1
|
Sahin S, Velioglu HA, Yulug B, Bayraktaroglu Z, Yildirim S, Hanoglu L. Parietal memory network and memory encoding versus retrieval impairments in PD-MCI patients: A hippocampal volume and cortical thickness study. CNS Neurosci Ther 2024; 30:e70062. [PMID: 39380180 PMCID: PMC11461280 DOI: 10.1111/cns.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE The pathophysiology behind memory impairment in Parkinson's Disease Mild Cognitive Impairment (PD-MCI) is unclear. This study aims to investigate the hippocampal and cortical atrophy patterns in PD-MCI patients with different types of memory impairments, categorized as Retrieval Failure (RF) and Encoding Failure (EF). METHODS The study included 16 healthy controls (HC) and 34 PD-MCI patients, divided into RF (N = 18) and EF (N = 16) groups based on their Verbal Memory Processes Test (VMPT) scores, including spontaneous recall, recognition, and Index of Sensitivity to Cueing (ISC). Hippocampal subfields and cortical thicknesses were measured using the FreeSurfer software for automatic segmentation. RESULTS Compared to the HC group, the EF group exhibited significant atrophy in the left lateral occipital region and the right caudal middle frontal, superior temporal, and inferior temporal regions (p⟨0.05). The RF group displayed significant atrophy in the left lateral occipital, middle temporal, and precentral regions, as well as the right pars orbitalis and superior frontal regions (p⟨0.05). Hippocampal subfield analysis revealed distinct volume differences between HC-EF and RF-EF groups, with significant reductions in the CA1, CA3, and CA4 subregions in the EF group, but no differences between HC and RF groups (p > 0.05). CONCLUSION Gray matter atrophy patterns differ in PD-MCI patients with encoding and retrieval memory impairments. The significant hippocampal atrophy in the EF group, particularly in the CA subregions, highlights its potential role in disease progression and memory decline. Additionally, the convergence of atrophy in the lateral occipital cortex across both RF and EF groups suggests the involvement of the Parietal Memory Network (PMN) in PD-related memory impairment.
Collapse
Affiliation(s)
- Serhat Sahin
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Halil Aziz Velioglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol UniversityIstanbulTurkey
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
| | - Burak Yulug
- Department of Neurology and Clinical Neuroscience, School of MedicineAlanya Alaaddin Keykubat UniversityAlanyaTurkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Suleyman Yildirim
- Department of Microbiology, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Lutfu Hanoglu
- Department of Neurology, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
2
|
Kristanto D, Burkhardt M, Thiel C, Debener S, Gießing C, Hildebrandt A. The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. Neurosci Biobehav Rev 2024; 165:105846. [PMID: 39117132 DOI: 10.1016/j.neubiorev.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.
Collapse
Affiliation(s)
- Daniel Kristanto
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany.
| | - Micha Burkhardt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Stefan Debener
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Carsten Gießing
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany.
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany.
| |
Collapse
|
3
|
Shi Y, Yang L, Lu J, Yan T, Ding Y, Wang B. The dynamic reconfiguration of the functional network during episodic memory task predicts the memory performance. Sci Rep 2024; 14:20527. [PMID: 39227732 PMCID: PMC11372097 DOI: 10.1038/s41598-024-71295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Episodic memory is essential for forming and retaining personal experiences, representing a fundamental aspect of human cognition. Traditional studies of episodic memory have typically used static analysis methods, viewing the brain as an unchanging entity and overlooking its dynamic properties over time. In this study, we utilized dynamic functional connectivity analysis on fMRI data from healthy adults performing an episodic memory task. We quantified integration and recruitment metrics and examined their correlation with memory performance using Pearson correlation. During encoding, integration across the entire brain, especially within the frontoparietal subnetwork, was significantly correlated with memory performance. During retrieval, recruitment becomes significantly associated with memory performance in visual subnetwork, somatomotor subnetwork, and ventral attention subnetwork. At the nodal level, a significant negative correlation was observed between memory scores and integration of the anterior cingulate gyrus, precentral gyrus, and inferior frontal gyrus within the frontoparietal network during encoding task. During retrieval task, a significant negative correlation was found between memory scores and recruitment in the left progranular cortex and right transverse gyral ventral, whereas positive correlations were seen in the right posterior inferior temporal, left middle temporal, right frontal operculum, and left operculum nodes. Moreover, the dynamic reconfiguration of the functional network was predictive of predict memory performance, as demonstrated by a significant correlation between actual and predicted memory scores. These findings advance our understanding network mechanisms underlying memory processes and developing intervention approaches for memory-related disorders as they shed light on critical factors involved in cognitive processes and provide a deeper understanding of the underlying mechanisms driving cognitive function.
