1
|
Hausfeld L, Disbergen NR, Valente G, Zatorre RJ, Formisano E. Modulating Cortical Instrument Representations During Auditory Stream Segregation and Integration With Polyphonic Music. Front Neurosci 2021; 15:635937. [PMID: 34630007 PMCID: PMC8498193 DOI: 10.3389/fnins.2021.635937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous neuroimaging studies demonstrated that the auditory cortex tracks ongoing speech and that, in multi-speaker environments, tracking of the attended speaker is enhanced compared to the other irrelevant speakers. In contrast to speech, multi-instrument music can be appreciated by attending not only on its individual entities (i.e., segregation) but also on multiple instruments simultaneously (i.e., integration). We investigated the neural correlates of these two modes of music listening using electroencephalography (EEG) and sound envelope tracking. To this end, we presented uniquely composed music pieces played by two instruments, a bassoon and a cello, in combination with a previously validated music auditory scene analysis behavioral paradigm (Disbergen et al., 2018). Similar to results obtained through selective listening tasks for speech, relevant instruments could be reconstructed better than irrelevant ones during the segregation task. A delay-specific analysis showed higher reconstruction for the relevant instrument during a middle-latency window for both the bassoon and cello and during a late window for the bassoon. During the integration task, we did not observe significant attentional modulation when reconstructing the overall music envelope. Subsequent analyses indicated that this null result might be due to the heterogeneous strategies listeners employ during the integration task. Overall, our results suggest that subsequent to a common processing stage, top-down modulations consistently enhance the relevant instrument's representation during an instrument segregation task, whereas such an enhancement is not observed during an instrument integration task. These findings extend previous results from speech tracking to the tracking of multi-instrument music and, furthermore, inform current theories on polyphonic music perception.
Collapse
Affiliation(s)
- Lars Hausfeld
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Niels R Disbergen
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada
| | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Brightlands Institute for Smart Society (BISS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Graves JE, Oxenham AJ. Pitch discrimination with mixtures of three concurrent harmonic complexes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2072. [PMID: 31046318 PMCID: PMC6469983 DOI: 10.1121/1.5096639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
In natural listening contexts, especially in music, it is common to hear three or more simultaneous pitches, but few empirical or theoretical studies have addressed how this is achieved. Place and pattern-recognition theories of pitch require at least some harmonics to be spectrally resolved for pitch to be extracted, but it is unclear how often such conditions exist when multiple complex tones are presented together. In three behavioral experiments, mixtures of three concurrent complexes were filtered into a single bandpass spectral region, and the relationship between the fundamental frequencies and spectral region was varied in order to manipulate the extent to which harmonics were resolved either before or after mixing. In experiment 1, listeners discriminated major from minor triads (a difference of 1 semitone in one note of the triad). In experiments 2 and 3, listeners compared the pitch of a probe tone with that of a subsequent target, embedded within two other tones. All three experiments demonstrated above-chance performance, even in conditions where the combinations of harmonic components were unlikely to be resolved after mixing, suggesting that fully resolved harmonics may not be necessary to extract the pitch from multiple simultaneous complexes.
