1
|
Jin C, Li Y, Yin Y, Ma T, Hong W, Liu Y, Li N, Zhang X, Gao JH, Zhang X, Zha R. The dorsomedial prefrontal cortex promotes self-control by inhibiting the egocentric perspective. Neuroimage 2024; 301:120879. [PMID: 39369803 DOI: 10.1016/j.neuroimage.2024.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
The dorsomedial prefrontal cortex (dmPFC) plays a crucial role in social cognitive functions, including perspective-taking. Although perspective-taking has been linked to self-control, the mechanism by which the dmPFC might facilitate self-control remains unclear. Using the multimodal neuroimaging dataset from the Human Connectome Project (Study 1, N =978 adults), we established a reliable association between the dmPFC and self-control, as measured by discounting rate-the tendency to prefer smaller, immediate rewards over larger, delayed ones. Experiments (Study 2, N = 36 adults) involving high-definition transcranial direct current stimulation showed that anodal stimulation of the dmPFC reduces the discounting of delayed rewards and decreases the congruency effect in egocentric but not allocentric perspective in the visual perspective-taking tasks. These findings suggest that the dmPFC promotes self-control by inhibiting the egocentric perspective, offering new insights into the neural underpinnings of self-control and perspective-taking, and opening new avenues for interventions targeting disorders characterized by impaired self-regulation.
Collapse
Affiliation(s)
- Chen Jin
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China; Department of Philosophy, School of Humanities, Tongji University, Shanghai 200092, China
| | - Ying Li
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China
| | - Yin Yin
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China
| | - Tenda Ma
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China
| | - Wei Hong
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China
| | - Yan Liu
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Nan Li
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China
| | - Xinyue Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China
| | - Jia-Hong Gao
- McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China; Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, Anhui 230027, China; Institute of Health and Medicine, Hefei Comprehensive Science Center, Hefei, 230071, China; Business School, Guizhou Education University, Guiyang 550018, China.
| | - Rujing Zha
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine and Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, 230027, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei, China; Key Laboratory of Brain-Machine Intelligence for Information Behavior - Ministry of Education, Shanghai International Studies University, Shanghai, China.
| |
Collapse
|
2
|
Riva F, Lenger M, Kronbichler M, Lamm C, Silani G. The role of right supra-marginal gyrus and secondary somatosensory cortex in age-related differences in human emotional egocentricity. Neurobiol Aging 2022; 112:102-110. [PMID: 35104721 DOI: 10.1016/j.neurobiolaging.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
Abstract
Emotional egocentric bias (EEB) occurs when, due to a partial failure in self-other distinction, empathy for another's emotion is influenced by our own emotional state. Recent studies have revealed a higher EEB in children, adolescents and older adults compared to young adults, but the neural correlates of this finding are largely unknown. We asked female participants (N = 95) from three different age groups (adolescents, young and older adults) to perform a well-validated EEB task in an MRI scanner. We assessed task-based changes in activity and effective connectivity as well as morphometric changes in regions of interest to pinpoint functional and structural age-related differences. Results revealed higher EEB in older compared to young adults and adolescents. Connectivity between right supramarginal gyrus (rSMG) and somatosensory cortices acted as a partial mediator between age and EEB. The findings suggest that an intact connectivity of rSMG, rather than its regional activity, with sensory-perceptual brain areas is crucial for overcoming egocentric biases of empathic judgments.
Collapse
Affiliation(s)
- Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Melanie Lenger
- Centre for Cognitive Neuroscience, University of Salzburg, Kapitelgasse 4-6, 5020 Salzburg, Austria; Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Auenbruggerplatz 31, Graz, 8036, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience, University of Salzburg, Kapitelgasse 4-6, 5020 Salzburg, Austria; Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University, Strubergasse 21 5020 Salzburg, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| |
Collapse
|
3
|
van Leeuwen JEP, Boomgaard J, Bzdok D, Crutch SJ, Warren JD. More Than Meets the Eye: Art Engages the Social Brain. Front Neurosci 2022; 16:738865. [PMID: 35281491 PMCID: PMC8914233 DOI: 10.3389/fnins.2022.738865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Here we present the viewpoint that art essentially engages the social brain, by demonstrating how art processing maps onto the social brain connectome-the most comprehensive diagram of the neural dynamics that regulate human social cognition to date. We start with a brief history of the rise of neuroaesthetics as the scientific study of art perception and appreciation, in relation to developments in contemporary art practice and theory during the same period. Building further on a growing awareness of the importance of social context in art production and appreciation, we then set out how art engages the social brain and outline candidate components of the "artistic brain connectome." We explain how our functional model for art as a social brain phenomenon may operate when engaging with artworks. We call for closer collaborations between the burgeoning field of neuroaesthetics and arts professionals, cultural institutions and diverse audiences in order to fully delineate and contextualize this model. Complementary to the unquestionable value of art for art's sake, we argue that its neural grounding in the social brain raises important practical implications for mental health, and the care of people living with dementia and other neurological conditions.
Collapse
Affiliation(s)
- Janneke E. P. van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Thinking Eye, ACAVA Limehouse Arts Foundation, London, United Kingdom
| | - Jeroen Boomgaard
- Research Group Art and Public Space, Gerrit Rietveld Academie, Amsterdam, Netherlands
| | - Danilo Bzdok
- Department of Biomedical Engineering, McGill University, Montréal, ON, Canada
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|