Collapse
Affiliation(s)
- Yuanbing Shi
- Department of Police Command and Tactics, Shanxi Police College, Taiyuan, China
| | - Lan Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Jiayu Lu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
| | - Ting Yan
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Yongkang Ding
- Department of Police Command and Tactics, Shanxi Police College, Taiyuan, China
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
4
|
Yitao L, Lv Z, Xin W, Yongchen F, Ying W. Dynamic brain functional states associated with inhibition control under different altitudes. Cogn Neurodyn 2024; 18:1931-1941. [PMID: 39104701 PMCID: PMC11297874 DOI: 10.1007/s11571-023-10054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/28/2023] [Accepted: 11/04/2023] [Indexed: 08/07/2024] Open
Abstract
Chronic exposure to the hypobaric hypoxia environment of plateau could influence human cognitive behaviours which are supported by dynamic brain connectivity states. Until now, how functional connectivity (FC) of the brain network changes with altitudes is still unclear. In this article, we used EEG data of the Go/NoGo paradigm from Weinan (347 m) and Nyingchi (2950 m). A combination of dynamic FC (dFC) and the K-means cluster was employed to extract dynamic FC states which were later distinguished by graph metrics. Besides, temporal properties of networks such as fractional windows (FW), transition numbers (TN) and mean dwell time (MDT) were calculated. Finally, we successfully extracted two different states from dFC matrices where State 1 was verified to have higher functional integration and segregation. The dFC states dynamically switched during the Go/NoGo tasks and the FW of State 1 showed a rise in the high-altitude participants. Also, in the regional analysis, we found higher state deviation in the fronto-parietal cortices and enhanced FC strength in the occipital lobe. These results demonstrated that long-term exposure to the high-altitude environment could lead brain networks to reorganize as networks with higher inter- and intra-networks information transfer efficiency, which could be attributed to a compensatory mechanism to the compromised brain function due to the plateau environment. This study provides a new perspective in considering how the plateau impacted cognitive impairment.
Collapse
Affiliation(s)
- Lin Yitao
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Zhou Lv
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wei Xin
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Fan Yongchen
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wu Ying
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
5
|
Rogers B. Evaluating frontoparietal network topography for diagnostic markers of Alzheimer's disease. Sci Rep 2024; 14:14135. [PMID: 38898075 PMCID: PMC11187222 DOI: 10.1038/s41598-024-64699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Numerous prospective biomarkers are being studied for their ability to diagnose various stages of Alzheimer's disease (AD). High-density electroencephalogram (EEG) methods show promise as an accurate, economical, non-invasive approach to measuring the electrical potentials of brains associated with AD. Event-related potentials (ERPs) may serve as clinically useful biomarkers of AD. Through analysis of secondary data, the present study examined the performance and distribution of N4/P6 ERPs across the frontoparietal network (FPN) using EEG topographic mapping. ERP measures and memory as a function of reaction time (RT) were compared between a group of (n = 63) mild untreated AD patients and a control group of (n = 73) healthy age-matched adults. Based on the literature presented, it was expected that healthy controls would outperform patients in peak amplitude and mean component latency across three parameters of memory when measured at optimal N4 (frontal) and P6 (parietal) locations. It was also predicted that the control group would exhibit neural cohesion through FPN integration during cross-modal tasks, thus demonstrating healthy cognitive functioning consistent with older healthy adults. By targeting select frontal and parietal EEG reference channels based on N4/P6 component time windows and positivity, our findings demonstrated statistically significant group variations between controls and patients in N4/P6 peak amplitudes and latencies during cross-modal testing. Our results also support that the N4 ERP might be stronger than its P6 counterpart as a possible candidate biomarker. We conclude through topographic mapping that FPN integration occurs in healthy controls but is absent in AD patients during cross-modal memory tasks.
Collapse
Affiliation(s)
- Bayard Rogers
- Department of Psychology, University of Glasgow, School of Psychology and Neuroscience, Glasgow, Scotland, UK.
| |
Collapse
|
6
|
Yu C, Wang Y, Zhang B, Xu X, Zhang W, Ding Q, Miao Y, Hou Y, Ma X, Wu T, Yang S, Fu L, Zhang Z, Zhou J, Bi Y. Associations between complexity of glucose time series and cognitive function in adults with type 2 diabetes. Diabetes Obes Metab 2024; 26:840-850. [PMID: 37994378 DOI: 10.1111/dom.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
AIMS To characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction, and further investigate the associations between the most significant indicator and cognitive function, along with related cerebral alterations. MATERIALS AND METHODS We performed a cross-sectional study in 449 subjects with type 2 diabetes who completed continuous glucose monitoring and cognitive assessments. Of these, 139 underwent functional magnetic resonance imaging to evaluate cerebral structure and olfactory neural circuit alterations. Relative weight and Sobol's sensitivity analyses were employed to characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction. RESULTS Complexity of glucose time series index (CGI) was found to have a more pronounced association with mild cognitive impairment (MCI) compared to glycated haemoglobin, time in range, and standard deviation. The proportion and multivariable-adjusted odds ratios (ORs) for MCI increased with descending CGI tertile (Tertile 1: reference group [≥4.0]; Tertile 2 [3.6-4.0] OR 1.23, 95% confidence interval [CI] 0.68-2.24; Tertile 3 [<3.6] OR 2.27, 95% CI 1.29-4.00). Decreased CGI was associated with cognitive decline in executive function and attention. Furthermore, individuals with decreased CGI displayed reduced olfactory activation in the left orbitofrontal cortex (OFC) and disrupted functional connectivity between the left OFC and right posterior cingulate gyrus. Mediation analysis demonstrated that the left OFC activation partially mediated the associations between CGI and executive function. CONCLUSION Decreased glucose complexity closely relates to cognitive dysfunction and olfactory brain activation abnormalities in diabetes.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yaxin Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qun Ding