Collapse
Affiliation(s)
- Jackson E Graves
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
Disbergen NR, Valente G, Formisano E, Zatorre RJ. Assessing Top-Down and Bottom-Up Contributions to Auditory Stream Segregation and Integration With Polyphonic Music. Front Neurosci 2018; 12:121. [PMID: 29563861 PMCID: PMC5845899 DOI: 10.3389/fnins.2018.00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/15/2018] [Indexed: 11/24/2022] Open
Abstract
Polyphonic music listening well exemplifies processes typically involved in daily auditory scene analysis situations, relying on an interactive interplay between bottom-up and top-down processes. Most studies investigating scene analysis have used elementary auditory scenes, however real-world scene analysis is far more complex. In particular, music, contrary to most other natural auditory scenes, can be perceived by either integrating or, under attentive control, segregating sound streams, often carried by different instruments. One of the prominent bottom-up cues contributing to multi-instrument music perception is their timbre difference. In this work, we introduce and validate a novel paradigm designed to investigate, within naturalistic musical auditory scenes, attentive modulation as well as its interaction with bottom-up processes. Two psychophysical experiments are described, employing custom-composed two-voice polyphonic music pieces within a framework implementing a behavioral performance metric to validate listener instructions requiring either integration or segregation of scene elements. In Experiment 1, the listeners' locus of attention was switched between individual instruments or the aggregate (i.e., both instruments together), via a task requiring the detection of temporal modulations (i.e., triplets) incorporated within or across instruments. Subjects responded post-stimulus whether triplets were present in the to-be-attended instrument(s). Experiment 2 introduced the bottom-up manipulation by adding a three-level morphing of instrument timbre distance to the attentional framework. The task was designed to be used within neuroimaging paradigms; Experiment 2 was additionally validated behaviorally in the functional Magnetic Resonance Imaging (fMRI) environment. Experiment 1 subjects (N = 29, non-musicians) completed the task at high levels of accuracy, showing no group differences between any experimental conditions. Nineteen listeners also participated in Experiment 2, showing a main effect of instrument timbre distance, even though within attention-condition timbre-distance contrasts did not demonstrate any timbre effect. Correlation of overall scores with morph-distance effects, computed by subtracting the largest from the smallest timbre distance scores, showed an influence of general task difficulty on the timbre distance effect. Comparison of laboratory and fMRI data showed scanner noise had no adverse effect on task performance. These Experimental paradigms enable to study both bottom-up and top-down contributions to auditory stream segregation and integration within psychophysical and neuroimaging experiments.
Collapse
Affiliation(s)
- Niels R. Disbergen
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (MBIC), Maastricht, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (MBIC), Maastricht, Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (MBIC), Maastricht, Netherlands
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain Music and Sound Research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
4
|
Keller PE, König R, Novembre G. Simultaneous Cooperation and Competition in the Evolution of Musical Behavior: Sex-Related Modulations of the Singer's Formant in Human Chorusing. Front Psychol 2017; 8:1559. [PMID: 28959222 PMCID: PMC5603663 DOI: 10.3389/fpsyg.2017.01559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/28/2017] [Indexed: 11/29/2022] Open
Abstract
Human interaction through music is a vital part of social life across cultures. Influential accounts of the evolutionary origins of music favor cooperative functions related to social cohesion or competitive functions linked to sexual selection. However, work on non-human “chorusing” displays, as produced by congregations of male insects and frogs to attract female mates, suggests that cooperative and competitive functions may coexist. In such chorusing, rhythmic coordination between signalers, which maximizes the salience of the collective broadcast, can arise through competitive mechanisms by which individual males jam rival signals. Here, we show that mixtures of cooperative and competitive behavior also occur in human music. Acoustic analyses of the renowned St. Thomas Choir revealed that, in the presence of female listeners, boys with the deepest voices enhance vocal brilliance and carrying power by boosting high spectral energy. This vocal enhancement may reflect sexually mature males competing for female attention in a covert manner that does not undermine collaborative musical goals. The evolutionary benefits of music may thus lie in its aptness as a medium for balancing sexually motivated behavior and group cohesion.
Collapse
Affiliation(s)
- Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney UniversitySydney, NSW, Australia.,Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Rasmus König
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Giacomo Novembre
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, United Kingdom
| |
Collapse
|
5
|
Huberth M, Fujioka T. Neural representation of a melodic motif: Effects of polyphonic contexts. Brain Cogn 2017; 111:144-155. [DOI: 10.1016/j.bandc.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/26/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
|
6
|
Harris R, van Kranenburg P, de Jong BM. Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians. PLoS One 2016; 11:e0166033. [PMID: 27835631 PMCID: PMC5105996 DOI: 10.1371/journal.pone.0166033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/22/2016] [Indexed: 11/18/2022] Open
Abstract
The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically-trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.
