1
|
Ke Y, Tan C, Zhen J, Dong W. Global status and trends of gastric cancer and gastric microbiota research: a bibliometric analysis. Front Microbiol 2024; 15:1341012. [PMID: 38655079 PMCID: PMC11037409 DOI: 10.3389/fmicb.2024.1341012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
Background Numerous studies have cast light on the relationship between the gastric microbiota and gastric carcinogenesis. In this study, we conducted a bibliometric analysis of the relevant literature in the field of gastric cancer and the gastric microbiota and clarified its research status, hotspots, and development trends. Materials and methods Publications were retrieved from the Web of Science Core Collection on 18 July 2023. CiteSpace 6.2.R4, VOSviewer 1.6.19.0, and Biblioshiny were used for the co-occurrence and cooperation analyses of countries, institutions, authors, references, and keywords. A keyword cluster analysis and an emergence analysis were performed, and relevant knowledge maps were drawn. Results The number of published papers in this field totaled 215 and showed an increasing trend. The analysis of funding suggested that the input in this field is increasing steadily. China had the highest number of publications, while the United States had the highest betweenness centrality. Baylor College of Medicine published the most articles cumulatively. Both Ferreira RM and Cooker OO had the highest citation frequency. The journal Helicobacter showed the most interest in this field, while Gut provided a substantial research foundation. A total of 280 keywords were obtained using CiteSpace, which were primarily focused on the eradication and pathogenic mechanisms of Helicobacter pylori, as well as the application of the gastric microbiota in the evaluation and treatment of gastric cancer. The burst analysis suggested that in the future, research may focus on the application of gastric microorganisms, particularly Fusobacterium nucleatum, in the diagnosis and treatment of gastric cancer, along with their pathogenic mechanisms. Conclusion Current studies have been tracking the eradication of Helicobacter pylori and its pathogenic mechanisms, as well as changes in the gastric microbiota during gastric carcinogenesis. Future research may focus on the clinical application and pathogenesis of stomach microorganisms through bacteria such as Fusobacterium nucleatum.
Collapse
Affiliation(s)
- Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhai Zhen
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, ELattar GM, ELRay AA, ELTalkawy MD. Helicobacter pylori and oral-gut microbiome: clinical implications. Infection 2024; 52:289-300. [PMID: 37917397 PMCID: PMC10954935 DOI: 10.1007/s15010-023-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
More than half of the world's population are colonized with H. pylori; however, the prevalence varies geographically with the highest incidence in Africa. H. pylori is probably a commensal organism that has been associated with the development of gastritis, ulcers, and gastric cancer. H. pylori alone is most probably not enough for the development of gastric carcinoma, but evidence for its association with the disease is high and has, therefore, been classified by the International Agency for Research on Cancer as a Class 1 carcinogen. Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the oral-gut axis. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Therefore, therapy regimens integrated with probiotics may abolish the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. The eradication therapy not only affects gut microbiome but also affects the oral microbiome with robust predominance of harmful bacteria. However, there have been reports of a protective role of H. pylori in Barrett's esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, IBD, asthma, and even multiple sclerosis. Therefore, eradication therapy should be carefully considered, and test to treat policy should be tailored to specific communities especially in highly endemic areas. Supplementation of probiotics, prebiotics, herbals, and microbial metabolites to reduce the negative effects of eradication therapy should be considered. After failure of many eradication attempts, the benefits of H. pylori eradication should be carefully balanced against the risk of adverse effects especially in the elderly, persons with frailty, and intolerance to antibiotics.
