1
|
Han J, Zhuang K, Chen X, Xiao M, Liu Y, Song S, Gao X, Chen H. Connectivity-based neuromarker for children's inhibitory control ability and its relevance to body mass index. Child Neuropsychol 2024:1-18. [PMID: 38375872 DOI: 10.1080/09297049.2024.2314956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
Preserving a normal body mass index (BMI) is crucial for the healthy growth and development of children. As a core aspect of executive functions, inhibitory control plays a pivotal role in maintaining a normal BMI, which is key to preventing issues of childhood obesity. By studying individual variations in inhibitory control performance and its associated connectivity-based neuromarker in a sample of primary school students (N = 64; 9-12 yr), we aimed to unravel the pathway through which inhibitory control impacts children's BMI. Utilizing resting-state functional MRI scans and a connectivity-based psychometric prediction framework, we found that enhanced inhibitory control abilities were primarily associated with increased functional connectivity in brain structures vital to executive functions, such as the superior frontal lobule, superior parietal lobule, and posterior cingulate cortex. Conversely, inhibitory control abilities displayed a negative relationship with functional connectivity originating from reward-related brain structures, such as the orbital frontal and ventral medial prefrontal lobes. Furthermore, we revealed that both inhibitory control and its corresponding neuromarker can moderate the association between food-related delayed gratification and BMI in children. However, only the neuromarker of inhibitory control maintained its moderating effect on children's future BMI, as determined in the follow-up after one year. Overall, our findings shed light on the potential mechanisms of how inhibitory control in children impacts BMI, highlighting the utility of the connectivity-based neuromarker of inhibitory control in the context of childhood obesity.
Collapse
Affiliation(s)
- Jinfeng Han
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Shiqing Song
- Faculty of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Altered brain activation during reward anticipation in bipolar disorder. Transl Psychiatry 2022; 12:300. [PMID: 35902559 PMCID: PMC9334601 DOI: 10.1038/s41398-022-02075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Although altered reward sensitivity has been observed in individuals with bipolar disorder (BD), the brain function findings related to reward processing remain unexplored and inconsistent. This meta-analysis aimed to identify brain activation alterations underlying reward anticipation in BD. A systematic literature research was conducted to identify fMRI studies of reward-relevant tasks performed by BD individuals. Using Anisotropic Effect Size Signed Differential Mapping, whole-brain and ROI of the ventral striatum (VS) coordinate-based meta-analyses were performed to explore brain regions showing anomalous activation in individuals with BD compared to healthy controls (HC), respectively. A total of 21 studies were identified in the meta-analysis, 15 of which were included in the whole-brain meta-analysis and 17 in the ROI meta-analysis. The whole-brain meta-analysis revealed hypoactivation in the bilateral angular gyrus and right inferior frontal gyrus during reward anticipation in individuals with BD compared to HC. No significant activation differences were observed in bilateral VS between two groups by whole-brain or ROI-based meta-analysis. Individuals with BD type I and individuals with euthymic BD showed altered activation in prefrontal, angular, fusiform, middle occipital gyrus, and striatum. Hypoactivation in the right angular gyrus was positively correlated with the illness duration of BD. The present study reveals the potential neural mechanism underlying impairment in reward anticipation in BD. Some clinical features such as clinical subtype, mood state, and duration of illness confound the underlying neurobiological abnormality reward anticipation in BD. These findings may have implications for identifying clinically relevant biomarkers to guide intervention strategies for BD.
