1
|
Lentz JJ, Townsend JT. Merging the Psychophysical Function With Response Times for Auditory Detection of One vs. Two Tones. Front Psychol 2022; 13:910740. [PMID: 36160519 PMCID: PMC9493485 DOI: 10.3389/fpsyg.2022.910740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study is to take preliminary steps to unify psychoacoustic techniques with reaction-time methodologies to address the perceptual mechanisms responsible for the detection of one vs. multiple sounds. We measured auditory redundancy gains for auditory detection of pure tones widely spaced in frequency using the tools of Systems Factorial Technology to evince the system architecture and workload capacity in two different scenarios (SOFT and LOUD). We adopted an experimental design in which the presence or absence of a target at each of two frequencies was combined factorially with two stimulus levels. Replicating previous work, results did not allow an assessment of system architecture due to a failure to observe factor influence at the level of distribution ordering for dual-target stimuli for both SOFT and LOUD scenarios. All subjects demonstrated very modest redundancy gains for the dual-target compared to the single-target stimuli, and results were similar for both LOUD and SOFT. We propose that these results can be predicted by a mental architecture that falls into the class of integrated subadditive parallel systems, using a well-supported assumption that reaction time is driven by loudness. We demonstrate that modeled loudness of the experimental sounds (which ranged between about 0.2 and 14 sones) is highly correlated with mean reaction time (r = −0.87), and we provide a proof-of-concept model based on Steven’s Power law that predicts both a failure of distributional ordering for dual-target stimuli and very modest redundancy gains.
Collapse
Affiliation(s)
- Jennifer J. Lentz
- Department of Speech, Program in Cognitive Sciences, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- *Correspondence: Jennifer J. Lentz,
| | - James T. Townsend
- Department of Psychological and Brain Sciences, Program in Cognitive Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Auerbach BD, Manohar S, Radziwon K, Salvi R. Auditory hypersensitivity and processing deficits in a rat model of fragile X syndrome. Neurobiol Dis 2021; 161:105541. [PMID: 34751141 DOI: 10.1016/j.nbd.2021.105541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Fragile X (FX) syndrome is one of the leading inherited causes of autism spectrum disorder (ASD). A majority of FX and ASD patients exhibit sensory hypersensitivity, including auditory hypersensitivity or hyperacusis, a condition in which everyday sounds are perceived as much louder than normal. Auditory processing deficits in FX and ASD also afford the opportunity to develop objective and quantifiable outcome measures that are likely to translate between humans and animal models due to the well-conserved nature of the auditory system and well-developed behavioral read-outs of sound perception. Therefore, in this study we characterized auditory hypersensitivity in a Fmr1 knockout (KO) transgenic rat model of FX using an operant conditioning task to assess sound detection thresholds and suprathreshold auditory reaction time-intensity (RT-I) functions, a reliable psychoacoustic measure of loudness growth, at a variety of stimulus frequencies, bandwidths, and durations. Male Fmr1 KO and littermate WT rats both learned the task at the same rate and exhibited normal hearing thresholds. However, Fmr1 KO rats had faster auditory RTs over a broad range of intensities and steeper RT-I slopes than WT controls, perceptual evidence of excessive loudness growth in Fmr1 KO rats. Furthermore, we found that Fmr1 KO animals exhibited abnormal perceptual integration of sound duration and bandwidth, with diminished temporal but enhanced spectral integration of sound intensity. Because temporal and spectral integration of sound stimuli were altered in opposite directions in Fmr1 KO rats, this suggests that abnormal RTs in these animals are evidence of aberrant auditory processing rather than generalized hyperactivity or altered motor responses. Together, these results are indicative of fundamental changes to low-level auditory processing in Fmr1 KO animals. Finally, we demonstrated that antagonism of metabotropic glutamate receptor 5 (mGlu5) selectively and dose-dependently restored normal loudness growth in Fmr1 KO rats, suggesting a pharmacologic approach for alleviating sensory hypersensitivity associated with FX. This study leverages the tractable nature of the auditory system and the unique behavioral advantages of rats to provide important insights into the nature of a centrally important yet understudied aspect of FX and ASD.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA; Department of Molecular & Integrative Physiology, Beckman Institute for Advanced Science & Technology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
3
|
Berthomieu G, Koehl V, Paquier M. Does Loudness Relate to the Strength of the Sound Produced by the Source or Received by the Ears? A Review of How Focus Affects Loudness. Front Psychol 2021; 12:583690. [PMID: 33633631 PMCID: PMC7901973 DOI: 10.3389/fpsyg.2021.583690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/04/2020] [Indexed: 11/13/2022] Open
Abstract
Loudness is the magnitude of the auditory sensation that a listener experiences when exposed to a sound. Several sound attributes are reported to affect loudness, such as the sound pressure level at the listener's ears and the spectral content. In addition to these physical attributes of the stimulus, some subjective attributes also appear to affect loudness. When presented with a sound, a listener interacts with an auditory object and can focus on several aspects of the latter. Loudness appears to differ depending on how listeners apprehend this object, notably whether they focus on the sound that reaches their ears or that is produced by the source. The way listeners focus on the auditory object may depend on the stimulus itself. For instance, they might be more likely to focus on the sound emitted by the source if the latter is visible. The instructions given by the experimenters can also explicitly direct the listener's focus on the sound reaching the ears or emitted by the source. The present review aims at understanding how listeners focus on the auditory object depending on the stimuli and instructions they are provided with, and to describe how loudness depends on this focus.