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yingwen Miao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yinjiao Hou
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xuelin Ma
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sijue Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
7
|
Morales Mejia YL, Thompson JL, Woods SP. A Process Analysis of Rey-Osterrieth Complex Figure Test Performance Using the Boston Qualitative Scoring System in HIV-Associated Neurocognitive Disorders. Percept Mot Skills 2023; 130:2530-2546. [PMID: 37921056 DOI: 10.1177/00315125231212682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Deficits in episodic verbal memory are commonly observed in persons with HIV (PWH) disease, in whom they are characterized by dysregulation of the executive aspects of encoding and retrieval and adversely impact everyday functioning. Deficits in episodic visual memory are also apparent in PWH, but we know less about their cognitive architecture. This study used the Boston Qualitative Scoring System (BQSS) for the Rey-Osterrieth Complex Figure (ROCF) to examine visual learning and recall in 43 individuals without HIV and 141 PWH who completed a full research neuropsychological, psychiatric, and medical assessment. A mixed model covarying for education and estimated verbal IQ showed that participants with HIV-associated neurocognitive disorders (HAND) performed worse than PWH without neurocognitive disorders and HIV- participants at comparable medium-to-large effect sizes across the Copy, Immediate, and Delayed trials of the BQSS-ROCF, suggesting a primary encoding deficit. A component process analysis of the BQSS-ROCF Copy Trial revealed that participants with HAND had specific difficulties with configural accuracy, cluster accuracy, and cluster placement. Within the PWH sample, measures of motor coordination and executive functions emerged as independent predictors of BQSS-ROCF Copy Trial performance. Findings extend prior research by showing that HAND may be associated with a primary encoding deficit for complex visuomotor learning and memory tasks that is driven by a combination of visuospatial, motor, and executive difficulties.
Collapse
Affiliation(s)
- Yenifer L Morales Mejia
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Psychology and Counseling, University of Texas at Tyler, Tyler, TX, USA
| | | | | |
Collapse
|
8
|
Chen X, Wu Y, Shi X, Zhou Z, Feng T, Ren M, Li Y, Shan C. Neuromodulatory effects of high-definition theta transcranial alternating current stimulation on the parietal cortex: a pilot study of healthy males. Front Neurosci 2023; 17:1255124. [PMID: 38027510 PMCID: PMC10665503 DOI: 10.3389/fnins.2023.1255124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial alternating current stimulation (tACS) can regulate brain functions by modulating endogenous brain rhythms. Theta-band neural oscillations are associated with memory function. In particular, theta neural oscillatory power evoked in the parietal cortex is closely related to memory retrieval processes. In this study, the immediate effects of high-definition theta transcranial alternating current stimulation (HDθ-tACS) on the human left parietal cortex were investigated using short-latency afferent inhibition (SAI) and electroencephalography (EEG). Methods Ten subjects participated in this study. We used 6-Hz HD tACS to stimulate the left parietal cortex for 15 min. SAI was calculated, and non-linear dynamic analysis of the EEG was performed to analyze neuronal function after HD θ-tACS. Results The results showed a significant decrease in SAI (p < 0.05), while the left frontoparietal network was reinforced, leading to brain lateralization after HD θ-tACS. During performance of a memory task, F3 signals showed a significant upward trend in approximate entropy following treatment (p < 0.05). There was also a significant decrease in cross-approximate entropy in the C3-C4 and P3-P4 connections following the intervention (p < 0.05) in a resting eyes-open condition and in the memory task condition. Discussion In conclusion, HD θ-tACS could alter cholinergic transmission and cortical excitability between the parietal and motor cortices, as well as reinforcing the frontoparietal network and the left-lateralization phenomenon, which may facilitate memory formation, encoding, and consolidation.
Collapse
Affiliation(s)
- Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyi Feng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation, Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Yu R, Han B, Wu X, Wei G, Zhang J, Ding M, Wen X. Dual-functional network regulation underlies the central executive system in working memory. Neuroscience 2023:S0306-4522(23)00245-2. [PMID: 37286158 DOI: 10.1016/j.neuroscience.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/24/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
The frontoparietal network (FPN) and cingulo-opercular network (CON) may exert top-down regulation corresponding to the central executive system (CES) in working memory (WM); however, contributions and regulatory mechanisms remain unclear. We examined network interaction mechanisms underpinning the CES by depicting CON- and FPN-mediated whole-brain information flow in WM. We used datasets from participants performing verbal and spatial working memory tasks, divided into encoding, maintenance, and probe stages. We used general linear models to obtain task-activated CON and FPN nodes to define regions of interest (ROI); an online meta-analysis defined alternative ROIs for validation. We calculated whole-brain functional connectivity (FC) maps seeded by CON and FPN nodes at each stage using beta sequence analysis. We used Granger causality analysis to obtain the connectivity maps and assess task-level information flow patterns. For verbal working memory, the CON functionally connected positively and negatively to task-dependent and task-independent networks, respectively, at all stages. FPN FC patterns were similar only in the encoding and maintenance stages. The CON elicited stronger task-level outputs. Main effects were: stable CON→FPN, CON→DMN, CON→visual areas, FPN→visual areas, and phonological areas→FPN. The CON and FPN both up-regulated task-dependent and down-regulated task-independent networks during encoding and probing. Task-level output was slightly stronger for the CON. CON→FPN, CON→DMN, visual areas→CON, and visual areas→FPN showed consistent effects. The CON and FPN might together underlie the CES's neural basis and achieve top-down regulation through information interaction with other large-scale functional networks, and the CON may be a higher-level regulatory core in WM.