Collapse
Affiliation(s)
- Maged T Elghannam
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Moataz H Hassanien
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yosry A Ameen
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Emad A Turky
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Gamal M ELattar
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A ELRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed D ELTalkawy
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
3
|
Yu T, Lu T, Deng W, Yao D, He C, Luo P, Song J. Microbiome and function alterations in the gastric mucosa of asymptomatic patients with Helicobacter pylori infection. Helicobacter 2023; 28:e12965. [PMID: 36890119 DOI: 10.1111/hel.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Most patients with Helicobacter pylori (H. pylori) infection have no clinical symptoms, numerous studies reported the gastric microbiome in H. pylori-infected patients, but asymptomatic patients have not been distinguished. How the microbiome and function changes in asymptomatic patients with H. pylori infection remains poorly understood. METHODS A total of 29 patients were divided into H. pylori-infected asymptomatic group (10 patients), H. pylori-infected symptomatic group (11 patients) and H. pylori-uninfected group (8 patients). Gastric mucosa specimens were taken for histopathological examination, special staining, and 16 S rDNA sequencing. High-throughput results were evaluated by community composition analysis, indicator species analysis, alpha diversity analysis, beta diversity analysis, and function prediction. RESULTS The gastric microbiota composition at phylum and genus level of H. pylori-infected asymptomatic patients were similar with H. pylori-infected symptomatic group, but different from H. pylori-uninfected patients. The diversity and richness of gastric microbial community declined significantly in H. pylori-infected asymptomatic group comparing with H. pylori-uninfected group. Sphingomonas may be an indicator between symptomatic and asymptomatic patients with H. pylori infection, the AUC value of Sphingomonas is 0.79. Interactions between species increased and altered notably after H. pylori infection. More genera were affected by Helicobacter in H. pylori-infected asymptomatic patients. The function condition changed significantly in asymptomatic patients with H. pylori infection, there was no difference comparing with symptomatic ones. Amino acid metabolism and lipid metabolism strengthened but carbohydrate metabolism remained constant after H. pylori infection. The metabolism of fatty acid and bile acid was disturbed after infection with H. pylori. CONCLUSION The gastric microbiota composition and function mode changed significantly after H. pylori infection regardless of the presence of clinical symptoms, there was no difference between H. pylori-infected asymptomatic and symptomatic patients. The difference in gastric microbiota composition and interactions between species might be responsible for presence of digestive symptoms.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Tianyu Lu
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Wei Deng
- Department of Pathology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Danping Yao
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Cheng He
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Peng Luo
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
4
|
Zhang L, Zhao M, Fu X. Gastric microbiota dysbiosis and Helicobacter pylori infection. Front Microbiol 2023; 14:1153269. [PMID: 37065152 PMCID: PMC10098173 DOI: 10.3389/fmicb.2023.1153269] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common causes of gastric disease. The persistent increase in antibiotic resistance worldwide has made H. pylori eradication challenging for clinicians. The stomach is unsterile and characterized by a unique niche. Communication among microorganisms in the stomach results in diverse microbial fitness, population dynamics, and functional capacities, which may be positive, negative, or neutral. Here, we review gastric microecology, its imbalance, and gastric diseases. Moreover, we summarize the relationship between H. pylori and gastric microecology, including non-H. pylori bacteria, fungi, and viruses and the possibility of facilitating H. pylori eradication by gastric microecology modulation, including probiotics, prebiotics, postbiotics, synbiotics, and microbiota transplantation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liu D, Wang J, Xie Y. Refractory Helicobacter pylori infection and the gastric microbiota. Front Cell Infect Microbiol 2022; 12:976710. [PMID: 36237432 PMCID: PMC9552320 DOI: 10.3389/fcimb.2022.976710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Curing refractory Helicobacter pylori infection is difficult. In addition, there is currently no research on the gastric microbiota of refractory H. pylori infection. Methods We designed a clinical retrospective study involving 32 subjects divided into three groups: 1. nAGHp.a, treatment-naïve patients with H. pylori infection; 2. nAGHp.b, H. pylori-negative patients; and 3. EFHp.a, patients with refractory H. pylori infection. Gastric mucosal samples from the biobank of our research center were collected for 16S rRNA sequencing analysis and bacterial functions were predicted via PICRUSt. Results There were significant differences between the H. pylori- positive group and the H. pylori-negative group in species diversity, gastric microbiota structure, and bacterial function. The beneficial Lactobacillus in the H. pylori-positive group were significantly enriched compared with those in the refractory H. pylori infection group. The bacterial interaction network diagram suggested that the microbiota interactions in the refractory H. pylori infection group decreased. The gastric microbiota of the refractory H. pylori infection group was enriched in the pathways of metabolism and infectious diseases (energy metabolism, bacterial secretion system, glutathione metabolism, protein folding and associated processing, sulphur metabolism, membrane and intracellular structural molecules, lipopolysaccharide biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, inorganic ion transport and metabolism, and metabolism of cofactors and vitamins) when compared with the H. pylori-positive group without treatment based on PICRUSt analysis. Conclusion Significant alterations occurred in the gastric microbiota when eradication of H. pylori failed multiple times. A history of eradication of multiple H. pylori infections leads to an imbalance in the gastric mucosal microbiota to a certain extent, which was mainly reflected in the inhibition of the growth of beneficial Lactobacillus in the stomach. Patients with refractory H. pylori infection may be at a higher risk of developing gastric cancer than other H. pylori-positive patients.
