1
|
Büsel C, Maria Seiz C, Hoffmann A, Sachse P, Ansorge U. Swift attenuation of irrelevant features through feature consistency: Evidence from a capture-probe version of the contingent-capture protocol. Q J Exp Psychol (Hove) 2024; 77:994-1008. [PMID: 37350537 PMCID: PMC11032631 DOI: 10.1177/17470218231186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
In the present two experiments, we explore the possibility of swift attenuation of capture by irrelevant features in the contingent-capture protocol. Some prior research suggests that feature attenuation might be most efficient for fixed, anticipated irrelevant features and that varying irrelevant features from trial to trial can undermine their successful attenuation. Here, we exploited this dependence of attenuation on feature certainty to test if attenuation contributed to contingent-capture effects in a capture-probe version of the contingent-capture protocol. In line with the swift attenuation of irrelevant features, salient but target-dissimilar singleton cues that were consistently coloured diminished recall of probes at their locations. This was in comparison to inconsistently coloured target-dissimilar singleton cues. Nonetheless, probe-recall was still better at target-dissimilar cue locations than at non-singleton locations in the cueing display, indicating attenuation of task-irrelevant features rather than their complete suppression.
Collapse
Affiliation(s)
- Christian Büsel
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Pierre Sachse
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Park HB, Zhang W. The dynamics of attentional guidance by working memory contents. Cognition 2024; 242:105638. [PMID: 37839251 PMCID: PMC10843273 DOI: 10.1016/j.cognition.2023.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/16/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Working memory (WM) contents can guide attention toward matching sensory information in the environment, but there are mixed findings regarding whether only a single prioritized item or multiple items held in WM can guide attention. The present study examines the limit of WM-guided attention with a novel task procedure and mouse trajectory analysis. Specifically, we introduced a perceptual-matching task utilizing the continuous estimation procedure within the maintenance interval of a WM task for one or two colors. We found that the overall perceptual matching mouse trajectory were robustly biased toward the location of WM-match color on the color-wheel (i.e., attraction bias), but only at memory set size one. However, the analysis of circular mouse trajectory distributions, through hierarchical Bayesian modeling, revealed two separable central peaks at both memory set sizes. Furthermore, model-free analysis demonstrated that the perceptual matching mouse trajectory patterns were similar regardless of memory set sizes. Together, these results support the single-item account and highlight the utility of mouse trajectory analyses in hypothesis testing in experimental psychology.
Collapse
Affiliation(s)
- Hyung-Bum Park
- Institute for Mind and Biology, The University of Chicago, Biopsychological Sciences Building (BPSB), 940 E 57th St., Chicago, IL 60637, USA; Department of Psychology, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Weiwei Zhang
- Department of Psychology, University of California, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
3
|
Hou L, Long F, Zhou W, Zhou R. Working memory training for reward processing in university students with subsyndromal depression: The influence of baseline severity of depression. Biol Psychol 2023; 184:108710. [PMID: 37820850 DOI: 10.1016/j.biopsycho.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have tentatively suggested that working memory training (WMT) has the potential to improve reward processing, but it is not known how long this improvement lasts, whether there is a lag effect, or whether it is reflected in neurophysiological indicators. In this study, 40 university students with subsyndromal depression were randomly assigned to a training group or a control group and completed a 20-day working memory training task and a simple memory task, respectively. All participants completed the Temporal Experience of Pleasure Scale (TEPS) and a doors task with electroencephalogram (EEG) signals recorded simultaneously on a pre- and post-test and a 3-month follow-up. The reward-related positivity (RewP) amplitude, theta power, and their differences between conditions (i.e., ΔRewP and Δtheta power, respectively) in the doors task were the primary outcomes, and the score on TEPS was the secondary outcome. The results indicated no group-related effects were demonstrated in primary and secondary outcomes at post-test and 3-month follow-up. Furthermore, the differences in the pre- and post-test in Δtheta power were moderated by the baseline severity of depression. This was primarily driven by the fact that the change values in the control group increased with the severity of depression, while the change values in the training group had high homogeneity. Our findings did not provide support for the effect of WMT on reward processing across the whole sample, but without intervention, there would be high heterogeneity in the change in the cognitive control ability to loss feedback, which is detrimental to individuals with high depression severity.