Collapse
Affiliation(s)
- Renshu Yu
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Bukui Han
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Xia Wu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China, 100093
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Junhui Zhang
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL, USA, 32611
| | - Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, China, 100872.
| |
Collapse
|
11
|
Morin TM, Moore KN, Isenburg K, Ma W, Stern CE. Functional reconfiguration of task-active frontoparietal control network facilitates abstract reasoning. Cereb Cortex 2023; 33:5761-5773. [PMID: 36420534 DOI: 10.1093/cercor/bhac457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
While the brain's functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven's Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven's Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a "task-ready" state, facilitating efficient task-based activation.
Collapse
Affiliation(s)
- Thomas M Morin
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie N Moore
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie Isenburg
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Weida Ma
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Chantal E Stern
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
- Department of Psychological and Brain Sciences, 64 Cummington Mall, Boston University, Boston, MA 02215, United States
| |
Collapse
|
12
|
Xia H, He Q, Chen A. Understanding cognitive control in aging: A brain network perspective. Front Aging Neurosci 2022; 14:1038756. [PMID: 36389081 PMCID: PMC9659905 DOI: 10.3389/fnagi.2022.1038756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive control decline is a major manifestation of brain aging that severely impairs the goal-directed abilities of older adults. Magnetic resonance imaging evidence suggests that cognitive control during aging is associated with altered activation in a range of brain regions, including the frontal, parietal, and occipital lobes. However, focusing on specific regions, while ignoring the structural and functional connectivity between regions, may impede an integrated understanding of cognitive control decline in older adults. Here, we discuss the role of aging-related changes in functional segregation, integration, and antagonism among large-scale networks. We highlight that disrupted spontaneous network organization, impaired information co-processing, and enhanced endogenous interference promote cognitive control declines during aging. Additionally, in older adults, severe damage to structural network can weaken functional connectivity and subsequently trigger cognitive control decline, whereas a relatively intact structural network ensures the compensation of functional connectivity to mitigate cognitive control impairment. Thus, we propose that age-related changes in functional networks may be influenced by structural networks in cognitive control in aging (CCA). This review provided an integrative framework to understand the cognitive control decline in aging by viewing the brain as a multimodal networked system.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Rao B, Wang S, Yu M, Chen L, Miao G, Zhou X, Zhou H, Liao W, Xu H. Suboptimal states and frontoparietal network-centered incomplete compensation revealed by dynamic functional network connectivity in patients with post-stroke cognitive impairment. Front Aging Neurosci 2022; 14:893297. [PMID: 36003999 PMCID: PMC9393744 DOI: 10.3389/fnagi.2022.893297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeural reorganization occurs after a stroke, and dynamic functional network connectivity (dFNC) pattern is associated with cognition. We hypothesized that dFNC alterations resulted from neural reorganization in post-stroke cognitive impairment (PSCI) patients, and specific dFNC patterns characterized different pathological types of PSCI.MethodsResting-state fMRI data were collected from 16 PSCI patients with hemorrhagic stroke (hPSCI group), 21 PSCI patients with ischemic stroke (iPSCI group), and 21 healthy controls (HC). We performed the dFNC analysis for the dynamic connectivity states, together with their topological and temporal features.ResultsWe identified 10 resting-state networks (RSNs), and the dFNCs could be clustered into four reoccurring states (modular, regional, sparse, and strong). Compared with HC, the hPSCI and iPSCI patients showed lower standard deviation (SD) and coefficient of variation (CV) in the regional and modular states, respectively (p < 0.05). Reduced connectivities within the primary network (visual, auditory, and sensorimotor networks) and between the primary and high-order cognitive control domains were observed (p < 0.01).ConclusionThe transition trend to suboptimal states may play a compensatory role in patients with PSCI through redundancy networks. The reduced exploratory capacity (SD and CV) in different suboptimal states characterized cognitive impairment and pathological types of PSCI. The functional disconnection between the primary and high-order cognitive control network and the frontoparietal network centered (FPN-centered) incomplete compensation may be the pathological mechanism of PSCI. These results emphasize the flexibility of neural reorganization during self-repair.
Collapse
Affiliation(s)
- Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofu Miao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Weijing Liao,
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Haibo Xu,
| |
Collapse
|
14
|
Rawls E, Kummerfeld E, Mueller BA, Ma S, Zilverstand A. The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks. Neuroimage 2022; 255:119211. [PMID: 35430360 PMCID: PMC9177236 DOI: 10.1016/j.neuroimage.2022.119211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023] Open
Abstract
We demonstrate a data-driven approach for calculating a "causal connectome" of directed connectivity from resting-state fMRI data using a greedy adjacency search and pairwise non-Gaussian edge orientations. We used this approach to construct n = 442 causal connectomes. These connectomes were very sparse in comparison to typical Pearson correlation-based graphs (roughly 2.25% edge density) yet were fully connected in nearly all cases. Prominent highly connected hubs of the causal connectome were situated in attentional (dorsal attention) and executive (frontoparietal and cingulo-opercular) networks. These hub networks had distinctly different connectivity profiles: attentional networks shared incoming connections with sensory regions and outgoing connections with higher cognitive networks, while executive networks primarily connected to other higher cognitive networks and had a high degree of bidirected connectivity. Virtual lesion analyses accentuated these findings, demonstrating that attentional and executive hub networks are points of critical vulnerability in the human causal connectome. These data highlight the central role of attention and executive control networks in the human cortical connectome and set the stage for future applications of data-driven causal connectivity analysis in psychiatry.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA.
| | | | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA; Medical Discovery Team on Addiction, University of Minnesota, USA
| |
Collapse
|
15
|
Matyi MA, Spielberg JM. The structural brain network topology of episodic memory. PLoS One 2022; 17:e0270592. [PMID: 35749536 PMCID: PMC9232126 DOI: 10.1371/journal.pone.0270592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Episodic memory is supported by a distributed network of brain regions, and this complex network of regions does not operate in isolation. To date, neuroscience research in this area has typically focused on the activation levels in specific regions or pairwise connectivity between such regions. However, research has yet to investigate how the complex interactions of structural brain networks influence episodic memory abilities. We applied graph theory methods to diffusion-based anatomical networks in order to examine the structural architecture of the medial temporal lobe needed to support effective episodic memory functioning. We examined the relationship between performance on tests of verbal and non-verbal episodic memory with node strength, which indexes how well connected a brain region is in the network. Findings mapped onto the Posterior Medial memory system, subserved by the parahippocampal cortex and overlapped with findings of previous studies of episodic memory employing different methodologies. This expands our current understanding by providing independent evidence for the importance of identified regions and suggesting the particular manner in which these regions support episodic memory.
Collapse
Affiliation(s)
- Melanie A. Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| | - Jeffrey M. Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
16
|
Lazarou I, Georgiadis K, Nikolopoulos S, Oikonomou VP, Stavropoulos TG, Tsolaki A, Kompatsiaris I, Tsolaki M. Exploring Network Properties Across Preclinical Stages of Alzheimer’s Disease Using a Visual Short-Term Memory and Attention Task with High-Density Electroencephalography: A Brain-Connectome Neurophysiological Study. J Alzheimers Dis 2022; 87:643-664. [DOI: 10.3233/jad-215421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Visual short-term memory (VSTMT) and visual attention (VAT) exhibit decline in the Alzheimer’s disease (AD) continuum; however, network disruption in preclinical stages is scarcely explored. Objective: To advance our knowledge about brain networks in AD and discover connectivity alterations during VSTMT and VAT. Methods: Twelve participants with AD, 23 with mild cognitive impairment (MCI), 17 with subjective cognitive decline (SCD), and 21 healthy controls (HC) were examined using a neuropsychological battery at baseline and follow-up (three years). At baseline, the subjects were examined using high density electroencephalography while performing a VSTMT and VAT. For exploring network organization, we constructed weighted undirected networks and examined clustering coefficient, strength, and betweenness centrality from occipito-parietal regions. Results: One-way ANOVA and pair-wise t-test comparisons showed statistically significant differences in HC compared to SCD (t (36) = 2.43, p = 0.026), MCI (t (42) = 2.34, p = 0.024), and AD group (t (31) = 3.58, p = 0.001) in Clustering Coefficient. Also with regards to Strength, higher values for HC compared to SCD (t (36) = 2.45, p = 0.019), MCI (t (42) = 2.41, p = 0.020), and AD group (t (31) = 3.58, p = 0.001) were found. Follow-up neuropsychological assessment revealed converge of 65% of the SCD group to MCI. Moreover, SCD who were converted to MCI showed significant lower values in all network metrics compared to the SCD that remained stable. Conclusion: The present findings reveal that SCD exhibits network disorganization during visual encoding and retrieval with intermediate values between MCI and HC.
Collapse
Affiliation(s)
- Ioulietta Lazarou
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- 1 Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Kostas Georgiadis
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- Informatics Department, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Spiros Nikolopoulos
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Vangelis P. Oikonomou
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Thanos G. Stavropoulos
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Anthoula Tsolaki
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- Greek Association of Alzheimer’s Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- 1 Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
- Greek Association of Alzheimer’s Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | | |
Collapse
|
17
|
Chen Q, Turnbull A, Cole M, Zhang Z, Lin FV. Enhancing Cortical Network-level Participation Coefficient as a Potential Mechanism for Transfer in Cognitive Training in aMCI. Neuroimage 2022; 254:119124. [PMID: 35331866 PMCID: PMC9199485 DOI: 10.1016/j.neuroimage.2022.119124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Effective cognitive training must improve cognition beyond the trained domain (show a transfer effect) and be applicable to dementia-risk populations, e.g., amnesic mild cognitive impairment (aMCI). Theories suggest training should target processes that 1) show robust engagement, 2) are domain-general, and 3) reflect long-lasting changes in brain organization. Brain regions that connect to many different networks (i.e., show high participation coefficient; PC) are known to support integration. This capacity is 1) relatively preserved in aMCI, 2) required across a wide range of cognitive domains, and 3) trait-like. In 49 individuals with aMCI that completed a 6-week visual speed of processing training (VSOP) and 28 active controls, enhancement in PC was significantly more related to transfer to working memory at global and network levels in VSOP compared to controls, particularly in networks with many high-PC nodes. This suggests that enhancing brain integration may provide a target for developing effective cognitive training.