Collapse
Affiliation(s)
- Robert Harris
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands
- Prince Claus Conservatoire, Hanze University of Applied Sciences, Groningen, The Netherlands
- * E-mail:
| | | | - Bauke M. de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Nikolsky A. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to Seventeenth Century. Front Psychol 2016; 7:211. [PMID: 27065893 PMCID: PMC4813086 DOI: 10.3389/fpsyg.2016.00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 11/13/2022] Open
Abstract
This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both domains, of tonal and social organization. Part-2, here, completes the line of historic development from Antiquity to seventeenth century. Vast archeological data is used to identify the perception of music structures that tells apart the temple/palace music of urban civilizations and the folk music of village cultures. The “mega-pitch-set” (MPS) organization is found to constitute the principal contribution of a math-based music theory to a new diatonic order. All ramifications for psychology of music are discussed in detail. “Non-octave hypermode” is identified as a peculiar homogenous type of MPS, typical for plainchant. The origin of chromaticism is thoroughly examined as an earmark of “art-music” that opposes earlier forms of folk music. The role of aesthetic emotions in formation of chromatic alteration is defined. The development of chromatic system is traced throughout history, highlighting its modern implementation in “hemiolic modes.” The connection between tonal organization in music and spatial organization in pictorial art is established in the Baroque culture, and then tracked back to prehistoric times. Both are shown to present a form of abstraction of environmental topographic schemes, and music is proposed as the primary medium for its cultivation through the concept of pitch. The comparison of stages of tonal organization and typologies of musical texture is used to define the overall course of tonal evolution. Tonal organization of pitch reflects the culture of thinking, adopted as a standard to optimize individual perception of reality within a social group in a way optimal for one's success, thereby setting the conventions of intellectual and emotional intelligence.
Collapse
|
8
|
Spada D, Verga L, Iadanza A, Tettamanti M, Perani D. The auditory scene: An fMRI study on melody and accompaniment in professional pianists. Neuroimage 2014; 102 Pt 2:764-75. [DOI: 10.1016/j.neuroimage.2014.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/13/2014] [Accepted: 08/20/2014] [Indexed: 11/17/2022] Open
|
9
|
Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proc Natl Acad Sci U S A 2014; 111:10383-8. [PMID: 24982142 DOI: 10.1073/pnas.1402039111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The auditory environment typically contains several sound sources that overlap in time, and the auditory system parses the complex sound wave into streams or voices that represent the various sound sources. Music is also often polyphonic. Interestingly, the main melody (spectral/pitch information) is most often carried by the highest-pitched voice, and the rhythm (temporal foundation) is most often laid down by the lowest-pitched voice. Previous work using electroencephalography (EEG) demonstrated that the auditory cortex encodes pitch more robustly in the higher of two simultaneous tones or melodies, and modeling work indicated that this high-voice superiority for pitch originates in the sensory periphery. Here, we investigated the neural basis of carrying rhythmic timing information in lower-pitched voices. We presented simultaneous high-pitched and low-pitched tones in an isochronous stream and occasionally presented either the higher or the lower tone 50 ms earlier than expected, while leaving the other tone at the expected time. EEG recordings revealed that mismatch negativity responses were larger for timing deviants of the lower tones, indicating better timing encoding for lower-pitched compared with higher-pitch tones at the level of auditory cortex. A behavioral motor task revealed that tapping synchronization was more influenced by the lower-pitched stream. Results from a biologically plausible model of the auditory periphery suggest that nonlinear cochlear dynamics contribute to the observed effect. The low-voice superiority effect for encoding timing explains the widespread musical practice of carrying rhythm in bass-ranged instruments and complements previously established high-voice superiority effects for pitch and melody.