Collapse
|
4
|
Evaluation of temporal and suprasegmental auditory processing in patients with unilateral hearing loss. Auris Nasus Larynx 2020; 47:785-792. [DOI: 10.1016/j.anl.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/24/2022]
|
5
|
Wong E, Radziwon K, Chen GD, Liu X, Manno FA, Manno SH, Auerbach B, Wu EX, Salvi R, Lau C. Functional magnetic resonance imaging of enhanced central auditory gain and electrophysiological correlates in a behavioral model of hyperacusis. Hear Res 2020; 389:107908. [PMID: 32062293 DOI: 10.1016/j.heares.2020.107908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 02/02/2020] [Indexed: 01/24/2023]
Abstract
Hyperacusis is a debilitating hearing condition in which normal everyday sounds are perceived as exceedingly loud, annoying, aversive or even painful. The prevalence of hyperacusis approaches 10%, making it an important, but understudied medical condition. To noninvasively identify the neural correlates of hyperacusis in an animal model, we used sound-evoked functional magnetic resonance imaging (fMRI) to locate regions of abnormal activity in the central nervous system of rats with behavioral evidence of hyperacusis induced with an ototoxic drug (sodium salicylate, 250 mg/kg, i.p.). Reaction time-intensity measures of loudness-growth revealed behavioral evidence of salicylate-induced hyperacusis at high intensities. fMRI revealed significantly enhanced sound-evoked responses in the auditory cortex (AC) to 80 dB SPL tone bursts presented at 8 and 16 kHz. Sound-evoked responses in the inferior colliculus (IC) were also enhanced, but to a lesser extent. To confirm the main results, electrophysiological recordings of spike discharges from multi-unit clusters were obtained from the central auditory pathway. Salicylate significantly enhanced tone-evoked spike-discharges from multi-unit clusters in the AC from 4 to 30 kHz at intensities ≥60 dB SPL; less enhancement occurred in the medial geniculate body (MGB), and even less in the IC. Our results demonstrate for the first time that non-invasive sound-evoked fMRI can be used to identify regions of neural hyperactivity throughout the brain in an animal model of hyperacusis.
Collapse
Affiliation(s)
- Eddie Wong
- Department of Physics, City University of Hong Kong, Hong Kong, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Kelly Radziwon
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Xiaopeng Liu
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Francis Am Manno
- Department of Physics, City University of Hong Kong, Hong Kong, China; School of Biomedical Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Sinai Hc Manno
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Benjamin Auerbach
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Richard Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC.