Collapse
Affiliation(s)
- Dongsheng Liu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinyun Wang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Xie
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
6
|
Dore MP, Sau R, Niolu C, Abbondio M, Tanca A, Bibbò S, Loria M, Pes GM, Uzzau S. Metagenomic Changes of Gut Microbiota following Treatment of Helicobacter pylori Infection with a Simplified Low-Dose Quadruple Therapy with Bismuth or Lactobacillus reuteri. Nutrients 2022; 14:nu14142789. [PMID: 35889746 PMCID: PMC9316840 DOI: 10.3390/nu14142789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Probiotic supplementation to antibiotic regimens against Helicobacter pylori infection has been proposed to improve eradication rate and to decrease detrimental effects on gut microbiota. Aims: To evaluate microbiota modifications due to a low-dose quadruple therapy with bismuth or Lactobacillus reuteri. Methods: Forty-six patients infected with H. pylori were prospectively enrolled in a single-centre, randomized controlled trial to receive b.i.d. with meals for 10 days low-dose quadruple therapy consisting of rabeprazole 20 mg and bismuth (two capsules of Pylera® plus 250 mg each of tetracycline and metronidazole), or the same dose of rabeprazole and antibiotics plus Gastrus® (L. reuteri), one tablet twice-a-day for 27 days. Stool samples were collected at the enrolment, at the end and 30–40 days after the treatment. Gut microbiota composition was investigated with 16S rRNA gene sequencing. Results: Eradication rate was by ITT 78% in both groups, and by PP analysis 85.7% and 95.5% for Gastrus® and bismuth group, respectively. Alpha and beta diversity decreased at the end of treatment and was associated with a reduction of bacterial genera beneficial for gut homeostasis, which was rescued 30–40 days later in both groups, suggesting a similar impact of the two regimens in challenging bacterial community complexity. Conclusions: Low-dose bismuth quadruple therapy proved to be effective with lower costs and amount of antibiotics and bismuth. Gastrus® might be an option for patients with contraindications to bismuth. L. reuteri was unable to significantly counteract dysbiosis induced by antibiotics. How to administer probiotics to prevent gut microbiota alterations remains an open question.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
- Correspondence: ; Tel.: +39-079-229886
| | - Rosangela Sau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Caterina Niolu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Marcello Abbondio
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Alessandro Tanca
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Stefano Bibbò
- CEMAD Digestive Disease Center—Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Mariafrancesca Loria
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Sergio Uzzau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| |
Collapse
|
7
|
Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit–risk approach? World J Gastroenterol 2022; 28:766-774. [PMID: 35317277 PMCID: PMC8891730 DOI: 10.3748/wjg.v28.i7.766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is generally regarded as a human pathogen and a class 1 carcinogen, etiologically related to gastric and duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. However, H. pylori can also be regarded as a commensal symbiont. Unlike other pathogenic/ opportunistic bacteria, H. pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance. Fucosylated gastric mucin glycans, which are an important part of the innate and adaptive immune system, mediate the adhesion of H. pylori to the surface of the gastric epithelium, contributing to successful colonization. H. pylori may have beneficial effects on the host by regulating gastrointestinal (GI) microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H. pylori. The inverse association between H. pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota. Eradication of H. pylori can cause various adverse effects and alter the GI microbiota, leading to short-term or long-term dysbiosis. Overall, studies have shown that gastric Actinobacteria decrease after H. pylori eradication, Proteobacteria increase during short-term follow-up and then return to baseline levels, and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up. Various gastric mucosal bacteria (Actinomyces, Granulicatella, Parvimonas, Peptostreptococcus, Prevotella, Rothia, Streptococcus, Rhodococcus, and Lactobacillus) may contribute to precancerous gastric lesions and cancer itself after H. pylori eradication. H. pylori eradication can also lead to dysbiosis of the gut microbiota, with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during and after eradication. The decrease in Actinobacteria, which are pivotal in the maintenance of gut homeostasis, can persist for > 6 mo after H. pylori eradication. Furthermore, H. pylori eradication can alter the metabolism of gastric and intestinal bacteria. Given the available data, eradication cannot be an unconditional recommendation in every case of H. pylori infection, and the decision to eradicate H. pylori should be based on an assessment of the benefit–risk ratio for the individual patient. Thus, the current guidelines based on the unconditional “test-and-treat” strategy should be revised. The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication can cause antibiotic-associated diarrhea, including severe Clostridioides difficile-associated diarrhea and colitis and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or dysbiosis of the GI microbiota, supplementation of probiotics, prebiotics, and microbial metabolites (e.g., butyrate + inulin) should be considered to decrease the negative effects of eradication.