Collapse
|
10
|
Marie C, Trainor LJ. Early development of polyphonic sound encoding and the high voice superiority effect. Neuropsychologia 2014; 57:50-8. [PMID: 24613759 DOI: 10.1016/j.neuropsychologia.2014.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/17/2022]
Abstract
Previous research suggests that when two streams of pitched tones are presented simultaneously, adults process each stream in a separate memory trace, as reflected by mismatch negativity (MMN), a component of the event-related potential (ERP). Furthermore, a superior encoding of the higher tone or voice in polyphonic sounds has been found for 7-month-old infants and both musician and non-musician adults in terms of a larger amplitude MMN in response to pitch deviant stimuli in the higher than the lower voice. These results, in conjunction with modeling work, suggest that the high voice superiority effect might originate in characteristics of the peripheral auditory system. If this is the case, the high voice superiority effect should be present in infants younger than 7 months. In the present study we tested 3-month-old infants as there is no evidence at this age of perceptual narrowing or specialization of musical processing according to the pitch or rhythmic structure of music experienced in the infant׳s environment. We presented two simultaneous streams of tones (high and low) with 50% of trials modified by 1 semitone (up or down), either on the higher or the lower tone, leaving 50% standard trials. Results indicate that like the 7-month-olds, 3-month-old infants process each tone in a separate memory trace and show greater saliency for the higher tone. Although MMN was smaller and later in both voices for the group of sixteen 3-month-olds compared to the group of sixteen 7-month-olds, the size of the difference in MMN for the high compared to low voice was similar across ages. These results support the hypothesis of an innate peripheral origin of the high voice superiority effect.
Collapse
Affiliation(s)
- Céline Marie
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; McMaster Institute for Music and the Mind, Hamilton, Ontario, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; McMaster Institute for Music and the Mind, Hamilton, Ontario, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Koren R, Gingras B. Perceiving individuality in harpsichord performance. Front Psychol 2014; 5:141. [PMID: 24605104 PMCID: PMC3932517 DOI: 10.3389/fpsyg.2014.00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/04/2014] [Indexed: 11/13/2022] Open
Abstract
Can listeners recognize the individual characteristics of unfamiliar performers playing two different musical pieces on the harpsichord? Six professional harpsichordists, three prize-winners and three non prize-winners, made two recordings of two pieces from the Baroque period (a variation on a Partita by Frescobaldi and a rondo by François Couperin) on an instrument equipped with a MIDI console. Short (8 to 15 s) excerpts from these 24 recordings were subsequently used in a sorting task in which 20 musicians and 20 non-musicians, balanced for gender, listened to these excerpts and grouped together those that they thought had been played by the same performer. Twenty-six participants, including 17 musicians and nine non-musicians, performed significantly better than chance, demonstrating that the excerpts contained sufficient information to enable listeners to recognize the individual characteristics of the performers. The grouping accuracy of musicians was significantly higher than that observed for non-musicians. No significant difference in grouping accuracy was found between prize-winning performers and non-winners or between genders. However, the grouping accuracy was significantly higher for the rondo than for the variation, suggesting that the features of the two pieces differed in a way that affected the listeners' ability to sort them accurately. Furthermore, only musicians performed above chance level when matching variation excerpts with rondo excerpts, suggesting that accurately assigning recordings of different pieces to their performer may require musical training. Comparisons between the MIDI performance data and the results of the sorting task revealed that tempo and, to a lesser extent, note onset asynchrony were the most important predictors of the perceived distance between performers, and that listeners appeared to rely mostly on a holistic percept of the excerpts rather than on a comparison of note-by-note expressive patterns.
Collapse
Affiliation(s)
- Réka Koren
- Goldsmiths College, University of London London, UK
| | - Bruno Gingras
- Department of Cognitive Biology, University of Vienna Vienna, Austria
| |
Collapse
|
12
|
Gingras B, Asselin PY, McAdams S. Individuality in harpsichord performance: disentangling performer- and piece-specific influences on interpretive choices. Front Psychol 2013; 4:895. [PMID: 24348446 PMCID: PMC3842509 DOI: 10.3389/fpsyg.2013.00895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/12/2013] [Indexed: 11/26/2022] Open
Abstract
Although a growing body of research has examined issues related to individuality in music performance, few studies have attempted to quantify markers of individuality that transcend pieces and musical styles. This study aims to identify such meta-markers by discriminating between influences linked to specific pieces or interpretive goals and performer-specific playing styles, using two complementary statistical approaches: linear mixed models (LMMs) to estimate fixed (piece and interpretation) and random (performer) effects, and similarity analyses to compare expressive profiles on a note-by-note basis across pieces and expressive parameters. Twelve professional harpsichordists recorded three pieces representative of the Baroque harpsichord repertoire, including three interpretations of one of these pieces, each emphasizing a different melodic line, on an instrument equipped with a MIDI console. Four expressive parameters were analyzed: articulation, note onset asynchrony, timing, and velocity. LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals. Some performers consistently deviated from the mean values for articulation and velocity across pieces and interpretations, suggesting that global measures of expressivity may in some cases constitute valid markers of artistic individuality. Similarity analyses detected significant associations among the magnitudes of the correlations between the expressive profiles of different performers. These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations. These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices.
