643-37-56
| |
Collapse
|