Collapse
Affiliation(s)
- Quanjing Chen
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States; School of Nursing, University of Rochester, United States.
| | - Martin Cole
- Department of Biostatics and Computational Biology, University of Rochester, United States
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, UNC-Chapel Hill, United States
| | - Feng V Lin
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States; The Wu Tsai Neuroscience Institute, Stanford University, University of Rochester, United States
| |
Collapse
|
18
|
Chen J, Wu J, Huang X, Sun R, Xiang Z, Xu Y, Chen S, Xu W, Yang J, Chen Y. Differences in structural connectivity between diabetic and psychological erectile dysfunction revealed by network-based statistic: A diffusion tensor imaging study. Front Endocrinol (Lausanne) 2022; 13:892563. [PMID: 35966068 PMCID: PMC9365033 DOI: 10.3389/fendo.2022.892563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) has been found to be associated with abnormalities of the central and peripheral vascular nervous system, which were considered to be involved in the development of cognitive impairments and erectile dysfunction (ED). In addition, altered brain function and structure were identified in patients with ED, especially psychological ED (pED). However, the similarities and the differences of the central neural mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear. METHODS Diffusion tensor imaging data were acquired from 30 T2DM, 32 ED, and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain structural networks were constructed, which were mapped by connectivity matrices (90 × 90) representing the white matter between 90 brain regions parcellated by the anatomical automatic labeling template. Finally, the method of network-based statistic (NBS) was applied to assess the group differences of the structural connectivity. RESULTS Our NBS analysis demonstrated three subnetworks with reduced structural connectivity in DM, pED, and DM-ED patients when compared to HCs, which were predominantly located in the prefrontal and subcortical areas. Compared with DM patients, DM-ED patients had an impaired subnetwork with increased structural connectivity, which were primarily located in the parietal regions. Compared with pED patients, an altered subnetwork with increased structural connectivity was identified in DM-ED patients, which were mainly located in the prefrontal and cingulate areas. CONCLUSION These findings highlighted that the reduced structural connections in the prefrontal and subcortical areas were similar mechanisms to those associated with pED and DM-ED. However, different connectivity patterns were found between pED and DM-ED, and the increased connectivity in the frontal-parietal network might be due to the compensation mechanisms that were devoted to improving erectile function.
Collapse
Affiliation(s)
- Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jindan Wu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinfei Huang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziliang Xiang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People’s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, People’s Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Artux, Xinjiang, China
- *Correspondence: Yun Chen, ; Jie Yang,
| | - Yun Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yun Chen, ; Jie Yang,
| |
Collapse
|
19
|
Zhou W, Wang Y, Wang M, Wang Z, Zheng H, Wang M, Potenza MN, Dong G. Connectome-based prediction of craving for gaming in internet gaming disorder. Addict Biol 2022; 27:e13076. [PMID: 34176197 DOI: 10.1111/adb.13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Craving-related brain responses have been associated with the emergence and maintenance of addictions. However, little is known about brain network organizations underlying cravings in internet gaming disorder (IGD). METHODS Sixty-six IGD subjects and 61 matched individuals with recreational game use (RGU) were scanned while performing a cue-craving task. A recently developed whole-brain analysis approach, connectome-based predictive modelling (CPM) with leave-one-out cross-validation was conducted to identify networks that predicted craving responses in IGD. Then, the craving network was tested in different brain states (cue-craving under deprivation) to investigate replicability. RESULTS CPM identified an IGD craving network, as indicated by a significant correspondence between predicted and actual craving values (r = 0.49, p < 0.001), characterized by within-network default mode (DMN) connectivity and connectivity between canonical networks implicated in executive/cognitive control (frontoparietal, medial frontal, DMN) and reward responsiveness (subcortical, motor/sensory). Network strength in the cue-craving task during gaming deprivation also predicted IGD craving scores (r = 0.43, p = 0.017), indicating network replication across brain states. CONCLUSIONS The CPM results demonstrate that individual differences in cognitive, attention, and control network function can predict craving intensities in IGD subjects. These networks may be targets for potential interventions using brain modulation.
Collapse
Affiliation(s)
- Wei‐ran Zhou
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Hangzhou Zhejiang Province China
- Institutes of Psychological Sciences Hangzhou Normal University Hangzhou Zhejiang Province China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou Zhejiang Province China
- College of Education Hangzhou Normal University Hangzhou Zhejiang Province China
| | - Yi‐ming Wang
- College of Education Hangzhou Normal University Hangzhou Zhejiang Province China
| | - Min Wang
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Hangzhou Zhejiang Province China
- Institutes of Psychological Sciences Hangzhou Normal University Hangzhou Zhejiang Province China
| | - Zi‐liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center Shanghai Jiaotong University School of Medicine Shanghai China
| | - Meng‐jing Wang
- Southeast University ‐ Monash University Joint Graduate School Southeast University Nanjing China
| | - Marc N. Potenza
- Department of Psychiatry and the Child Study Center Yale University School of Medicine New Haven Connecticut USA
- Department of Neuroscience Yale University New Haven Connecticut USA
- Connecticut Council on Problem Gambling Wethersfield Connecticut USA
- Connecticut Mental Health Center New Haven Connecticut USA
| | - Guang‐Heng Dong
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Hangzhou Zhejiang Province China
- Institutes of Psychological Sciences Hangzhou Normal University Hangzhou Zhejiang Province China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou Zhejiang Province China
| |
Collapse
|
20
|
Su C, Zhou H, Wang C, Geng F, Hu Y. Individualized video recommendation modulates functional connectivity between large scale networks. Hum Brain Mapp 2021; 42:5288-5299. [PMID: 34363282 PMCID: PMC8519862 DOI: 10.1002/hbm.25616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
With the emergence of AI‐powered recommender systems and their extensive use in the video streaming service, questions and concerns also arise. Why can recommended video content continuously capture users' attention? What is the impact of long‐term exposure to personalized video content on one's behaviors and brain functions? To address these questions, we designed an fMRI experiment presenting participants with personally recommended videos and generally recommended ones. To examine how large‐scale networks were modulated by personalized video content, graph theory analysis was applied to investigate the interaction between seven networks, including the ventral and dorsal attention networks (VAN, DAN), frontal–parietal network (FPN), salience network (SN), and three subnetworks of default mode network (dorsal medial prefrontal (dMPFC), Core, and medial temporal lobe (MTL)). Our results showed that viewing nonpersonalized video content mainly enhanced the connectivity in the DAN‐FPN‐Core pathway, whereas viewing personalized ones increased not only the connectivity in this pathway but also the DAN‐VAN‐dMPFC pathway. In addition, both personalized and nonpersonalized short videos decreased the couplings between SN and VAN as well as between two DMN subsystems, Core and MTL. Collectively, these findings uncovered distinct patterns of network interactions in response to short videos and provided insights into potential neural mechanisms by which human behaviors are biased by personally recommended content.