Collapse
Affiliation(s)
- Bruno Gingras
- Department of Cognitive Biology, University of Vienna Vienna, Austria
| | | | - Stephen McAdams
- Schulich School of Music, McGill University Montreal, QC, Canada
| |
Collapse
|
13
|
Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models. Hear Res 2013; 308:60-70. [PMID: 23916754 DOI: 10.1016/j.heares.2013.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 07/12/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022]
Abstract
Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human ERP and psychophysical music listening studies.
Collapse
|
14
|
Marie C, Trainor LJ. Development of simultaneous pitch encoding: infants show a high voice superiority effect. Cereb Cortex 2012; 23:660-9. [PMID: 22419678 DOI: 10.1093/cercor/bhs050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infants must learn to make sense of real-world auditory environments containing simultaneous and overlapping sounds. In adults, event-related potential studies have demonstrated the existence of separate preattentive memory traces for concurrent note sequences and revealed perceptual dominance for encoding of the voice with higher fundamental frequency of 2 simultaneous tones or melodies. Here, we presented 2 simultaneous streams of notes (15 semitones apart) to 7-month-old infants. On 50% of trials, either the higher or the lower note was modified by one semitone, up or down, leaving 50% standard trials. Infants showed mismatch negativity (MMN) to changes in both voices, indicating separate memory traces for each voice. Furthermore, MMN was earlier and larger for the higher voice as in adults. When in the context of a second voice, representation of the lower voice was decreased and that of the higher voice increased compared with when each voice was presented alone. Additionally, correlations between MMN amplitude and amount of weekly music listening suggest that experience affects the development of auditory memory. In sum, the ability to process simultaneous pitches and the dominance of the highest voice emerge early during infancy and are likely important for the perceptual organization of sound in realistic environments.
Collapse
Affiliation(s)
- Céline Marie
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
15
|
Mackersie CL, Dewey J, Guthrie LA. Effects of fundamental frequency and vocal-tract length cues on sentence segregation by listeners with hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:1006-19. [PMID: 21877813 PMCID: PMC3190663 DOI: 10.1121/1.3605548] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/22/2011] [Accepted: 06/01/2011] [Indexed: 05/20/2023]
Abstract
The purpose was to determine the effect of hearing loss on the ability to separate competing talkers using talker differences in fundamental frequency (F0) and apparent vocal-tract length (VTL). Performance of 13 adults with hearing loss and 6 adults with normal hearing was measured using the Coordinate Response Measure. For listeners with hearing loss, the speech was amplified and filtered according to the NAL-RP hearing aid prescription. Target-to-competition ratios varied from 0 to 9 dB. The target sentence was randomly assigned to the higher or lower values of F0 or VTL on each trial. Performance improved for F0 differences up to 9 and 6 semitones for people with normal hearing and hearing loss, respectively, but only when the target talker had the higher F0. Recognition for the lower F0 target improved when trial-to-trial uncertainty was removed (9-semitone condition). Scores improved with increasing differences in VTL for the normal-hearing group. On average, hearing-impaired listeners did not benefit from VTL cues, but substantial inter-subject variability was observed. The amount of benefit from VTL cues was related to the average hearing loss in the 1-3-kHz region when the target talker had the shorter VTL.