Collapse
Affiliation(s)
- Lulu Hou
- School of Psychology, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Fangfang Long
- Department of Psychology, Nanjing University, Nanjing 210023, China
| | - Weiyi Zhou
- Department of Psychology, Nanjing University, Nanjing 210023, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing 210023, China; State Key Laboratory of Media Convergence Production Technology and Systems, Beijing 100803, China; Department of Radiology, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
4
|
Long-term memory and working memory compete and cooperate to guide attention. Atten Percept Psychophys 2022:10.3758/s13414-022-02593-1. [PMID: 36303020 DOI: 10.3758/s13414-022-02593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/08/2022]
Abstract
Multiple types of memory guide attention: Both long-term memory (LTM) and working memory (WM) effectively guide visual search. Furthermore, both types of memories can capture attention automatically, even when detrimental to performance. It is less clear, however, how LTM and WM cooperate or compete to guide attention in the same task. In a series of behavioral experiments, we show that LTM and WM reliably cooperate to guide attention: Visual search is faster when both memories cue attention to the same spatial location (relative to when only one memory can guide attention). LTM and WM competed to guide attention in more limited circumstances: Competition only occurred when these memories were in different dimensions - particularly when participants searched for a shape and held an accessory color in mind. Finally, we found no evidence for asymmetry in either cooperation or competition: There was no evidence that WM helped (or hindered) LTM-guided search more than the other way around. This lack of asymmetry was found despite differences in LTM-guided and WM-guided search overall, and differences in how two LTMs and two WMs compete or cooperate with each other to guide attention. This work suggests that, even if only one memory is currently task-relevant, WM and LTM can cooperate to guide attention; they can also compete when distracting features are salient enough. This work elucidates interactions between WM and LTM during attentional guidance, adding to the literature on costs and benefits to attention from multiple active memories.
Collapse
|
5
|
Interactions Between Visual Working Memory, Attention, and Color Categories: A Pupillometry Study. J Cogn 2022; 5:16. [PMID: 36072094 PMCID: PMC9400663 DOI: 10.5334/joc.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies have found that visual working memory (VWM) for color shows a categorical bias: observers typically remember colors as more prototypical to the category they belong to than they actually are. Here, we further examine color-category effects on VWM using pupillometry. Participants remembered a color for later reproduction on a color wheel. During the retention interval, a colored probe was presented, and we measured the pupil constriction in response to this probe, assuming that the strength of constriction reflects the visual saliency of the probe. We found that the pupil initially constricted most strongly for non-matching colors that were maximally different from the memorized color; this likely reflects a lack of visual adaptation for these colors, which renders them more salient than memory-matching colors (which were shown before). Strikingly, this effect reversed later in time, such that pupil constriction was more prolonged for memory-matching colors as compared to non-matching colors; this likely reflects that memory-matching colors capture attention more strongly, and perhaps for a longer time, than non-matching colors do. We found no effects of color categories on pupil constriction: after controlling for color distance, (non-matching) colors from the same category as the memory color did not result in a different pupil response as compared to colors from a different category; however, we did find that behavioral responses were biased by color categories. In summary, we found that pupil constriction to colored probes reflects both visual adaptation and VWM content, but, unlike behavioral measures, is not notably affected by color categories.
Collapse
|
6
|
Abstract
Representations held in working memory are crucial in guiding human attention in a goal-directed fashion. Currently, it is debated whether only a single representation or several of these representations can be active and bias behavior at any given moment. In the present study, 25 university students performed a behavioral dense-sampling experiment to produce an estimate of the temporal-activation patterns of two simultaneously held visual templates. We report two key novel results. First, performance related to both representations was not continuous but fluctuated rhythmically at 6 Hz. This corresponds to neural oscillations in the theta band, the functional importance of which in working memory is well established. Second, our findings suggest that two concurrently held representations may be prioritized in alternation, not simultaneously. Our data extend recent research on rhythmic sampling of external information by demonstrating an analogous mechanism in the cyclic activation of internal working memory representations.
Collapse
Affiliation(s)
- Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna.,Cognitive Science Research Hub, University of Vienna.,Research Platform Mediatised Lifeworlds, University of Vienna
| |
Collapse
|
7
|
Temptation shapes dishonesty and can alter working memory. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis study shows that participants tend to remember an ambiguous, directional cue as biased towards stimuli associated with a high reward that can be attained dishonestly. Participants saw eight digits presented in a circular arrangement. On some trials, they were asked to report the digit (“Target Digit”) indicated by a jittery cue that was slightly biased in the direction of another digit (“Second Cued Digit”), which was either higher or lower than the Target Digit. Participants were paid based on the reported digit (higher digits meant higher pay) and not based on the accuracy of their report. In this setting, they could make self-serving mistakes by dishonestly reporting the Second Cued Digit when it was higher than the Target Digit. Replicating prior work, participants frequently made such self-serving mistakes. On other trials, after the digits disappeared, participants were asked to reproduce the direction of the jittery cue, without receiving any pay. Results showed that that participants’ reports of the cue were more biased toward high-rewarding digits than low-rewarding digits. This research provides preliminary evidence of a link between attention, dishonesty, and memory, offering an important constraint for theories in behavioral ethics.
