1
|
Liu X, Zheng Y, Meng Z, Wang H, Zhang Y, Xue D. Gene Regulation of Neutrophils Mediated Liver and Lung Injury through NETosis in Acute Pancreatitis. Inflammation 2024:10.1007/s10753-024-02071-w. [PMID: 38884700 DOI: 10.1007/s10753-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal emergencies, often resulting in self-digestion, edema, hemorrhage, and even necrosis of pancreatic tissue. When AP progresses to severe acute pancreatitis (SAP), it often causes multi-organ damage, leading to a high mortality rate. However, the molecular mechanisms underlying SAP-mediated organ damage remain unclear. This study aims to systematically mine SAP data from public databases and combine experimental validation to identify key molecules involved in multi-organ damage caused by SAP. Retrieve transcriptomic data of mice pancreatic tissue for AP, lung and liver tissue for SAP, and corresponding normal tissue from the Gene Expression Omnibus (GEO) database. Conduct gene differential analysis using Limma and DEseq2 methods. Perform enrichment analysis using the clusterProfiler package in R software. Score immune cells and immune status in various organs using single-sample gene set enrichment analysis (ssGSEA). Evaluate mRNA expression levels of core genes using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Validate serum amylase, TNF-α, IL-1β, and IL-6 levels in peripheral blood using enzyme-linked immunosorbent assay (ELISA), and detect the formation of neutrophil extracellular traps (NETs) in mice pancreatic, liver, and lung tissues using immunofluorescence. Differential analysis reveals that 46 genes exhibit expression dysregulation in mice pancreatic tissue for AP, liver and lung tissue for SAP, as well as peripheral blood in humans. Functional enrichment analysis indicates that these genes are primarily associated with neutrophil-related biological processes. ROC curve analysis indicates that 12 neutrophil-related genes have diagnostic potential for SAP. Immune infiltration analysis reveals high neutrophil infiltration in various organs affected by SAP. Single-cell sequencing analysis shows that these genes are predominantly expressed in neutrophils and macrophages. FPR1, ITGAM, and C5AR1 are identified as key genes involved in the formation of NETs and activation of neutrophils. qPCR and IHC results demonstrate upregulation of FPR1, ITGAM, and C5AR1 expression in pancreatic, liver, and lung tissues of mice with SAP. Immunofluorescence staining shows increased levels of neutrophils and NETs in SAP mice. Inhibition of NETs formation can alleviate the severity of SAP as well as the levels of inflammation in the liver and lung tissues. This study identified key genes involved in the formation of NETs, namely FPR1, ITGAM, and C5AR1, which are upregulated during multi-organ damage in SAP. Inhibition of NETs release effectively reduces the systemic inflammatory response and liver-lung damage in SAP. This research provides new therapeutic targets for the multi-organ damage associated with SAP.
Collapse
Affiliation(s)
- Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziang Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heming Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Wu H, Li C, Wang Y, Zhang M, Wu D, Shao J, Wang T, Wang C. Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling. Pharmaceuticals (Basel) 2024; 17:594. [PMID: 38794163 PMCID: PMC11124330 DOI: 10.3390/ph17050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The Pulsatilla decoction is a well-known herbal remedy used in clinical settings for treating vulvovaginal candidiasis (VVC). However, the specific mechanism that makes it effective is still unclear. Recent studies have shown that in cases of VVC, neutrophils recruited to the vagina, influenced by heparan sulfate (HS), do not successfully engulf Candida albicans (C. albicans). Instead, they release many inflammatory factors that cause damage to the vaginal mucosa. This study aims to understand the molecular mechanism by which the n-butanol extract of Pulsatilla decoction (BEPD) treats VVC through transcriptomics. High-performance liquid chromatography was used to identify the primary active components of BEPD. A VVC mouse model was induced using an estrogen-dependent method and the mice were treated daily with BEPD (20 mg/kg, 40 mg/kg, and 80 mg/kg) for seven days. The vaginal lavage fluid of the mice was analyzed for various experimental indices, including fungal morphology, fungal burden, degree of neutrophil infiltration, and cytokines. Various assessments were then performed on mouse vaginal tissues, including pathological assessment, immunohistochemistry, immunofluorescence, Western blot (WB), quantitative real-time PCR, and transcriptome assays. Our results showed that BEPD reduced vaginal redness and swelling, decreased white discharge, inhibited C. albicans hyphae formation, reduced neutrophil infiltration and fungal burden, and attenuated vaginal tissue damage compared with the VVC model group. The high-dose BEPD group even restored the damaged vaginal tissue to normal levels. The medium- and high-dose groups of BEPD also significantly reduced the levels of IL-1β, IL-6, TNF-α, and LDH. Additionally, transcriptomic results showed that BEPD regulated several chemokine (CXCL1, CXCL3, and CXCL5) and S100 alarmin (S100A8 and S100A9) genes, suggesting that BEPD may treat VVC by affecting chemokine- and alarmin-mediated neutrophil chemotaxis. Finally, we verified that BEPD protects the vaginal mucosa of VVC mice by inhibiting neutrophil recruitment and chemotaxis in an animal model of VVC via the TLR4/MyD88/NF-κB pathway. This study provides further evidence to elucidate the mechanism of BEPD treatment of VVC.