Collapse
|
16
|
Kraus N, Skoe E, Parbery-Clark A, Ashley R. Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann N Y Acad Sci 2009; 1169:543-57. [PMID: 19673837 DOI: 10.1111/j.1749-6632.2009.04549.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Speech and music are highly complex signals that have many shared acoustic features. Pitch, Timbre, and Timing can be used as overarching perceptual categories for describing these shared properties. The acoustic cues contributing to these percepts also have distinct subcortical representations which can be selectively enhanced or degraded in different populations. Musically trained subjects are found to have enhanced subcortical representations of pitch, timbre, and timing. The effects of musical experience on subcortical auditory processing are pervasive and extend beyond music to the domains of language and emotion. The sensory malleability of the neural encoding of pitch, timbre, and timing can be affected by lifelong experience and short-term training. This conceptual framework and supporting data can be applied to consider sensory learning of speech and music through a hearing aid or cochlear implant.
Collapse
Affiliation(s)
- Nina Kraus
- Auditory Neuroscience Lab, Department of Communication Sciences, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
By measuring the auditory brainstem response to two musical intervals, the major sixth (E3 and G2) and the minor seventh (E3 and F#2), we found that musicians have a more specialized sensory system for processing behaviorally relevant aspects of sound. Musicians had heightened responses to the harmonics of the upper tone (E), as well as certain combination tones (sum tones) generated by nonlinear processing in the auditory system. In music, the upper note is typically carried by the upper voice, and the enhancement of the upper tone likely reflects musicians' extensive experience attending to the upper voice. Neural phase locking to the temporal periodicity of the amplitude-modulated envelope, which underlies the perception of musical harmony, was also more precise in musicians than nonmusicians. Neural enhancements were strongly correlated with years of musical training, and our findings, therefore, underscore the role that long-term experience with music plays in shaping auditory sensory encoding.
Collapse
|
18
|
Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C. Automatic Encoding of Polyphonic Melodies in Musicians and Nonmusicians. J Cogn Neurosci 2005; 17:1578-92. [PMID: 16269098 DOI: 10.1162/089892905774597263] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In music, multiple musical objects often overlap in time. Western polyphonic music contains multiple simultaneous melodic lines (referred to as “voices”) of equal importance. Previous electrophysiological studies have shown that pitch changes in a single melody are automatically encoded in memory traces, as indexed by mismatch negativity (MMN) and its magnetic counterpart (MMNm), and that this encoding process is enhanced by musical experience. In the present study, we examined whether two simultaneous melodies in polyphonic music are represented as separate entities in the auditory memory trace. Musicians and untrained controls were tested in both magnetoencephalogram and behavioral sessions. Polyphonic stimuli were created by combining two melodies (A and B), each consisting of the same five notes but in a different order. Melody A was in the high voice and Melody B in the low voice in one condition, and this was reversed in the other condition. On 50% of trials, a deviant final (5th) note was played either in the high or in the low voice, and it either went outside the key of the melody or remained within the key. These four deviations occurred with equal probability of 12.5% each. Clear MMNm was obtained for most changes in both groups, despite the 50% deviance level, with a larger amplitude in musicians than in controls. The response pattern was consistent across groups, with larger MMNm for deviants in the high voice than in the low voice, and larger MMNm for in-key than out-of-key changes, despite better behavioral performance for out-of-key changes. The results suggest that melodic information in each voice in polyphonic music is encoded in the sensory memory trace, that the higher voice is more salient than the lower, and that tonality may be processed primarily at cognitive stages subsequent to MMN generation.
Collapse
|
19
|
Demany L, Montandon G, Semal C. Pitch perception and retention: Two cumulative benefits of selective attention. ACTA ACUST UNITED AC 2004; 66:609-17. [PMID: 15311660 DOI: 10.3758/bf03194905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By presenting, before a "chord" of three pure tones with remote frequencies, a tone relatively close in frequency to one component (T1) of the chord, one can direct the listener's attention onto T1 within the chord. In the first part of the present study, it was found that this increases the accuracy with which the pitch of T1 is perceived. The attentional cue improved the discrimination between the frequency of T1 and that of another tone (T2) presented immediately after the chord or very shortly (300 msec) after it. No improvement was found when T1 was presented alone instead of within a chord. A subsequent experiment, in which the chord and T2 were separated by either 300 msec or 4 sec, indicated that the attentional cue improved not only the perception, but also the memorization of the pitch of T1 (especially when T1 was the intermediate component of the chord). It is argued that the positive effect of attention on memory took place when the pitch percept was encoded into memory, rather than after the formation of the pitch memory trace.