Collapse
Affiliation(s)
- Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Yap KH, Kessels RPC, Azmin S, van de Warrenburg B, Mohamed Ibrahim N. Neurocognitive Changes in Spinocerebellar Ataxia Type 3: A Systematic Review with a Narrative Design. THE CEREBELLUM 2021; 21:314-327. [PMID: 34231180 DOI: 10.1007/s12311-021-01282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3), the commonest dominantly inherited ataxia worldwide, is characterized by disruption in the cerebellar-cerebral and striatal-cortical networks. Findings on SCA3-associated cognitive impairments are mixed. The classification models, tests and scoring systems used, language, culture, ataxia severity, and depressive symptoms are all potential confounders in neuropsychological assessments and may have contributed to the heterogeneity of the neurocognitive profile of SCA3. We conducted a systematic review of studies evaluating neurocognitive function in SCA3 patients. Of 1304 articles identified, 15 articles met the eligibility criteria. All articles were of excellent quality according to the National Institutes of Health quality assessment tool for case-control studies. In line with the disrupted cerebellar-cerebral and striatal-cortical networks in SCA3, this systematic review found that the neurocognitive profile of SCA3 is characterized by a core impairment of executive function that affects processes such as nonverbal reasoning, executive aspects of language, and recall. Conversely, neurocognitive domains such as general intelligence, verbal reasoning, semantic aspect of language, attention/processing speed, recognition, and visuospatial perception and construction are relatively preserved. This review highlights the importance of evaluating neurocognitive function in SCA3 patients. Considering the negative impact of cognitive and affective impairment on quality of life, this review points to the profound impairments that existing or future treatments should prioritize.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, UKM Medical Center, 56000, Kuala Lumpur, Malaysia
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behavior, Radboud University, PO Box 9104, 6500 HE, Nijmegen, The Netherlands.,Department of Medical Psychology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.,Vincent Van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Shahrul Azmin
- Department of Medicine, UKM Medical Center, 56000, Kuala Lumpur, Malaysia
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
22
|
Sims SA, Demirayak P, Cedotal S, Visscher KM. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1. Neuroimage 2021; 238:118246. [PMID: 34111516 PMCID: PMC8415014 DOI: 10.1016/j.neuroimage.2021.118246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
The functionality of central vision is different from peripheral vision. Central vision is used for fixation and has higher acuity, making it useful for everyday activities such as reading and object identification. The central and peripheral representations in primary visual cortex (V1) also differ in how higher-order processing areas modulate their responses. For example, attention and expectation are top-down processes (i.e., high-order cognitive functions) that influence visual information processing during behavioral tasks. This top-down control is different for central vs. peripheral vision. Since functional networks can influence visual information processing in different ways, networks (such as the Fronto-Parietal (FPN), Default Mode (DMN), and Cingulo-Opercular (CON)) likely differ in how they connect to representations of the visual field across V1. Prior work indicated the central representing portion of V1 was more functionally connected to regions belonging to the FPN, and the far-peripheral representing portion of V1 was more functionally connected to regions belonging to the DMN. Our goals were (1) Assess the reproducibility and generalizability of retinotopic effects on functional connections between V1 and functional networks. (2) Extend this work to understand structural connections of central vs. peripheral representations in V1. (3) Examine the overlapping eccentricity differences in functional and structural connections of V1. (4) Examine the major white matter tracks connecting central V1 to frontal regions. We used resting-state BOLD fMRI and DWI to examine whether portions of V1 that represent different visual eccentricities differ in their functional and structural connectivity to functional networks. All data were acquired and minimally preprocessed by the Human Connectome Project. We identified central and far-peripheral representing regions from a retinotopic template. Functional connectivity was measured by correlated activity between V1 and functional networks, and structural connectivity was measured by probabilistic tractography and converted to track probability. In both modalities, differences between V1 eccentricity segment connections were compared by paired, two-tailed t-test. A spatial permutation approach was used to determine the statistical significance of the spatial overlap between modalities. The identified spatial overlap was then used in a deterministic tractography approach to identify the white matter pathways connecting the overlap to central V1. We found (1) Centrally representing portions of V1 are more strongly functionally connected to frontal regions than are peripherally representing portions of V1, (2) Structural connections also show stronger connections between central V1 and frontal regions, (3) Patterns of structural and functional connections overlaps in the lateral frontal cortex, (4) This lateral frontal overlap is connected to central V1 via the IFOF. In summary, the work’s main contribution is a greater understanding of higher-order functional networks’ connectivity to V1. There are stronger structural connections to central representations in V1, particularly for lateral frontal regions, implying that the functional relationship between central V1 and frontal regions is built upon direct, long-distance connections via the IFOF. Overlapping structural and functional connections reflect differences in V1 eccentricities, with central V1 preferentially connected to attention-associated regions. Understanding how V1 is functionally and structurally connected to higher-order brain areas contributes to our understanding of how the human brain processes visual information and forms a baseline for understanding any modifications in processing that might occur with training or experience.