Collapse
|
8
|
EEG cross-frequency phase synchronization as an index of memory matching in visual search. Neuroimage 2021; 235:117971. [PMID: 33839263 DOI: 10.1016/j.neuroimage.2021.117971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Visual perception is influenced by our expectancies about incoming sensory information. It is assumed that mental templates of expected sensory input are created and compared to actual input, which can be matching or not. When such mental templates are held in working memory, cross-frequency phase synchronization (CFS) between theta and gamma band activity has been proposed to serve matching processes between prediction and sensation. We investigated how this is affected by the number of activated templates that could be matched by comparing conditions where participants had to keep either one or multiple templates in mind for successful visual search. We found a transient CFS between EEG theta and gamma activity in an early time window around 150 ms after search display presentation, in right hemispheric parietal cortex. Our results suggest that for single template conditions, stronger transient theta-gamma CFS at posterior sites contralateral to target presentation can be observed than for multiple templates. This can be interpreted as evidence to the idea of sequential attentional templates. But mainly, it is understood in line with previous theoretical accounts strongly arguing for transient synchronization between posterior theta and gamma phase as a neural correlate of matching incoming sensory information with contents from working memory and as evidence for limitations in memory matching during multiple template search.
Collapse
|
9
|
Allocation of resources in working memory: Theoretical and empirical implications for visual search. Psychon Bull Rev 2021; 28:1093-1111. [PMID: 33733298 PMCID: PMC8367923 DOI: 10.3758/s13423-021-01881-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
Recently, working memory (WM) has been conceptualized as a limited resource, distributed flexibly and strategically between an unlimited number of representations. In addition to improving the precision of representations in WM, the allocation of resources may also shape how these representations act as attentional templates to guide visual search. Here, we reviewed recent evidence in favor of this assumption and proposed three main principles that govern the relationship between WM resources and template-guided visual search. First, the allocation of resources to an attentional template has an effect on visual search, as it may improve the guidance of visual attention, facilitate target recognition, and/or protect the attentional template against interference. Second, the allocation of the largest amount of resources to a representation in WM is not sufficient to give this representation the status of attentional template and thus, the ability to guide visual search. Third, the representation obtaining the status of attentional template, whether at encoding or during maintenance, receives an amount of WM resources proportional to its relevance for visual search. Thus defined, the resource hypothesis of visual search constitutes a parsimonious and powerful framework, which provides new perspectives on previous debates and complements existing models of template-guided visual search.
Collapse
|
10
|
Color Can Shorten Breakthrough Times in Continuous Flash Suppression through Increased Salience and Task Relevance. Vision (Basel) 2021; 5:vision5010013. [PMID: 33809681 PMCID: PMC8006049 DOI: 10.3390/vision5010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Color can enhance the perception of relevant stimuli by increasing their salience and guiding visual search towards stimuli that match a task-relevant color. Using Continuous Flash Suppression (CFS), the current study investigated whether color facilitates the discrimination of targets that are difficult to perceive due to interocular suppression. Gabor patterns of two or four cycles per degree (cpd) were shown as targets to the non-dominant eye of human participants. CFS masks were presented at a rate of 10 Hz to the dominant eye, and participants had the task to report the target’s orientation as soon as they could discriminate it. The 2-cpd targets were robustly suppressed and resulted in much longer response times compared to 4-cpd targets. Moreover, only for 2-cpd targets, two color-related effects were evident. First, in trials where targets and CFS masks had different colors, targets were reported faster than in trials where targets and CFS masks had the same color. Second, targets with a known color, either cyan or yellow, were reported earlier than targets whose color was randomly cyan or yellow. The results suggest that the targets’ entry to consciousness may have been speeded by color-mediated effects relating to increased (bottom-up) salience and (top-down) task relevance.