Collapse
Affiliation(s)
- Laurent Demany
- Laboratoire de Neurophysiologie, CNRS and Université Victor Segalen, Bordeaux, France.
| | | | | |
Collapse
|
20
|
Goebl W, Bresin R. Measurement and reproduction accuracy of computer-controlled grand pianos. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:2273-2283. [PMID: 14587624 DOI: 10.1121/1.1605387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The recording and reproducing capabilities of a Yamaha Disklavier grand piano and a Bösendorfer SE290 computer-controlled grand piano were tested, with the goal of examining their reliability for performance research. An experimental setup consisting of accelerometers and a calibrated microphone was used to capture key and hammer movements, as well as the acoustic signal. Five selected keys were played by pianists with two types of touch ("staccato" and "legato"). Timing and dynamic differences between the original performance, the corresponding MIDI file recorded by the computer-controlled pianos, and its reproduction were analyzed. The two devices performed quite differently with respect to timing and dynamic accuracy. The Disklavier's onset capturing was slightly more precise (+/- 10 ms) than its reproduction (-20 to +30 ms); the Bösendorfer performed generally better, but its timing accuracy was slightly less precise for recording (-10 to 3 ms) than for reproduction (+/- 2 ms). Both devices exhibited a systematic (linear) error in recording over time. In the dynamic dimension, the Bösendorfer showed higher consistency over the whole dynamic range, while the Disklavier performed well only in a wide middle range. Neither device was able to capture or reproduce different types of touch.
Collapse
Affiliation(s)
- Werner Goebl
- Austrian Research Institute for Artificial Intelligence (OFAI), Freyung 6/6, 1010 Vienna, Austria
| | | |
Collapse
|
21
|
Crawley EJ, Acker-Mills BE, Pastore RE, Weil S. Change detection in multi-voice music: The role of musical structure, musical training, and task demands. ACTA ACUST UNITED AC 2002. [DOI: 10.1037/0096-1523.28.2.367] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
|
23
|
Acker BE, Pastore RE. Perceptual integrality of major chord components. PERCEPTION & PSYCHOPHYSICS 1996; 58:748-61. [PMID: 8710453 DOI: 10.3758/bf03213107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, an accuracy, rather than a reaction time, version of the Garner paradigm was used to evaluate the integrality or separability of major chord components. Tuned (prototype, or P) and mistuned (nonprototype, or NP) sets of root position C-major triads were constructed by holding the C constant in all stimuli and varying the E and G frequencies in 2- and 4-Hz steps. The P stimuli represent small systematic mistunings in the E and G notes relative to an equal-tempered C-major chord. The NP stimuli represent an equivalent range of frequency variation, but relative to a significantly out-of-tune C-major triad. In different experimental sessions, a same-different (AX) task was used to separately evaluate discrimination performance for the E and G frequencies as a function of whether the nontarget frequency (G or E) was fixed or varied in either a correlated or an orthogonal fashion (with the C frequency always held constant). Compared with a fixed baseline condition where only the target frequency changed, both chord components exhibited a significant redundancy gain in the correlated conditions and, to varying degrees, significant interference effects in the orthogonal condition, indicating that the chord components function largely in an integral fashion. Relative to the discrimination of G, discrimination of the E frequency was less influenced by variation in the nontarget (G) frequency, showing that attention, to some degree, could be selectively allocated to the E chord component. In addition, the results were consistent with previous findings that the functional prototype for the major chord category seems to act as a perceptual anchor, rather than as a magnet, and appears to be located in the physiologically defined area of just temperament, as opposed to the more experientially defined area of equal temperament.
Collapse
Affiliation(s)
- B E Acker
- Department of Psychology, State University of New York, Binghamton 13902-6000, USA.
| | | |
Collapse
|
24
|
Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. ACTA ACUST UNITED AC 1996. [DOI: 10.3758/bf03205482] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|