Collapse
|
3
|
Chan SY, Ong ZY, Ngoh ZM, Chong YS, Zhou JH, Fortier MV, Daniel LM, Qiu A, Meaney MJ, Tan AP. Structure-function coupling within the reward network in preschool children predicts executive functioning in later childhood. Dev Cogn Neurosci 2022; 55:101107. [PMID: 35413663 PMCID: PMC9010704 DOI: 10.1016/j.dcn.2022.101107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Early differences in reward behavior have been linked to executive functioning development. The nucleus accumbens (NAc) and orbitofrontal cortex (OFC) are activated by reward-related tasks and identified as key nodes of the brain circuit that underlie reward processing. We aimed to investigate the relation between NAc-OFC structural and functional connectivity in preschool children, as well as associations with future reward sensitivity and executive function. We showed that NAc-OFC structural and functional connectivity were not significantly associated in preschool children, but both independently predicted sensitivity to reward in males in a left-lateralized manner. Moreover, significant NAc-OFC structure-function coupling was only found in individuals who performed poorly on executive function tasks in later childhood, but not in the middle- and high-performing groups. As structure-function coupling is proposed to measure functional specialization, this finding suggests premature functional specialization within the reward network, which may impede dynamic communication with other regions, affects executive function development. Our study also highlights the utility of multimodal imaging data integration when studying the effects of reward network functional flexibility in the preschool age, a critical period in brain and executive function development. Functional connectivity is not tethered to structural connectivity in preschool age. Higher degree of SC-FC coupling reflects lower plasticity in early childhood. Gender differences in reward sensitivity were present as early as in preschool age. Early reward network SC-FC coupling affects later executive function.
Collapse
|
4
|
Bryant LJ, Cuevas K. The effects of reward on children's Stroop performance: Interactions with temperament. Child Dev 2021; 93:e17-e31. [PMID: 34516011 DOI: 10.1111/cdev.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of rewards on executive function (EF) reflect bidirectional interactions among motivational and executive systems that vary with age and temperament. However, methodological limitations hinder understanding of the precise influences of incentives on early EF, including the role of reward sensitivity. In this within-subjects study, ninety-three 3.5- to 5-year-olds (42 girls; 22% Hispanic; 78% White) residing in the United States completed equivalent EF measures (Stroop and non-Stroop phases) in both rewarded and non-rewarded conditions. Rewards enhanced Stroop accuracy and slowed overall response times (ds = 0.29-0.40). Critically, children with low parent-reported reward sensitivity exhibited greater reward-based increases in Stroop accuracy (r = -.30). These findings provide valuable insights on early motivation-cognition integration, highlighting temperament as a mechanism underlying these interactions.
Collapse
|
5
|
Kryza-Lacombe M, Hernandez B, Owen C, Reynolds RC, Wakschlag LS, Dougherty LR, Wiggins JL. Neural mechanisms of reward processing in adolescent irritability. Dev Psychobiol 2021; 63:1241-1254. [PMID: 33462834 PMCID: PMC10171261 DOI: 10.1002/dev.22090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
Abstract
Irritability is impairing and prevalent across pediatric psychiatric disorders and typical development, yet its neural mechanisms are largely unknown. This study evaluated the relation between adolescent irritability and reward-related brain function as a candidate neural mechanism. Adolescents from intervention-seeking families in the community (N = 52; mean age = 13.80, SD = 1.94) completed a monetary incentive delay task to assess reward anticipation and feedback (reward receipt and omission) during fMRI acquisition. Whole-brain analyses, controlling for age, examined brain activation and striatal and amygdala connectivity in relation to irritability. Irritability was measured using the parent- and youth-reported Affective Reactivity Index. Irritability was associated with altered reward processing-related activation and connectivity in multiple networks during reward anticipation and feedback, including increased striatal activation and altered ventral striatum connectivity with prefrontal areas. Our findings suggest that irritability is associated with altered neural patterns during reward processing and that aberrant prefrontal cortex-mediated top-down control may be related to irritability. These findings inform our understanding of the etiology of youth irritability and the development of mechanism-based interventions.
Collapse
Affiliation(s)
- Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Brianna Hernandez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Cassidy Owen
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Richard C Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine & Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Lea R Dougherty
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Jillian L Wiggins
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.,Department of Psychology, San Diego State University, San Diego, CA, USA
| |
Collapse
|