Collapse
Affiliation(s)
- Hui Wu
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
| | - Can Li
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
| | - Yemei Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Mengxiang Zhang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
3
|
Sohel M, Zahra Shova FT, shuvo S, Mahjabin T, Mojnu Mia M, Halder D, Islam H, Roman Mogal M, Biswas P, Saha HR, Sarkar BC, Mamun AA. Unveiling the potential anti-cancer activity of calycosin against multivarious cancers with molecular insights: A promising frontier in cancer research. Cancer Med 2024; 13:e6924. [PMID: 38230908 PMCID: PMC10905684 DOI: 10.1002/cam4.6924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Calycosin may be a potential candidate regarding chemotherapeutic agent, because already some studies against multivarious cancer have been made with this natural compound. AIM This review elucidated a brief overview of previous studies on calycosin potential effects on various cancers and its potential mechanism of action. METHODOLOGY Data retrieved by systematic searches of Google Scholar, PubMed, Science Direct, Web of Science, and Scopus by using keywords including calycosin, cancer types, anti-cancer mechanism, synergistic, and pharmacokinetic and commonly used tools are BioRender, ChemDraw Professional 16.0, and ADMETlab 2.0. RESULTS Based on our review, calycosin is available in nature and effective against around 15 different types of cancer. Generally, the anti-cancer mechanism of this compound is mediated through a variety of processes, including regulation of apoptotic pathways, cell cycle, angiogenesis and metastasis, oncogenes, enzymatic pathways, and signal transduction process. These study conducted in various study models, including in silico, in vitro, preclinical and clinical models. The molecular framework behind the anti-cancer effect is targeting some oncogenic and therapeutic proteins and multiple signaling cascades. Therapies based on nano-formulated calycosin may make excellent nanocarriers for the delivery of this compound to targeted tissue as well as particular organ. This natural compound becomes very effective when combined with other natural compounds and some standard drugs. Moreover, proper use of this compound can reverse resistance to existing anti-cancer drugs through a variety of strategies. Calycosin showed better pharmacokinetic properties with less toxicity in human bodies. CONCLUSION Calycosin exhibits excellent potential as a therapeutic drug against several cancer types and should be consumed until standard chemotherapeutics are available in pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Fatema Tuj Zahra Shova
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahporan shuvo
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Taiyara Mahjabin
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Mojnu Mia
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Dibyendu Halder
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Hafizul Islam
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Roman Mogal
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and TechnologyJashore University of Science and Technology (JUST)JashoreBangladesh
| | - Hasi Rani Saha
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | | | - Abdullah Al Mamun
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
4
|
Mostafa RE, Abdelrahmen SS, Saleh DO. L-Arginine-induced acute pancreatitis and its associated lung injury in rats: Down-regulation of TLR-4/MAPK-p38/JNK signaling pathway via Ginkgo biloba extract EGb 761. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:959-966. [PMID: 38911245 PMCID: PMC11193502 DOI: 10.22038/ijbms.2024.76162.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/04/2024] [Indexed: 06/25/2024]
Abstract