Collapse
|
11
|
Sauter M, Stefani M, Mack W. Towards Interactive Search: Investigating Visual Search in a Novel Real-World Paradigm. Brain Sci 2020; 10:E927. [PMID: 33271888 PMCID: PMC7761395 DOI: 10.3390/brainsci10120927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/01/2022] Open
Abstract
An overwhelming majority of studies on visual search and selective attention were conducted using computer screens. There are arguably shortcomings in transferring knowledge from computer-based studies to real-world search behavior as findings are based on viewing static pictures on computer screens. This does not go well with the dynamic and interactive nature of vision in the real world. It is crucial to take visual search research to the real world in order to study everyday visual search processes. The aim of the present study was to develop an interactive search paradigm that can serve as a "bridge" between classical computerized search and everyday interactive search. We based our search paradigm on simple LEGO® bricks arranged on tabletop trays to ensure comparability with classical computerized visual search studies while providing room for easily increasing the complexity of the search environment. We found that targets were grasped slower when there were more distractors (Experiment 1) and there were sizable differences between various search conditions (Experiment 2), largely in line with classical visual search research and revealing similarities to research in natural scenes. Therefore, our paradigm can be seen as a valuable asset complementing visual search research in an environment between computerized search and everyday search.
Collapse
Affiliation(s)
- Marian Sauter
- General Psychology, Bundeswehr University Munich, 85579 Neubiberg, Germany; (M.S.); (W.M.)
- General Psychology, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Maximilian Stefani
- General Psychology, Bundeswehr University Munich, 85579 Neubiberg, Germany; (M.S.); (W.M.)
| | - Wolfgang Mack
- General Psychology, Bundeswehr University Munich, 85579 Neubiberg, Germany; (M.S.); (W.M.)
| |
Collapse
|
12
|
Affiliation(s)
- Eduard Ort
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf Germany
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian N. L. Olivers
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Brain and Behavior Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Concurrent guidance of attention by multiple working memory items: Behavioral and computational evidence. Atten Percept Psychophys 2020; 82:2950-2962. [PMID: 32394070 PMCID: PMC7381447 DOI: 10.3758/s13414-020-02048-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During visual search, task-relevant representations in visual working memory (VWM), known as attentional templates, are assumed to guide attention. A current debate concerns whether only one (Single-Item-Template hypothesis; SIT) or multiple (Multiple-Item-Template hypothesis; MIT) items can serve as attentional templates simultaneously. The current study was designed to test these two hypotheses. Participants memorized two colors, prior to a visual-search task in which the target and the distractor could match or not match the colors held in VWM. Robust attentional guidance was observed when one of the memory colors was presented as the target (reduced response times (RTs) on target-match trials) or the distractor (increased RTs on distractor-match trials). We constructed two drift-diffusion models that implemented the MIT and SIT hypotheses, which are similar in their predictions about overall RTs, but differ in their predictions about RTs on individual trials. Critically, simulated RT distributions and error rates revealed a better match of the MIT hypothesis to the observed data than the SIT hypothesis. Taken together, our findings provide behavioral and computational evidence for the concurrent guidance of attention by multiple items in VWM.
Collapse
|
14
|
Can you have multiple attentional templates? Large-scale replications of Van Moorselaar, Theeuwes, and Olivers (2014) and Hollingworth and Beck (2016). Atten Percept Psychophys 2020; 81:2700-2709. [PMID: 31309532 PMCID: PMC6856200 DOI: 10.3758/s13414-019-01791-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stimuli that resemble the content of visual working memory (VWM) capture attention. However, theories disagree on how many VWM items can bias attention simultaneously. According to some theories, there is a distinction between active and passive states in VWM, such that only items held in an active state can bias attention. The single-item-template hypothesis holds that only one item can be in an active state and thus can bias attention. In contrast, the multiple-item-template hypothesis posits that multiple VWM items can be in an activate state simultaneously, and thus can bias attention. Recently, Van Moorselaar, Theeuwes, and Olivers (Journal of Experimental Psychology: Human Perception and Performance, 40(4):1450, 2014) and Hollingworth and Beck (Journal of Experimental Psychology: Human Perception and Performance, 42(7):911–917, 2016) tested these accounts, but obtained seemingly contradictory results. Van Moorselaar et al. (2014) found that a distractor in a visual-search task captured attention more when it matched the content of VWM (memory-driven capture). Crucially, memory-driven capture disappeared when more than one item was held in VWM, in line with the single-item-template hypothesis. In contrast, Hollingworth and Beck (2016) found memory-driven capture even when multiple items were kept in VWM, in line with the multiple-item-template hypothesis. Considering these mixed results, we replicated both studies with a larger sample, and found that all key results are reliable. It is unclear to what extent these divergent results are due to paradigm differences between the studies. We conclude that is crucial to our understanding of VWM to determine the boundary conditions under which memory-driven capture occurs.
Collapse
|