Collapse
Affiliation(s)
- Sara A Sims
- Department of Psychology, University of Alabama at Birmingham, United States.
| | - Pinar Demirayak
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Simone Cedotal
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
23
|
Szczepaniak M, Chowdury A, Soloff PH, Diwadkar VA. Stimulus valence, episodic memory, and the priming of brain activation profiles in borderline personality disorder. Psychol Med 2021; 52:1-11. [PMID: 33858552 PMCID: PMC9275123 DOI: 10.1017/s0033291721001136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/12/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Borderline personality disorder (BPD) is characterized by instability in affective regulation that can result in a loss of cognitive control. Triggers may be neuronal responses to emotionally valenced context and/or stimuli. 'Neuronal priming' indexes the familiarity of stimuli, and may capture the obligatory effects of affective valence on the brain's processing system, and how such valence mediates responses to the repeated presentation of stimuli. We investigated the effects of affective valence of stimuli on neuronal priming (i.e. changes in activation to repeated presentation of stimuli), and if these effects distinguished BPD patients from controls. METHODS Forty BPD subjects and 25 control subjects (age range: 18-44) participated in an episodic memory task during fMRI. Stimuli were presented in alternating epochs of encoding (six images of positive, negative, and neutral valence) and recognition (six images for 'old' v. 'new' recognition). Analyses focused on inter-group differences in the change in activation to repeated stimuli (presented during Encoding and Recognition). RESULTS Relative to controls, BPD showed greater priming (generally greater decrease from encoding to recognition) for negatively valenced stimuli. Conversely, BPD showed less priming for positively valenced stimuli (generally greater increase from encoding to recognition). CONCLUSION Plausibly, the relative familiarity of negative valence to patients with BPD exerts an influence on obligatory responses to repeated stimuli leading to repetition priming of neuronal profiles. The specific effects of valence on memory and/or attention, and consequently on priming can inform the understanding of mechanisms of altered salience for affective stimuli in BPD.
Collapse
Affiliation(s)
- Morgan Szczepaniak
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, USA
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, USA
| | - Paul H. Soloff
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, USA
| |
Collapse
|
24
|
Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci Rep 2020; 10:19843. [PMID: 33199790 PMCID: PMC7670469 DOI: 10.1038/s41598-020-76935-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
Collapse
|
25
|
Lou YT, Li XL, Wang Y, Ji GJ, Zang YF, Wang J, Feng JH. Frequency-Specific Regional Homogeneity Alterations in Tourette Syndrome. Front Psychiatry 2020; 11:543049. [PMID: 33391040 PMCID: PMC7773666 DOI: 10.3389/fpsyt.2020.543049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Tourette syndrome (TS) is a developmental neuropsychiatric disorder with onset during childhood. Because of its complex spectrum of phenotypes, the underlying pathophysiology of TS is still unclear. Resting-state functional magnetic resonance imaging demonstrated aberrant spontaneous neural synchronization in conventional frequency band (0.01-0.08 Hz) in TS. No published studies have reported abnormalities of local synchronization across different frequency bands. We estimated the alterations of local synchronization across five bands ranging from 0 to 0.25 Hz. Seventy-nine children with TS and 63 age-, sex-, and handedness-matched healthy children were recruited. Frequency-specific regional homogeneity (ReHo) and independent component analysis were used to identify functional alterations between TS and healthy children. TS patients showed significantly increased ReHo in the left precentral gyrus and decreased ReHo in the right operculum. Abnormal ReHo alterations of the superior frontal gyrus, superior parietal gyrus, anterior cingulate gyrus, putamen, superior temporal gyrus, and operculum were observed in different frequency bands. TS patients showed increased connectivity of the right superior frontal gyrus within the left executive control network. In addition, a significantly negative correlation was found between Yale Global Tic Severity Scale (YGTSS) vocal score and ReHo values of the right operculum in the highest frequency bands (0.198-0.25 Hz), while a significant positive correlation was found between YGTSS motor score and altered connectivity of the right superior frontal gyrus. The present study revealed frequency-specific abnormal alterations of ReHo in the whole brain and altered connectivity within the executive control network of TS children. Its neural importance and clinical practicability require further investigation.
Collapse
Affiliation(s)
- Yu-Ting Lou
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Long Li
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Ye Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gong-Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Anhui Province, Hefei, China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jian-Hua Feng
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|