Collapse
Affiliation(s)
- Stanislav Sitkin
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Leonid Lazebnik
- Department of Outpatient Therapy, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Elena Avalueva
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Svetlana Kononova
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Timur Vakhitov
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
8
|
Kuo SH, Yeh KH, Lin CW, Liou JM, Wu MS, Chen LT, Cheng AL. Current Status of the Spectrum and Therapeutics of Helicobacter pylori-Negative Mucosa-Associated Lymphoid Tissue Lymphoma. Cancers (Basel) 2022; 14:cancers14041005. [PMID: 35205754 PMCID: PMC8869919 DOI: 10.3390/cancers14041005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevalence of Helicobacter pylori (HP)-negative gastric mucosa-associated lymphoid tissue (MALT) lymphoma has increased over the last two decades, whereas that of HP-positive gastric MALT lymphoma has decreased. Although the role of first-line antibiotics in the treatment of HP-negative gastric MALT lymphomas remains ambiguous, several case series have reported that a first-line HP eradication therapy (HPE)-like regimen could result in complete remission in a proportion of patients with localized HP-negative gastric MALT lymphoma. Previous sporadic reports have indicated that certain patients with extragastric MALT lymphoma can respond to first-line antibiotic treatment as well. These findings suggest that, in contrast to antibiotic-unresponsive tumors, antibiotic-responsive tumors may be recognized within the spectrum of HP-negative MALT lymphoma. In addition to conventional chemotherapy and immunochemotherapy, macrolide antibiotics and immunomodulatory drugs have been previously used and demonstrated to be efficacious. This article provides the spectrum and therapeutics for HP-negative MALT lymphoma. Abstract Helicobacter pylori (HP)-unrelated mucosa-associated lymphoid tissue (MALT) lymphoma includes the majority of extragastric MALT lymphomas and a small proportion of gastric MALT lymphomas. Although the role of first-line antibiotics in treating HP-negative gastric MALT lymphomas remains controversial, HP eradication therapy (HPE)-like regimens may result in approximately 20–30% complete remission (CR) for patients with localized HP-negative gastric MALT lymphoma. In these patients, H. heilmannii, H. bizzozeronii, and H. suis were detected in sporadic gastric biopsy specimens. Extragastric MALT lymphoma is conventionally treated with radiotherapy for localized disease and systemic chemotherapy for advanced and metastatic diseases. However, a proportion of extragastric MALT lymphomas, such as ocular adnexal lesions and small intestinal lesions, were reported to be controlled by antibiotics for Chlamydophila psittaci and Campylobacter jejuni, respectively. Some extragastric MALT lymphomas may even respond to first-line HPE. These findings suggest that some antibiotic-responsive tumors may exist in the family of HP-negative MALT lymphomas. Two mechanisms underlying the antibiotic responsiveness of HP-negative MALT lymphoma have been proposed. First, an HPE-like regimen may eradicate the antigens of unknown bacteria. Second, clarithromycin (the main component of HPE) may have direct or indirect antineoplastic effects, thus contributing to the CR of these tumors. For antibiotic-unresponsive HP-negative MALT lymphoma, high-dose macrolides and immunomodulatory drugs, such as thalidomide and lenalidomide, have reported sporadic success. Further investigation of new treatment regimens is warranted.
Collapse
Affiliation(s)
- Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-H.K.); (K.-H.Y.)
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-H.K.); (K.-H.Y.)
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 106, Taiwan;
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, National Cheng-Kung University Hospital, Tainan 704, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-H.K.); (K.-H.Y.)
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Department of Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 67251); Fax: +886-2-2371-1174
| |
Collapse
|