Objectives Acute pancreatitis (AP) is an abrupt inflammatory condition characterized by a storm of inflammatory cytokines leading to high morbidity and mortality. The current study aimed to examine the efficacy of Ginkgo biloba extract EGb 761 (GBE) in the treatment of L-arginine-induced AP and its associated lung injury. Materials and Methods Forty rats were randomly assigned into four groups. The normal group received only saline intraperitoneally while the other groups received two intraperitoneal L-arginine injections (250 mg/100 g b.wt) separated by a 1-hour interval to provoke AP. GBE (200 and 400 mg/kg/day, PO) was administered for 2 weeks post-induction of pancreatitis. Sera and pancreatic tissues were isolated. Results The outcome of the present study revealed that GBE ameliorated the elevated levels of serum amylase, lipase, and pancreatic inflammatory mediators viz., tumor necrosis factor-alpha (TNF-α), mitogen-activated protein kinase P38 (MAPK-P38), c-Jun N-terminal kinase 1 (JNK1), and nuclear factor-kappa B (NF-κB). Moreover, GBE restored the pancreatic gene expression of Toll-like receptor 4 (TLR4) and prostatic acid phosphatase-2 (PAP-2). Pancreatic and lung histopathological examinations confirmed the aforementioned parameters. Conclusion GBE interfered with the mechanistic pathway of L-arginine-induced acute pancreatic and its associated lung injury. Due to its anti-inflammatory properties, GBE can be used as a novel therapeutic candidate for the treatment of AP through down-regulating TLR-4/MAPK-p38/JNK and MAPK- p38/NF-κB signaling cascades.
Collapse
Affiliation(s)
- Rasha Ezzat Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre (ID: 60014618), Cairo, Egypt
| | | | - Dalia Osama Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre (ID: 60014618), Cairo, Egypt
| |
Collapse
|
5
|
Zhu Z, Bhatia M. Inflammation and Organ Injury the Role of Substance P and Its Receptors. Int J Mol Sci 2023; 24:ijms24076140. [PMID: 37047113 PMCID: PMC10094202 DOI: 10.3390/ijms24076140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
6
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
7
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
8
|
Wang Z, Liu J, Li F, Luo Y, Ge P, Zhang Y, Wen H, Yang Q, Ma S, Chen H. The gut-lung axis in severe acute Pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids. Pharmacol Res 2022; 182:106321. [PMID: 35752356 DOI: 10.1016/j.phrs.2022.106321] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
The role of gut microbiota in regulating the intestinal homeostasis, as well as the pathogenesis of severe acute pancreatitis-associated lung injury (PALI) is widely recognized. The bioactive functions of metabolites with small molecule weight and the detail molecular mechanisms of PALI mediated by "gut-lung axis" have gradually raised the attentions of researchers. Several studies have proved that short-chain fatty acids (SCFAs) produced by gut microbiome play crucial roles and varied activities in the process of PALI. However, relevant reviews reporting SCFAs in the involvement of PALI is lacking. In this review, we firstly introduced the synthetic and metabolic pathways of SCFAs, as well as the transport and signal transduction routes in brief. Afterwards, we focused on the possible mechanisms and clues of SCFAs to participate in the fight against PALI which referred to the inhibition of pathogen proliferation, anti-inflammatory effects, enhancement of intestinal barrier functions, and the maintenance and regulation of immune homeostasis via pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In addition, the latest reported pathological and physiological mechanisms of the gut-lung axis involved in PALI were reviewed. Finally, we summarized the potential therapeutic interventions of PALI by targeting SCFAs, including dietary fiber supplementation, direct supplementation of SCFAs/prebiotics/probiotics, and drugs administration, which is expected to provide new sights for clinical use in the future.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China.
| |
Collapse
|
9
|
Wang Z, Li F, Liu J, Luo Y, Guo H, Yang Q, Xu C, Ma S, Chen H. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol 2022; 13:913178. [PMID: 35774796 PMCID: PMC9237221 DOI: 10.3389/fimmu.2022.913178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| |
Collapse
|