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Salvi R, Auerbach BD, Lau C, Chen YC, Manohar S, Liu X, Ding D, Chen GD. Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis. Curr Top Behav Neurosci 2020; 51:133-160. [PMID: 32653998 DOI: 10.1007/7854_2020_156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tinnitus and hyperacusis are debilitating conditions often associated with aging or exposure to intense noise or ototoxic drugs. One of the most reliable methods of inducing tinnitus is with high doses of sodium salicylate, the active ingredient in aspirin. High doses of salicylate have been widely used to investigate the functional neuroanatomy of tinnitus and hyperacusis. High doses of salicylate have been used to develop novel behavioral methods to detect the presence of tinnitus and hyperacusis in animal models. Salicylate typically induces a hearing loss of approximately 20 dB which greatly reduces the neural output of the cochlea. As this weak neural signal emerging from the cochlea is sequentially relayed to the cochlear nucleus, inferior colliculus, medial geniculate, and auditory cortex, the neural response to suprathreshold sounds is progressively amplified by a factor of 2-3 by the time the signal reaches the auditory cortex, a phenomenon referred to as enhanced central gain. Sound-evoked hyperactivity also occurred in the amygdala, a region that assigns emotional significance to sensory stimuli. Resting state functional magnetic imaging of the BOLD signal revealed salicylate-induced increases in spontaneous neural activity in the inferior colliculus, medial geniculate body, and auditory cortex as well as in non-auditory areas such as the amygdala, reticular formation, cerebellum, and other sensory areas. Functional connectivity of the BOLD signal revealed increased neural coupling between several auditory areas and non-auditory areas such as the amygdala, cerebellum, reticular formation, hippocampus, and caudate/putamen; these strengthened connections likely contribute to the multifaceted dimensions of tinnitus. Taken together, these results suggest that salicylate-induced tinnitus disrupts a complex neural network involving many auditory centers as well as brain regions involved with emotion, arousal, memory, and motor planning. These extra-auditory centers embellish the basic auditory percepts that results in tinnitus and which may also contribute to hyperacusis.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA.
| | | | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
Moore BCJ, Glasberg BR, Varathanathan A, Schlittenlacher J. A Loudness Model for Time-Varying Sounds Incorporating Binaural Inhibition. Trends Hear 2018; 20:2331216516682698. [PMID: 28215113 PMCID: PMC5318944 DOI: 10.1177/2331216516682698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article describes a model of loudness for time-varying sounds that incorporates the concept of binaural inhibition, namely, that the signal applied to one ear can reduce the internal response to a signal at the other ear. For each ear, the model includes the following: a filter to allow for the effects of transfer of sound through the outer and middle ear; a short-term spectral analysis with greater frequency resolution at low than at high frequencies; calculation of an excitation pattern, representing the magnitudes of the outputs of the auditory filters as a function of center frequency; application of a compressive nonlinearity to the output of each auditory filter; and smoothing over time of the resulting instantaneous specific loudness pattern using an averaging process resembling an automatic gain control. The resulting short-term specific loudness patterns are used to calculate broadly tuned binaural inhibition functions, the amount of inhibition depending on the relative short-term specific loudness at the two ears. The inhibited specific loudness patterns are summed across frequency to give an estimate of the short-term loudness for each ear. The overall short-term loudness is calculated as the sum of the short-term loudness values for the two ears. The long-term loudness for each ear is calculated by smoothing the short-term loudness for that ear, again by a process resembling automatic gain control, and the overall loudness impression is obtained by summing the long-term loudness across ears. The predictions of the model are more accurate than those of an earlier model that did not incorporate binaural inhibition.
Collapse
Affiliation(s)
- Brian C J Moore
- 1 Department of Experimental Psychology, University of Cambridge, Cambridge, England
| | - Brian R Glasberg
- 1 Department of Experimental Psychology, University of Cambridge, Cambridge, England
| | - Ajanth Varathanathan
- 1 Department of Experimental Psychology, University of Cambridge, Cambridge, England
| | - Josef Schlittenlacher
- 1 Department of Experimental Psychology, University of Cambridge, Cambridge, England
| |
Collapse
|
8
|
Moore BCJ, Jervis M, Harries L, Schlittenlacher J. Testing and refining a loudness model for time-varying sounds incorporating binaural inhibition. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:1504. [PMID: 29604698 DOI: 10.1121/1.5027246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes some experimental tests and modifications to a model of loudness for time-varying sounds incorporating the concept of binaural inhibition. Experiment 1 examined the loudness of a 100% sinusoidally amplitude-modulated 1000-Hz sinusoidal carrier as a function of the interaural modulation phase difference (IMPD). The IMPD of the test sound was 90° or 180° and that of the comparison sound was 0°. The level difference between the test and the comparison sounds at the point of equal loudness (the LDEL) was estimated for baseline levels of 30 and 70 dB sound pressure level and modulation rates of 1, 2, 4, 8, 16, and 32 Hz. The LDELs were negative (mean = -1.1 and -1.5 dB for IMPDs of 90° and 180°), indicating that non-zero IMPDs led to increased loudness. The original version of the model predicted the general form of the results, but there were some systematic errors. Modifications to the time constants of the model gave a better fit to the data. Experiment 2 assessed the loudness of unintelligible speech-like signals, generated using a noise vocoder, whose spectra and time pattern differed at the two ears. Both the original and modified models gave good fits to the data.
Collapse
Affiliation(s)
- Brian C J Moore
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Matthew Jervis
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Luke Harries
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Josef Schlittenlacher
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
9
|
Abstract
Although many studies have explored the relation between reaction time (RT) and loudness, including effects of intensity, frequency, and binaural summation, comparable work on spectral summation is rare. However, most real-world sounds are not pure tones and typically have bandwidths covering several critical bands. Since comparing to a 1-kHz pure tone, the reference tone, is important for loudness measurement and standardization, the present work focuses on comparing RTs for broadband noise to those for 1-kHz pure tones in three experiments using different spectral and binaural configurations. The results of Experiments 1 and 2 yield good quantitative agreement with spectral loudness summation models for moderate and high sound pressure levels, measured using both pink noise covering almost the entire hearing range and bandpass-filtered pink noise with different center frequencies. However, at lower levels, the RT measurements yield an interaction of level and bandwidth, which is not in line with loudness scaling data. In Experiment 3, which investigated the binaural summation of broadband sounds, the binaural gain for white noise was determined to be 9 dB, which is somewhat larger than what had been found in previous RT measurements using 1-kHz pure tones.
Collapse
Affiliation(s)
- Josef Schlittenlacher
- Institut für Psychologie, Technische Universität Darmstadt, Alexanderstraße, 10, 64283, Darmstadt, Germany.
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, England.
| | - Wolfgang Ellermeier
- Institut für Psychologie, Technische Universität Darmstadt, Alexanderstraße, 10, 64283, Darmstadt, Germany
| | - Gül Avci
- Institut für Psychologie, Technische Universität Darmstadt, Alexanderstraße, 10, 64283, Darmstadt, Germany
| |
Collapse
|
10
|
Abstract
Although auditory simple reaction time (RT) is usually defined as the time elapsing between the onset of a stimulus and a recorded reaction, a sound cannot be specified by a single point in time. Therefore, the present work investigates how the period of time immediately after onset affects RT. By varying the stimulus duration between 10 and 500 msec, this critical duration was determined to fall between 32 and 40 milliseconds for a 1-kHz pure tone at 70 dB SPL. In a second experiment, the role of the buildup was further investigated by varying the rise time and its shape. The increment in RT for extending the rise time by a factor of ten was about 7 to 8 msec. There was no statistically significant difference in RT between a Gaussian and linear rise shape. A third experiment varied the modulation frequency and point of onset of amplitude-modulated tones, producing onsets at different initial levels with differently rapid increase or decrease immediately afterwards. The results of all three experiments results were explained very well by a straightforward extension of the parallel grains model (Miller and Ulrich Cogn. Psychol. 46, 101-151, 2003), a probabilistic race model employing many parallel channels. The extension of the model to time-varying sounds made the activation of such a grain depend on intensity as a function of time rather than a constant level. A second approach by mechanisms known from loudness produced less accurate predictions.
Collapse
|
11
|
Lentz JJ, He Y, Townsend JT. A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release. Front Hum Neurosci 2014; 8:641. [PMID: 25202254 PMCID: PMC4141468 DOI: 10.3389/fnhum.2014.00641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022] Open
Abstract
This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time (RT) distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180° out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, RTs allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear vs. two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency)-most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy.
Collapse
Affiliation(s)
- Jennifer J. Lentz
- Department of Speech and Hearing Sciences, Indiana UniversityBloomington, IN, USA
| | - Yuan He
- Department of Speech and Hearing Sciences, Indiana UniversityBloomington, IN, USA
| | - James T. Townsend
- Department of Psychological and Brain Sciences, Indiana UniversityBloomington, IN, USA
| |
Collapse
|